Vander Heiden, MG, Locasale, JW, Swanson, KD, Sharfi, H, Heffron, GJ. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 2010, 329:1492–1499.
Michelakis, ED, Dromparis, P. Mitochondria in vascular health and disease. Annu Rev Physiol 2013, 75:95–126.
Gray, MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol 2012, 4: 1–16.
Spees, JL, Olson, SD, Whitney, MJ, Prockop, DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 2006, 103:1283–1288.
DiMauro, S, Schon, EA. Mitochondrial respiratory‐chain diseases. N Engl J Med 2003, 348:2656–2668.
Duchen, MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 1999, 516:1–17.
Zamzami, NKG. The mitochondrion in apoptosis: how Pandora`s box opens. Nat Rev Mol Cell Biol 2001, 2:67–71.
McBride, HM, Neuspiel, M, Wasiak, S. Mitochondria: more than just a powerhouse. Curr Biol 2006, 16:R551–R560.
Liu, X, Kim, CN, Yang, J, Jemmerson, R, Wang, X. Induction of apoptotic program in cell‐free extracts: requirement for dATP and cytochrome c. Cell 1996, 86:147–157.
Luft, R, Ikkos, D, Palmieri, G, Ernster, L, Afzelius, B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962, 41:1776–1804.
Wallace, DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005, 39:359–407.
Fosslien, E. Mitochondrial medicine—molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci 2001, 31:25–67.
West, IC. Radicals and oxidative stress in diabetes. Diabet Med 2000, 17:171–180.
Koike, K. Molecular basis of hepatitis C virus‐associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol 2005, 3:S132–S135.
Wallace, DC. Mitochondria and cancer. Nat Rev Cancer 2012, 12:685–698.
Chen, EI. Mitochondrial dysfunction and cancer metastasis. J Bioenerg Biomembr 2012, 44:619–622.
Boland, ML, Chourasia, AH, Macleod, KF. Mitochondrial dysfunction in cancer. Front Oncol 2013, 3:292.
Stavrovskaya, IG, Kristal, BS. The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 2005, 38:687–697.
Puddu, P, Puddu, GM, Galletti, L, Cravero, E, Muscari, A. Mitochondrial dysfunction as an initiating event in atherogenesis: a plausible hypothesis. Cardiology 2005, 103:137–141.
Ballinger, SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 2005, 38:1278–1295.
Lesnefsky, EJ, Moghaddas, S, Tandler, B, Kerner, J, Hoppel, CL. Mitochondrial dysfunction in cardiac disease: ischemia—reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001, 33:1065–1089.
Madamanchi, NR, Runge, MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007, 100:460–473.
Mercer, JR, Cheng, KK, Figg, N, Gorenne, I, Mahmoudi, M, Griffin, J, Vidal‐Puig, A, Logan, A, Murphy, MP, Bennett, M. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res 2010, 107:1021–1031.
Savitha, S, Sivarajan, K, Haripriya, D, Kokilavani, V, Panneerselvam, C. Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging. Clin Nutr 2005, 24:794–800.
Skulachev, VP, Longo, VD. Aging as a mitochondria‐mediated atavistic program: can aging be switched off? Ann N Y Acad Sci 2005, 1057:145–164.
Ames, BN, Shigenaga, MK, Hagen, TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 1993, 90:7915–7922.
Corral‐Debrinski, M, Shoffner, JM, Lott, MT, Wallace, DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 1992, 275:169–180.
Stork, C, Renshaw, PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005, 10:900–919.
Fattal, O, Budur, K, Vaughan, AJ, Franco, K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006, 47:1–7.
Einat, H, Yuan, P, Manji, HK. Increased anxiety‐like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl‐2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005, 165:172–180.
Fulle, S, Mecocci, P, Fano, G, Vecchiet, I, Vecchini, A, Racciotti, D, et al. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 2000, 29:1252–1259.
Myhill, S, Booth, NE, McLaren‐Howard, J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2009, 2:1–16.
Wang, X, Wang, W, Li, L, Perry, G, Lee, HG, Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer`s disease. Biochim Biophys Acta 2014, 1842:1240–1247.
Ross, MF, Kelso, GF, Blaikie, FH, James, AM, Cochemé, HM, Filipovska, A, Da Ros, T, Hurd, TR, Smith, RAJ, Murphy, MP. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 2005, 70:273–283.
Alberts, BJA, Lewis, J, et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.
Nieminen, AI, Eskelinen, VM, Haikala, HM, Tervonen, TA, Yan, Y, Partanen, JI, et al. Myc‐induced AMPK‐phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 2013, 110:E1839–E1848.
Henry‐Mowatt, J, Dive, C, Martinou, J‐C, James, D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 2004, 23:2850–2860.
Sheu, SS, Anders, MW, Xu, L, Sharma, VK. N‐Acetyl L‐Cysteine and L‐Cysteine Choline Esters, and (R)‐[2‐(2,2‐Dimethyl‐thiazolidine‐4‐carbonyloxy)‐ethyl]trimethyl‐ammonium chloride, for example; compounds may be used to inhibit oxidative stress‐induced cell injury or death both in vivo and ex vivo; 2009. USPTO, PCT/US2004/039739.
Sheu, SS, Nauduri, D, Anders, MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 2006, 1762:256–265.
Miriyala, S, Spasojevic, I, Tovmasyan, A, Salvemini, D, Vujaskovic, Z, St Clair, D, et al. Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta 2012, 1822:794–814.
Ali, DK, Oriowo, M, Tovmasyan, A, Batinic‐Haberle, I, Benov, L. Late administration of Mn porphyrin‐based SOD mimic enhances diabetic complications. Redox Biol 2013, 1:457–466.
Keir, ST, Dewhirst, MW, Kirkpatrick, JP, Bigner, DD, Batinic‐Haberle, I. Cellular redox modulator, ortho Mn(III) meso‐tetrakis(N‐n‐hexylpyridinium‐2‐yl)porphyrin, MnTnHex‐2‐PyP(5+) in the treatment of brain tumors. Curr Med Chem: Anti‐Cancer Agents 2011, 11:202–212.
Sheng, H, Spasojevic, I, Tse, HM, Jung, JY, Hong, J, Zhang, Z, et al. Neuroprotective Efficacy from a Lipophilic Redox‐Modulating Mn(III) N‐Hexylpyridylporphyrin, MnTnHex‐2‐PyP: Rodent Models of Ischemic Stroke and Subarachnoid Hemorrhage. J Pharmacol Exp Ther 2011, 338:906–916.
Szulc, ZM, Bielawski, J, Gracz, H, Gustilo, M, Mayroo, N, Hannun, YA, et al. Tailoring structure—function and targeting properties of ceramides by site‐specific cationization. Bioorg Med Chem 2006, 14:7083–7104.
Rokitskaya, TI, Sumbatyan, NV, Tashlitsky, VN, Korshunova, GA, Antonenko, YN, Skulachev, VP. Mitochondria‐targeted penetrating cations as carriers of hydrophobic anions through lipid membranes. Biochim Biophys Acta 2010, 1798:1698–1706.
Horton, KL, Stewart, KM, Fonseca, SB, Guo, Q, Kelley, SO. Mitochondria‐penetrating peptides. Chem Biol 2008, 15:375–382.
Horton, KL, Kelley, SO. Engineered apoptosis‐inducing peptides with enhanced mitochondrial localization and potency. J Med Chem 2009, 52:3293–3299.
Lei, EK, Pereira, MP, Kelley, SO. Tuning the intracellular bacterial targeting of peptidic vectors. Angew Chem Int Ed 2013, 52:9660–9663.
Rin Jean, S, Tulumello, DV, Wisnovsky, SP, Lei, EK, Pereira, MP, Kelley, SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 2014, 9:323–333.
Zhang, P, Cheetham, AG, Lock, LL, Cui, H. Cellular uptake and cytotoxicity of drug–peptide conjugates regulated by conjugation site. Bioconjug Chem 2013, 24:604–613.
Chamberlain, GR, Tulumello, DV, Kelley, SO. Targeted delivery of doxorubicin to mitochondria. ACS Chem Biol 2013, 8:1389–1395.
Fonseca Sonali, B, Pereira Mark, P, Mourtada, R, Gronda, M, Horton Kristin, L, Hurren, R, et al. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 2011, 18:445–453.
Wisnovsky Simon, P, Wilson Justin, J, Radford Robert, J, Pereira Mark, P, Chan Maria, R, Laposa Rebecca, R, et al. Targeting mitochondrial DNA with a platinum‐based anticancer agent. Chem Biol 2013, 20:1323–1328.
Pereira, MP, Kelley, SO. Maximizing the therapeutic window of an antimicrobial drug by imparting mitochondrial sequestration in human cells. J Am Chem Soc 2011, 133:3260–3263.
Kelso, GF, Porteous, CM, Coulter, CV, Hughes, G, Porteous, WK, Ledgerwood, EC, et al. Selective targeting of a redox‐active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 2001, 276:4588–4596.
Jauslin, ML, Meier, T, Smith, RAJ, Murphy, MP. Mitochondria‐targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003, 17:1972–1974.
Adlam, VJ, Harrison, JC, Porteous, CM, James, AM, Smith, RAJ, Murphy, MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. FASEB J 2005, 19:1088–1095.
Cheng, G, Zielonka, J, McAllister, D, Mackinnon, A, Joseph, J, Dwinell, M, et al. Mitochondria‐targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 2013, 13:285.
Kelso, GF, Maroz, A, Cocheme, HM, Logan, A, Prime, TA, Peskin, AV, et al. A mitochondria‐targeted macrocyclic Mn(II) superoxide dismutase mimetic. Chem Biol 2012, 19:1237–1246.
Filipovska, A, Kelso, GF, Brown, SE, Beer, SM, Smith, RA, Murphy, MP. Synthesis and characterization of a triphenylphosphonium‐conjugated peroxidase mimetic: insights into the interaction of ebselen with mitochondria. J Biol Chem 2005, 280:24113–24126.
Dessolin, J, Schuler, M, Quinart, A, De Giorgi, F, Ghosez, L, Ichas, F. Selective targeting of synthetic antioxidants to mitochondria: towards a mitochondrial medicine for neurodegenerative diseases? Eur J Pharmacol 2002, 447:155–161.
Dhanasekaran, A, Kotamraju, S, Karunakaran, C, Kalivendi, SV, Thomas, S, Joseph, J, et al. Mitochondria superoxide dismutase mimetic inhibits peroxide‐induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med 2005, 39:567–583.
Murphy, MP, Echtay, KS, Blaikie, FH, Asin‐Cayuela, J, Cocheme, HM, Green, K, et al. Superoxide activates uncoupling proteins by generating carbon‐centered radicals and initiating lipid peroxidation: studies using a mitochondria‐targeted spin trap derived from alpha‐phenyl‐N‐tert‐butylnitrone. J Biol Chem 2003, 278:48534–48545.
Belikova, NA, Jiang, J, Stoyanovsky, DA, Glumac, A, Bayir, H, Greenberger, JS, et al. Mitochondria‐targeted (2‐hydroxyamino‐vinyl)‐triphenyl‐phosphonium releases NO(.) and protects mouse embryonic cells against irradiation‐induced apoptosis. FEBS Lett 2009, 583:1945–1950.
Stoyanovsky, DA, Vlasova, II, Belikova, NA, Kapralov, A, Tyurin, V, Greenberger, JS, et al. Activation of NO donors in mitochondria: peroxidase metabolism of (2‐hydroxyamino‐vinyl)‐triphenyl‐phosphonium by cytochrome c releases NO and protects cells against apoptosis. FEBS Lett 2008, 582:725–728.
Birk, AV, Chao, WM, Bracken, C, Warren, JD, Szeto, HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol 2014, 171:2017–2028.
Pathak, RK, Marrache, S, Harn, DA, Dhar, S. Mito‐DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem Biol 2014, 9:1178–1187.
Millard, M, Gallagher, JD, Olenyuk, BZ, Neamati, N. A selective mitochondrial‐targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J Med Chem 2013, 56:9170–9179.
Chalmers, S, Caldwell, ST, Quin, C, Prime, TA, James, AM, Cairns, AG, Murphy, MP, McCarron, JG, Hartley, RC. Selective uncoupling of individual mitochondria within a cell using a mitochondria‐targeted photoactivated protonophore. J Am Chem Soc 2012, 134:758–761.
Le Trionnaire, S, Perry, A, Szczesny, B, Szabo, C, Winyard, PG, Whatmore, JL, et al. The synthesis and functional evaluation of a mitochondria‐targeted hydrogen sulfide donor, (10‐oxo‐10‐(4‐(3‐thioxo‐3H‐1,2‐dithiol‐5‐yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MedChemComm 2014, 5:728–736.
Smith, RA, Hartley, RC, Murphy, MP. Mitochondria‐targeted small molecule therapeutics and probes. Antioxid Redox Signal 2011, 15:3021–3038.
Bao, G, Mitragotri, S, Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 2013, 15:253–282.
Marrache, S, Pathak, RK, Darley, KL, Choi, JH, Zaver, D, Kolishetti, N, Dhar, S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013, 20:3500–3514.
Farokhzad, OC, Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3:16–20.
Salvador‐Morales, C, Zhang, L, Langer, R, Farokhzad, OC. Immunocompatibility properties of lipid‐polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009, 30:2231–2240.
Shi, J, Votruba, AR, Farokhzad, OC, Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010, 10:3223–3230.
Marrache, S, Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria‐acting therapeutics. Proc Natl Acad Sci 2012, 109:16288–16293.
Weissig, V, Lizano, C, Torchilin, VP. Micellar delivery system for dequalinium—a lipophilic cationic drug with anticarcinoma activity. J Liposome Res 1998, 8:391–400.
Weissig, V. From serendipity to mitochondria‐targeted nanocarriers. Pharm Res 2011, 28:2657–2668.
D`Souza, GG, Rammohan, R, Cheng, SM, Torchilin, VP, Weissig, V. DQAsome‐mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 2003, 92:189–197.
Vaidya, B, Paliwal, R, Rai, S, Khatri, K, Goyal, AK, Mishra, N, et al. Cell‐selective mitochondrial targeting: A new approach for cancer therapy. Cancer Ther 2009, 7:141–148.
Tomalia, DA, Reyna, LA, Svenson, S. Dendrimers as multi‐purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007, 35:61–67.
Choi, YS, Cho, TS, Kim, JM, Han, SW, Kim, SK. Amine terminated G‐6 PAMAM dendrimer and its interaction with DNA probed by Hoechst 33258. Biophys Chem 2006, 121:142–149.
Biswas, S, Dodwadkar, NS, Piroyan, A, Torchilin, VP. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012, 33:4773–4782.
Wang, X, Shao, N, Zhang, Q, Cheng, Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B 2014, 2:2546–2553.
Theodossiou, T, Sideratou, Z, Katsarou, M, Tsiourvas, D. Mitochondrial delivery of doxorubicin by triphenylphosphonium‐functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 2013, 30:2832–2842.
Battigelli, A, Russier, J, Venturelli, E, Fabbro, C, Petronilli, V, Bernardi, P, et al. Peptide‐based carbon nanotubes for mitochondrial targeting. Nanoscale 2013, 5:9110–9117.
Yoong, SL, Wong, BS, Zhou, QL, Chin, CF, Li, J, Venkatesan, T, et al. Enhanced cytotoxicity to cancer cells by mitochondria‐targeting MWCNTs containing platinum(IV) prodrug of cisplatin. Biomaterials 2014, 35:748–759.
Zhang, L, Gu, FX, Chan, JM, Wang, AZ, Langer, RS, Farokhzad, OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008, 83:761–769.
Chang, HI, Yeh, MK. Clinical development of liposome‐based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012, 7:49–60.
Kakudo, T, Chaki, S, Nakase, I, Akaji, K, Kawakami, T, Maruyama, K, et al. Transferrin‐modified liposomes equipped with a pH‐sensitive fusogenic peptide: an artificial viral‐like delivery system. Biochemistry 2004, 43:5618–5628.
Huth, U, Wieschollek, A, Garini, Y, Schubert, R, Peschka‐Suss, R. Fourier transformed spectral bio‐imaging for studying the intracellular fate of liposomes. Cytometry 2004, 57A:10–21.
Yamada, Y, Akita, H, Kogure, K, Kamiya, H, Harashima, H. Mitochondrial drug delivery and mitochondrial disease therapy—an approach to liposome‐based delivery targeted to mitochondria. Mitochondrion 2007, 7:63–71.
Yamada, Y, Akita, H, Kamiya, H, Kogure, K, Yamamoto, T, Shinohara, Y, et al. MITO‐Porter: a liposome‐based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 2008, 1778:423–432.
Boddapati, SV, D`Souza, GGM, Erdogan, S, Torchilin, VP, Weissig, V. Organelle‐targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 2008, 8:2559–2563.
Boddapati, SV, Tongcharoensirikul, P, Hanson, RN, D`Souza, GGM, Torchilin, VP, Weissig, V. Mitochondriotropic liposomes. J Liposome Res 2005, 15:49–58.
Malhi, SS, Budhiraja, A, Arora, S, Chaudhari, KR, Nepali, K, Kumar, R, et al. Intracellular delivery of redox cycler‐doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int J Pharm 2012, 432:63–74.
Solomon, MA, Shah, AA, D`Souza, GGM. In Vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar‐3 cells to paclitaxel. Mitochondrion 2013, 13:464–472.
Wang, X‐X, Li, Y‐B, Yao, H‐J, Ju, R‐J, Zhang, Y, Li, R‐J, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol‐distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011, 32:5673–5687.
Biswas, S, Dodwadkar, NS, Deshpande, PP, Torchilin, VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium‐PEG‐PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 2012, 159:393–402.
Zhou, J, Zhao, W‐Y, Ma, X, Ju, R‐J, Li, X‐Y, Li, N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013, 34:3626–3638.
Theodossiou, TA, Sideratou, Z, Tsiourvas, D, Paleos, CM. A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D‐Luciferin to cell mitochondria. Mitochondrion 2011, 11:982–986.
Kamaly, N, Xiao, Z, Valencia, PM, Radovic‐Moreno, AF, Farokhzad, OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012, 41:2971–3010.
Marrache, S, Tundup, S, Harn, DA, Dhar, S. Ex vivo programming of dendritic cells by mitochondria‐targeted nanoparticles to produce interferon‐gamma for cancer immunotherapy. ACS Nano 2013, 7:7392–7402.
Kolishetti, N, Dhar, S, Valencia, P, Lin, L, Karnik, R, Lippard, SJ, Langer, R, Farokhzad, OC. Engineering of self‐assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 2010, 107:17939–17944.
Marin, E, Briceno, MI, Caballero‐George, C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 2013, 8:3071–3090.
Sharma, A, Soliman, GM, Al‐Hajaj, N, Sharma, R, Maysinger, D, Kakkar, A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 2012, 13:239–252.
Smith, RA, Porteous, CM, Gane, AM, Murphy, MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 2003, 100:5407–5412.
Weissig, V, D`Souza, GGM. Mitochondria‐targeted drug delivery. In: Targeted Delivery of Small Macromolecular Drugs. 2010, 255–273. Editors name: Ajit S. Narang, Ram I. Mahato Publisher: CRC Press.
Blaikie, FH, Brown, SE, Samuelsson, LM, Brand, MD, Smith, RAJ, Murphy, MP. Targeting dinitrophenol to mitochondria: Limitations to the development of a self‐limiting mitochondrial protonophore. Biosci Rep 2006, 26:231–243.
Liu, JK, Shen, WL, Zhao, BL, Wang, Y, Wertz, K, Weber, P, et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 2009, 61:1343–1352.
Wang, F, Ogasawara, MA, Huang, P. Small mitochondria‐targeting molecules as anti‐cancer agents. Mol Aspects Med 2010, 31:75–92.
Mulik, RS, Monkkonen, J, Juvonen, RO, Mahadik, KR, Paradkar, AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm 2010, 7:815–825.
Ono, K, Hasegawa, K, Naiki, H, Yamada, M. Curcumin has potent anti‐amyloidogenic effects for Alzheimer`s beta‐amyloid fibrils in vitro. J Neurosci Res 2004, 75:742–750.
De Felice, FG, Ferreira, ST. Novel neuroprotective, neuritogenic and anti‐amyloidogenic properties of 2,4‐dinitrophenol: the gentle face of Janus. IUBMB Life 2006, 58:185–191.
Mroz, P, Hashmi, JT, Huang, YY, Lange, N, Hamblin, MR. Stimulation of anti‐tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011, 7:75–91.
Marrache, S, Choi, JH, Tundup, S, Zaver, D, Harn, DA, Dhar, S. Immune stimulating photoactive hybrid nanoparticles for metastatic breast cancer. Integr Biol (Camb) 2013, 5:215–223.
Marrache, S, Pathak, RK, Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci USA. 2014, 111: 10444–10449.