Alberts, B, Johnson, A, Lewis, J, Raff, M, Roberts, K, Walter, P. Molecular Biology of the Cell. 5th ed. New York, NY: Garland Science; 2008.
Hirokawa, N, Noda, Y, Tanaka, Y, Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 2009, 10:682–696.
Sweeney, HL, Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 2010, 39:539–557.
Soong, RK, Bachand, GD, Neves, HP, Olkhovets, AG, Craighead, HG, Montemagno, CD. Powering an inorganic nanodevice with a biomolecular motor. Science 2000, 290:1555–1558.
Dennis, JR, Howard, J, Vogel, V. Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology 1999, 10:232–236.
Sahu, S, LaBean, TH, Reif, JH. A DNA nanotransport device powered by polymerase phi 29. Nano Lett 2008, 8:3870–3878.
Prasad, M, Roy, S. Optoelectronic logic gates based on photovoltaic response of bacteriorhodopsin polymer composite thin films. IEEE Trans Nanobiosci 2012, 11:410–420.
York, J, Spetzler, D, Xiong, FS, Frasch, WD. Single‐molecule detection of DNA via sequence‐specific links between F‐1‐ATPase motors and gold nanorod sensors. Lab Chip 2008, 8:415–419.
Kojima, M, Zhang, ZH, Nakajima, M, Fukuda, T. High efficiency motility of bacteria‐driven liposome with raft domain binding method. Biomed Microdevices 2012, 14:1027–1032.
Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer Associates, Inc.; 2001.
Korten, T, Mansson, A, Diez, S. Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr Opin Biotechnol 2010, 21:477–488.
Piazzesi, G, Reconditi, M, Linari, M, Lucii, L, Bianco, P, Brunello, E, Decostre, V, Stewart, A, Gore, DB, Irving, TC, et al. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 2007, 131:784–795.
Cappello, G, Pierobon, P, Symonds, C, Busoni, L, Gebhardt, JCM, Rief, M, Prost, J. Myosin V stepping mechanism. Proc Natl Acad Sci USA 2007, 104:15328–15333.
Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA: Sinauer Press, Inc.; 2001.
Hawkins, T, Mirigian, M, Yasar, MS, Ross, JL. Mechanics of microtubules. J Biomech 2010, 43:23–30.
Asbury, CL, Fehr, AN, Block, SM. Kinesin moves by an asymmetric hand‐over‐hand mechanism. Science 2003, 302:2130–2134.
Asbury, CL. Kinesin: world`s tiniest biped. Curr Opin Cell Biol 2005, 17:89–97.
Redwine, WB, Hernandez‐Lopez, R, Zou, S, Huang, J, Reck‐Peterson, SL, Leschziner, AE. Structural basis for microtubule binding and release by dynein. Science 2012, 337:1532–1536.
Reck‐Peterson, SL, Vale, RD, Gennerich, A. Motile properties of cytoplasmic dynein. In: Hirose K, Amos LA, eds. Handbook of Dynein. Singapore: Pan Stanford Publishing; 2012, 145–172.
Lieber, CM. Nanoscale science and technology: building a big future from small things. MRS Bull 2003, 28:486–491.
Fialkowski, M, Bishop, KJM, Klajn, R, Smoukov, SK, Campbell, CJ, Grzybowski, BA. Principles and implementations of dissipative (dynamic) self‐assembly. J Phys Chem B 2006, 110:2482–2496.
Hess, H. Self‐assembly driven by molecular motors. Soft Matter 2006, 2:669–677.
Hess, H, Bachand, GD, Vogel, V. Powering nanodevices with biomolecular motors. Chem A Eur J 2004, 10:2110–2116.
Surrey, T, Nedelec, F, Leibler, S, Karsenti, E. Physical properties determining self‐organization of motors and microtubules. Science 2001, 292:1167–1171.
Needleman, DJ, Ojeda‐Lopez, MA, Raviv, U, Miller, HP, Wilson, L, Safinya, CR. Higher‐order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc Natl Acad Sci USA 2004, 101:16099–16103.
Needleman, DJ, Ojeda‐Lopez, MA, Raviv, U, Ewert, K, Jones, JB, Miller, HP, Wilson, L, Safinya, CR. Synchrotron X‐ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys Rev Lett 2004, 93:198104-1–198101-4.
Koenderink, GH, Dogic, Z, Nakamura, F, Bendix, PM, MacKintosh, FC, Hartwig, JH, Stossel, TP, Weitz, DA. An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci USA 2009, 106:15192–15197.
Sanchez, T, Welch, D, Nicastro, D, Dogic, Z. Cilia‐like beating of active microtubule bundles. Science 2011, 333:456–459.
Bray, D. Cell movements: from molecules to motility. New York: Garland Publishing; 2001.
Gross, SP, Welte, MA, Block, SM, Wieschaus, EF. Coordination of opposite‐polarity microtubule motors. J Cell Biol 2002, 156:715–724.
Amos, LA, Amos, WB. The bending of sliding microtubules imaged by confocal light‐microscopy and negative stain electron‐microscopy. J Cell Sci 1991, 14:95–101.
Gittes, F, Mickey, B, Nettleton, J, Howard, J. Flexural rigidity of microtubules and actin‐filaments measured from thermal fluctuations in shape. J Cell Biol 1993, 120:923–934.
Inoue, D, Kabir, AMR, Mayama, H, Gong, JP, Sada, K, Kakugo, A. Growth of ring‐shaped microtubule assemblies through stepwise active self‐organisation. Soft Matter 2013, 9:7061.
Liu, H, Bachand, GD. Effects of confinement on molecular motor‐driven self‐assembly of ring structures. Cell Mol Bioeng 2013, 6:98–108.
Kakugo, A, Kabir, AM, Hosoda, N, Shikinaka, K, Gong, JP. Controlled clockwise‐counterclockwise motion of the ring‐shaped microtubules assembly. Biomacromolecules 2011, 12:3394–3399.
Liu, H, Bachand, GD. Understanding energy dissipation and thermodynamics in biomotor‐driven nanocomposite assemblies. Soft Matter 2011, 7:3087–3091.
Hess, H, Clemmens, J, Brunner, C, Doot, R, Luna, S, Ernst, KH, Vogel, V. Molecular self‐assembly of “nanowires” and “nanospools” using active transport. Nano Lett 2005, 5:629–633.
Liu, HQ, Spoerke, ED, Bachand, M, Koch, SJ, Bunker, BC, Bachand, GD. Biomolecular motor‐powered self‐assembly of dissipative nanocomposite rings. Adv Mater 2008, 20:4476–4481.
Luria, I, Crenshaw, J, Downs, M, Agarwal, A, Seshadri, SB, Gonzales, J, Idan, O, Kamcev, J, Katira, P, Pandey, S, et al. Microtubule nanospool formation by active self‐assembly is not initiated by thermal activation. Soft Matter 2011, 7:3108–3115.
Hess, H, Clemmens, J, Brunner, C, Doot, R, Luna, S, Ernst, KH, Vogel, V. Molecular self‐assembly of “nanowires” and “nanospools” using active transport. Nano Lett 2005, 5:629–633.
Kawamura, R, Kakugo, A, Shikinaka, K, Osada, Y, Gong, JP. Ring‐shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 2008, 9:2277–2282.
Bachand, M, Trent, AM, Bunker, BC, Bachand, GD. Physical factors affecting kinesin‐based transport of synthetic nanoparticle cargo. J Nanosci Nanotechnol 2005, 5:718–722.
Pierson, GB, Burton, PR, Himes, RH. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol 1978, 76:223–228.
Kakugo, A, Kabir, AMR, Hosoda, N, Shikinaka, K, Gong, JP. Controlled clockwise‐counterclockwise motion of the ring‐shaped microtubules assembly. Biomacromolecules 2011, 12:3394–3399.
Idan, O, Lam, A, Kamcev, J, Gonzales, J, Agarwal, A, Hess, H. Nanoscale transport enables active self‐assembly of millimeter‐scale wires. Nano Lett 2012, 12:240–245.
Bull, JL, Hunt, AJ, Meyhofer, E. A theoretical model of a molecular‐motor‐powered pump. Biomed Microdevices 2005, 7:21–33.
Karlsson, M, Sott, K, Davidson, M, Cans, AS, Linderholm, P, Chiu, D, Orwar, O. Formation of geometrically complex lipid nanotube‐vesicle networks of higher‐order topologies. Proc Natl Acad Sci USA 2002, 99:11573–11578.
Roux, A, Cappello, G, Cartaud, J, Prost, J, Goud, B, Bassereau, P. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci USA 2002, 99:5394–5399.
Koster, G, VanDuijn, M, Hofs, B, Dogterom, M. Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc Natl Acad Sci USA 2003, 100:15583–15588.
Leduc, C, Campas, O, Zeldovich, KB, Roux, A, Jolimaitre, P, Bourel‐Bonnet, L, Goud, B, Joanny, JF, Bassereau, P, Prost, J. Cooperative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci USA 2004, 101:17096–17101.
Davis, DM, Sowinski, S. Membrane nanotubes: dynamic long‐distance connections between animal cells. Nat Rev Mol Cell Biol 2008, 9:431–436.
Bouxsein, NF, Carroll‐Portillo, A, Bachand, M, Sasaki, DY, Bachand, GD. A Continuous Network of Lipid Nanotubes Fabricated from the Gliding Motility of Kinesin Powered Microtubule Filaments. Langmuir 2013, 29:2992–2999.
Goel, A, Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol 2008, 3:465–475.
Wei, M‐Y, Leon, LJ, Lee, Y, Parks, D, Carroll, L, Famouri, P. Selective attachment of F‐actin with controlled length for developing an intelligent nanodevice. J Colloid Interface Sci 2011, 356:182–189.
Agayan, RR, Tucker, R, Nitta, T, Ruhnow, F, Walter, WJ, Diez, S, Hess, H. Optimization of isopolar microtubule arrays. Langmuir 2013, 29:2265–2272.
Spoerke, ED, Bachand, GD, Liu, J, Sasaki, D, Bunker, BC. Directing the polar organization of microtubules. Langmuir 2008, 24:7039–7043.
Spoerke, ED, Boal, AK, Bachand, GD, Bunker, BC. Biodynamic assembly of nanocrystals on artificial microtubule asters. ACS Nano 2013, 6:2012–2019.
Moorjani, SG, Jia, L, Jackson, TN, Hancock, WO. Lithographically patterned channels spatially segregate kinesin motor activity and effectively guide microtubule movements. Nano Lett 2003, 3:633–637.
Hiratsuka, Y, Tada, T, Oiwa, K, Kanayama, T, Uyeda, TQP. Controlling the direction of kinesin‐driven microtubule movements along microlithographic tracks. Biophys J 2001, 81:1555–1561.
Hess, H, Clemmens, J, Matzke, C, Bachand, G, Bunker, B, Vogel, V. Ratchet patterns sort molecular shuttles. Appl Phys A Mater Sci Process 2002, 75:309–313.
Clemmens, J, Hess, H, Howard, J, Vogel, V. Analysis of microtubule guidance in open microfabricated channels coated with the motor protein kinesin. Langmuir 2003, 19:1738–1744.
Clemmens, J, Hess, H, Lipscomb, R, Hanein, Y, Bohringer, KF, Matzke, CM, Bachand, GD, Bunker, BC, Vogel, V. Mechanisms of microtubule guiding on microfabricated kinesin‐coated surfaces: chemical and topographic surface patterns. Langmuir 2003, 19:10967–10974.
Clemmens, J, Hess, H, Doot, R, Matzke, CM, Bachand, GD, Vogel, V. Motor‐protein roundabouts: microtubules moving on kinesin‐coated tracks through engineered networks. Lab Chip 2004, 4:83–86.
Lin, C‐T, Meyhofer, E, Kurabayashi, K. Predicting the stochastic guiding of kinesin‐driven microtubules in microfabricated tracks: a statistical‐mechanics‐based modeling approach. Phys Rev E 2010, 81:011919-1–011919-5.
Dujovne, I, van den Heuvel, M, Shen, Y, de Graaff, M, Dekker, C. Velocity modulation of microtubules in electric fields. Nano Lett 2008, 8:4217–4220.
Kim, E, Byun, K‐E, Choi, DS, Lee, DJ, Cho, DH, Lee, BY, Yang, H, Heo, J, Chung, H‐J, Seo, S, et al. Electrical control of kinesin‐microtubule motility using a transparent functionalized‐graphene substrate. Nanotechnology 2013, 24:195102-1–195102-6.
Nitta, T, Tanahashi, A, Hirano, M. In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. Lab Chip 2010, 10:1447–1453.
Korten, T, Mansson, A, Diez, S. Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr Opin Biotechnol 2010, 21:477–488.
Takatsuki, H, Rice, KM, Asano, S, Day, BS, Hino, M, Oiwa, K, Ishikawa, R, Hiratsuka, Y, Uyeda, TQP, Kohama, K, et al. Utilization of myosin and actin bundles for the transport of molecular cargo. Small 2010, 6:452–457.
Hutchins, BM, Platt, M, Hancock, WO, Williams, ME. Directing transport of CoFe2O4‐functionalized microtubules with magnetic fields. Small 2007, 3:126–131.
Schroeder, V, Korten, T, Linke, H, Diez, S, Maximov, I. Dynamic guiding of motor‐driven microtubules on electrically heated, smart polymer tracks. Nano Lett 2013, 13:3434–3438.
Konishi, K, Uyeda, TQP, Kubo, T. Genetic engineering of a Ca2+ dependent chemical switch into the linear biomotor kinesin. FEBS Lett 2006, 580:3589–3594.
Greene, AC, Trent, AM, Bachand, GD. Controlling kinesin motor proteins in nanoengineered systems through a metal‐binding on/off switch. Biotechnol Bioeng 2008, 101:478–486.
Cochran, JC, Zhao, YC, Wilcox, DE, Kull, FJ. A metal switch for controlling the activity of molecular motor proteins. Nat Struct Mol Biol 2012, 19:122–127.
Korten, T, Birnbaum, W, Kuckling, D, Diez, S. Selective control of gliding microtubule populations. Nano Lett 2012, 12:348–353.
Nomura, A, Uyeda, TQP, Yumoto, N, Tatsu, Y. Photo‐control of kinesin‐microtubule motility using caged peptides derived from the kinesin C‐terminus domain. Chem Commun 2006, 42:3588–3590.
Byun, K‐E, Choi, DS, Kim, E, Seo, DH, Yang, H, Seo, S, Hong, S. Graphene‐polymer hybrid nanostructure‐based bioenergy storage device for real‐time control of biological motor activity. ACS Nano 2011, 5:8656–8664.
Wu, D, Tucker, R, Hess, H. Caged ATP‐fuel for bionanodevices. IEEE Trans Adv Packaging 2005, 28:594–599.
Du, YZ, Hiratsuka, Y, Taira, S, Eguchi, M, Uyeda, TQP, Yumoto, N, Kodaka, M. Motor protein nano‐biomachine powered by self‐supplying ATP. Chem Commun 2005, 16:2080–2082.
Martin, BD, Velea, LM, Soto, CM, Whitaker, CM, Gaber, BP, Ratna, B. Reversible control of kinesin activity and microtubule gliding speeds by switching the doping states of a conducting polymer support. Nanotechnology 2007, 18:055103-1–055103-7.
Rahim, MKA, Fukaminato, T, Kamei, T, Tamaoki, N. Dynamic photocontrol of the gliding motility of a microtubule driven by kinesin on a photoisomerizable mono layer surface. Langmuir 2011, 27:10347–10350.
Rahim, MKA, Kamei, T, Tamaoki, N. Dynamic photo‐control of kinesin on a photoisomerizable monolayer—hydrolysis rate of ATP and motility of microtubules depending on the terminal group. Org Biomol Chem 2012, 10:3321–3331.
Fischer, T, Agarwal, A, Hess, H. A smart dust biosensor powered by kinesin motors. Nat Nanotechnol 2009, 4:162–166.
Fujimoto, K, Kitamura, M, Yokokawa, M, Kanno, I, Kotera, H, Yokokawa, R. Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS Nano 2013, 7:447–455.
Carroll‐Portillo, A, Bachand, M, Greene, AC, Bachand, GD. In vitro capture, transport, and detection of protein analytes using kinesin‐based nanoharvesters. Small 2009, 5:1835–1840.
Taira, S, Du, YZ, Hiratsuka, Y, Konishi, K, Kubo, T, Uyeda, TQP, Yumoto, N, Kodaka, M. Selective detection and transport of fully matched DNA by DNA‐loaded microtubule and kinesin motor protein. Biotechnol Bioeng 2006, 95:533–538.
Frueh, SM, Steuerwald, D, Simon, U, Vogel, V. Covalent cargo loading to molecular shuttles via copper‐free “click chemistry”. Biomacromolecules 2012, 13:3908–3911.
Carroll‐Portillo, A, Bachand, M, Bachand, GD. Directed attachment of antibodies to kinesin‐powered molecular shuttles. Biotechnol Bioeng 2009, 104:1182–1188.
Ramachandran, S, Ernst, K‐H, Bachand, G, Vogel, V, Hess, H. Selective loading of kinesin‐powered molecular shuttles with protein cargo and its application to biosensing. Small 2006, 2:330–334.
Bachand, GD, Rivera, SB, Carroll‐Portillo, A, Hess, H, Bachand, M. Active capture and transport of virus particles using a biomolecular motor‐driven, nanoscale antibody sandwich assay. Small 2006, 2:381–385.
Persson, M, Gullberg, M, Tolf, C, Lindberg, AM, Mansson, A, Kocer, A. Transportation of nanoscale cargoes by myosin propelled actin filaments. Plos One 2013, 8:e55931-1–e55931-13.
Korten, T, Diez, S. Setting up roadblocks for kinesin‐1: mechanism for the selective speed control of cargo carrying microtubules. Lab Chip 2008, 8:1441–1447.
Tarhan, MC, Yokokawa, R, Morin, FO, Fujita, H. Specific transport of target molecules by motor proteins in microfluidic channels. ChemPhysChem 2013, 14:1618–1625.
Yokokawa, R, Tarhan, MC, Kon, T, Fujita, H. Simultaneous and bidirectional transport of kinesin‐coated microspheres and dynein‐coated microspheres on polarity‐oriented microtubules. Biotechnol Bioeng 2008, 101:1–8.
Fujimoto, K, Kitamura, M, Yokokawa, M, Kanno, I, Kotera, H, Yokokawa, R. Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS Nano 2012, 7:447–455.
Bottier, C, Fattaccioli, J, Tarhan, MC, Yokokawa, R, Morin, FO, Kim, B, Collard, D, Fujita, H. Active transport of oil droplets along oriented microtubules by kinesin molecular motors. Lab Chip 2009, 9:1694–1700.
Leduc, C, Padberg‐Gehle, K, Varga, V, Helbing, D, Diez, S, Howard, J. Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc Natl Acad Sci USA 2012, 109:6100–6105.
Rios, L, Bachand, GD. Multiplex transport and detection of cytokines using kinesin‐driven molecular shuttles. Lab Chip 2009, 9:1005–1010.
Ramachandran, S, Ernst, KH, Bachand, GD, Vogel, V, Hess, H. Selective loading of kinesin‐powered molecular shuttles with protein cargo and its application to biosensing. Small 2006, 2:330–334.
Kim, T, Cheng, L‐J, Kao, M‐T, Hasselbrink, EF, Guo, L, Meyhofer, E. Biomolecular motor‐driven molecular sorter. Lab Chip 2009, 9:1282–1285.
Lin, C‐T, Kao, M‐T, Kurabayashi, K, Meyhofer, E. Self‐contained, biomolecular motor‐driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett 2008, 8:1041–1046.
Bachand, GD, Hess, H, Ratna, B, Satir, P, Vogel, V. “Smart dust” biosensors powered by biomolecular motors. Lab Chip 2009, 9:1661–1666.