Oh, N, Park, JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 2014, 9:51–63. doi:10.2147/IJN.S26592.
Albanese, A, Sykes, E, Chan, WCW. Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 2010, 4:2490–2493. doi:10.1021/nn100776z.
Albanese, A, Tang, PS, Chan, WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012, 14:1–16. doi:10.1146/annurev‐bioeng‐071811‐150124.
Duncan, R, Vicent, MJ. Polymer therapeutics‐prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 2013, 65:60–70. doi:10.1016/j.addr.2012.08.012.
Delplace, V, Couvreur, P, Nicolas, J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014, 5:1529–1544. doi:10.1039/c3py01384g.
Twibanire, J, d`Amour, K, Grindley, TB. Polyester dendrimers: smart carriers for drug delivery. Polymers (Basel) 2014, 6:179–213. doi:10.3390/polym6010179.
Oltra, NS, Nair, P, Discher, DE. From stealthy polymersomes and filomicelles to “self” peptide‐nanoparticles for cancer therapy. Annu Rev Chem Biomol Eng 2014, 5:281–299. doi:10.1146/annurev‐chembioeng‐060713‐040447.
Turos, E, Shim, J‐Y, Wang, Y, Greenhalgh, K, Reddy, GSK, Lim, DV. Antibiotic‐conjugated polyacrylate nanoparticles: new opportunities for development of anti‐MRSA agents. Bioorg Med Chem Lett 2007, 17:53–56. doi:10.1016/j.bmcl.2006.09.098.
Vijayan, V, Reddy, KR, Sakthivel, S, Swetha, C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B Biointerfaces 2013, 111:150–155. doi:10.1016/j.colsurfb.2013.05.020.
Bettencourt, A, Almeida, AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 2012, 29:353–367. doi:10.3109/02652048.2011.651500.
Shastri, VP. Non‐degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 2003, 4:331–337. doi:10.2174/1389201033489694.
Burman, AC, Mukherjee, R, Khattar, D, Mullick, S, Jaggi, M, Singh, MK, Kumar, M, Prusthy, D, Gupta, PK, Praveen, R, et al. Biocompatible, non‐biodegradable, non‐toxic polymer useful for nanoparticle pharmaceutical compositions. US Patent US8927023 B2, 2015.
Hofmann, D, Messerschmidt, C, Bannwarth, MB, Landfester, K, Mailänder, V. Drug delivery without nanoparticle uptake: delivery by a kiss‐and‐run mechanism on the cell membrane. Chem Commun 2014, 50:1369–1371. doi:10.1039/c3cc48130a.
Feuser, PE, Bubniak, LDS, Silva, MCDS, Viegas, ADC, Fernandes, AC, Ricci‐Junior, E, Nele, M, Tedesco, AC, Sayer, C, de Araújo PHH. Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. Eur Polym J 2015, 68:355–365. doi:10.1016/j.eurpolymj.2015.04.029.
Greenhalgh, K, Turos, E. In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Nanomed Nanotechnol Biol Med 2009, 5:46–54. doi:10.1016/j.nano.2008.07.004.
Zhang, Z, Tsaib, P‐C, Ramezanlib, T, Michniak‐Kohn, BB. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013, 5:205–218. doi:10.1002/wnan.1211.
Elsabahy, M, Wooley, KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012, 41:2545–2561. doi:10.1039/c2cs15327k.
Kulkarni, SA, Feng, S‐S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 2013, 30:2512–2522. doi:10.1007/s11095‐012‐0958‐3.
Kobayashi, H, Watanabe, R, Choyke, PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2014, 4:81–89. doi:10.7150/thno.7193.
Prasad, PN. Introduction to Nanomedicine and Nanobioengineering, vol. 7. Hoboken, NJ: John Wiley %26 Sons; 2012.
Su, Y, Xie, Z, Kim, GB, Dong, C, Yang, J. Design strategies and applications of circulating cell‐mediated drug delivery systems. ACS Biomater Sci Eng 2015, 1:201–217. doi:10.1021/ab500179h.
Kamaly, N, Xiao, Z, Valencia, PM, Radovic‐Moreno, AF, Farokhzad, OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012, 41:2971–3010. doi:10.1039/c2cs15344k.
Dasgupta, S, Auth, T, Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 2014, 14:687–693. doi:10.1021/nl403949h.
Shang, L, Nienhaus, K, Nienhaus, GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 2014, 12:1–11. doi:10.1186/1477‐3155‐12‐5.
Gratton, SEA, Ropp, PA, Pohlhaus, PD, Luft, JC, Madden, VJ, Napier, ME, DeSimone, JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008, 105:11613–11618. doi:10.1073/pnas.0801763105.
Tao, L, Hu, W, Liu, Y, Huang, G, Sumer, BD, Gao, J. Shape‐specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med 2011, 236:20–29. doi:10.1258/ebm.2010.010243.
Cabral, H, Matsumoto, Y, Mizuno, K, Chen, Q, Murakami, M, Kimura, M, Terada, Y, Kano, MR, Miyazono, K, Uesaka, M, et al. Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011, 6:815–823. doi:10.1038/nnano.2011.166.
El‐Ansary, A, Al‐Daihan, S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol 2009, 2009:1–9. doi:10.1155/2009/754810.
Lynch, I, Dawson, KA. Protein‐nanoparticle interactions. Nano Today 2008, 3:40–47. doi:10.1016/S1748‐0132(08)70014‐8.
Nel, AE, Mädler, L, Velegol, D, Xia, T, Hoek, EMV, Somasundaran, P, Klaessig, F, Castranova, V, Thompson, M. Understanding biophysicochemical interactions at the nano‐bio interface. Nat Mater 2009, 8:543–557. doi:10.1038/nmat2442.
Mahmoudi, M, Meng, J, Xue, X, Liang, XJ, Rahman, M, Pfeiffer, C, Hartmann, R, Gil, PR, Pelaz, B, Parak, WJ, et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 2014, 32:679–692. doi:10.1016/j.biotechadv.2013.11.012.
Gagner, JE, Shrivastava, S, Qian, X, Dordick, JS, Siegel, RW. Engineering nanomaterials for biomedical applications requires understanding the nano‐bio interface: a perspective. J Phys Chem Lett 2012, 3:3149–3158. doi:10.1021/jz301253s.
Elsaesser, A, Howard, CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012, 64:129–137. doi:10.1016/j.addr.2011.09.001.
Mitragotri, S, Lahann, J. Physical approaches to biomaterial design. Nat Mater 2009, 8:15–23. doi:10.1038/nmat2344.
Rao, JP, Geckeler, KE. Polymer nanoparticles: preparation techniques and size‐control parameters. Prog Polym Sci 2011, 36:887–913. doi:10.1016/j.progpolymsci.2011.01.001.
Jiang, W, Kim, BY, Rutka, JT, Chan, WC. Nanoparticle‐mediated cellular response is size‐dependent. Nat Nanotechnol 2008, 3:145–150. doi:10.1038/nnano.2008.30.
He, C, Hu, Y, Yin, L, Tang, C, Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31:3657–3666. doi:10.1016/j.biomaterials.2010.01.065.
Win, KY, Feng, S‐S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26:2713–2722. doi:10.1016/j.biomaterials.2004.07.050.
Tang, L, Yang, X, Yin, Q, Cai, K, Wang, H, Chaudhury, I, Yao, C, Zhou, Q, Kwon, M, Hartman, JA, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci USA 2014, 111:15344–15349. doi:10.1073/pnas.1411499111.
Petros, RA, DeSimone, JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9:615–627. doi:10.1038/nrd2591.
Moghimi, SM, Hunter, AC, Murray, JC. Nanomedicine: current status and future prospects. FASEB J 2005, 19:311–330. doi:10.1096/fj.04‐2747rev.
Swami, A, Shi, J, Gadde, S, Votruba, AR, Kolishetti, N, Farokhzad, OC. Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson, S, Prud`homme, RK, eds. Multifunctional Nanoparticles for Drug Delivery Applications. Springer, NY, NY; 2012, 9–29. doi:10.1007/978‐1‐4614‐2305‐8_2.
Tan, J, Shah, S, Thomas, A, Ou‐Yang, HD, Liu, Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluidics 2013, 14:77–87. doi:10.1007/s10404‐012‐1024‐5.
Doane, TL, Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012, 41:2885–2911. doi:10.1039/c2cs15260f.
Champion, JA, Katare, YK, Mitragotri, S. Making polymeric micro‐ and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007, 104:11901–11904. doi:10.1073/pnas.0705326104.
Park, J‐G, Forster, JD, Dufresne, ER. High‐yield synthesis of monodisperse dumbbell‐shaped polymer nanoparticles. J Am Chem Soc 2010, 132:5960–5961. doi:10.1021/ja101760q.
Doshi, N, Zahr, AS, Bhaskar, S, Lahann, J, Mitragotri, S. Red blood cell‐mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA 2009, 106:21495–21499. doi:10.1073/pnas.0907127106.
He, J, Perez, MT, Zhang, P, Liu, Y, Babu, T, Gong, J, Nie, Z. A general approach to synthesize asymmetric hybrid nanoparticles by interfacial reactions. J Am Chem Soc 2012, 134:3639–3642. doi:10.1021/ja210844h.
Champion, JA, Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 2009, 26:244–249. doi:10.1007/s11095‐008‐9626‐z.
Morachis, JM, Mahmoud, EA, Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev 2012, 64:505–519. doi:10.1124/pr.111.005363.
Lu, X‐Y, Wu, D‐C, Li, Z‐J, Chen, G‐Q. Polymer nanoparticles. In: Villaverde, A, ed. Progress in Molecular Biology and Translational Science, vol. 104. London: Academic Press; 2011, 299–323. doi:10.1016/B978‐0‐12‐416020‐0.00007‐3.
Karnik, R, Gu, F, Basto, P, Cannizzaro, C, Dean, L, Kyei‐Manu, W, Langer, R, Farokhzad, OC. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008, 8:2906–2912. doi:10.1021/nl801736q.
Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 2009, 48:4488–4507. doi:10.1002/anie.200900723.
Vauthier, C, Bouchemal, K. Methods of preparation and manufacture of polymeric nanoparticles. Pharm Res 2009, 26:1025–1055. doi:10.1007/s11095‐008‐9800‐3.
Nagavarma, BVN, Yadav, HKS, Ayaz, A, Vasudha, LS, Shivakumar, HG. Different techniques for preparation of polymeric nanoparticles: a review. Asian J Pharm Clin Res 2012, 5:16–23.
Manchanda, R, Fernandez‐Fernandez, A, Nagesetti, A, McGoron, AJ. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo‐optical agents. Colloids Surf B Biointerfaces 2010, 75:260–267. doi:10.1016/j.colsurfb.2009.08.043.
Allouche, J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. In: Brayner, R, Fievet, F, Coradin, T, eds. Nanomaterials: A Danger or a Promise? London: Springer; 2013, 27–74. doi:10.1007/978‐1‐4471‐4213‐3.
Cismaru, L, Popa, M. Polymeric nanoparticles with biomedical applications. Rev Roum Chim 2010, 55:433–442. doi:10.1002/chin.201127264.
Montes, A, Gordillo, MD, Pereyra, C, Martinez de la Ossa, EJ. Particles formation using supercritical fluids. In: Nakajima, H, ed. Mass Transfer—Advanced Aspects. InTech; 2011, 461–80. doi:10.5772/21271.
Sun, Y‐P, Meziani, MJ, Pathak, P, Qu, L. Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chem Eur J 2005, 11:1366–1373. doi:10.1002/chem.200400422.
Porchelvi, KN, Sudarvizhi, A, Pandian, K. Single pot synthesis of spherical polyaniline stabilized AgCl nanoparticles by interfacial polymerization method and study its application on electrochemical detection of hydrazine and hydrogen peroxide. Int J Electrochem Sci 2013, 8:4160–4173.
Perry, JL, Herlihy, KP, Napier, ME, Desimone, JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 2011, 44:990–998. doi:10.1021/ar2000315.
Rolland, JP, Maynor, BW, Euliss, LE, Exner, AE, Denison, GM, DeSimone, JM. Direct fabrication and harvesting of monodisperse, shape‐specific nanobiomaterials. J Am Chem Soc 2005, 127:10096–10100. doi:10.1021/ja051977c.
Zhang, H, Nunes, JK, Gratton, SEA, Herlihy, KP, Pohlhaus, PD, DeSimone, JM. Fabrication of multiphasic and regio‐specifically functionalized PRINT® particles of controlled size and shape. New J Phys 2009, 11:1–16. doi:10.1088/1367‐2630/11/7/075018.
Perry, JL, Reuter, KG, Kai, MP, Herlihy, KP, Jones, SW, Luft, JC, Napier, M, Bear, JE, DeSimone, JM. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012, 12:5304–5310. doi:10.1021/nl302638g.
Chu, KS, Finniss, MC, Schorzman, AN, Kuijer, JL, Luft, JC, Bowerman, CJ, Napier, ME, Haroon, ZA, Zamboni, WC, DeSimone, JM. Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett 2014, 14:1472–1476. doi:10.1021/nl4046558.
Keville, KM, Franses, EI, Caruthers, JM. Preparation and characterization of monodisperse polymer microspheroids. J Colloid Interface Sci 1991, 144:103–126. doi:10.1021/jp0351831.
Ho, CC, Keller, A, Odell, JA, Ottewill, RH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 1993, 271:469–479. doi:10.1007/BF00657391.
Crassous, JJ, Mihut, AM, Wernersson, E, Pfleiderer, P, Vermant, J, Linse, P, Schurtenberger, P. Field‐induced assembly of colloidal ellipsoids into well‐defined microtubules. Nat Commun 2014, 5:1–7. doi:10.1038/ncomms6516.
Florez, L, Herrmann, C, Cramer, JM, Hauser, CP, Koynov, K, Landfester, K, Crespy, D, Mailänder, V. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 2012, 8:2222–2230. doi:10.1002/smll.201102002.
Danhier, F, Feron, O, Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti‐cancer drug delivery. J Control Release 2010, 148:135–146. doi:10.1016/j.jconrel.2010.08.027.
Desai, N. Challenges in development of nanoparticle‐based therapeutics. AAPS J 2012, 14:282–295. doi:10.1208/s12248‐012‐9339‐4.
Sanhai, WR, Sakamoto, JH, Canady, R, Ferrari, M. Seven challenges for nanomedicine. Nat Nanotechnol 2008, 3:242–244. doi:10.1038/nnano.2008.114.
Riehemann, K, Schneider, SW, Luger, TA, Godin, B, Ferrari, M, Fuchs, H. Nanomedicine—challenge and perspectives. Angew Chem 2009, 49:872–897. doi:10.1002/anie.200802585.
Bamrungsap, S, Zhao, Z, Chen, T, Wang, L, Li, C, Fu, T, Tan, W. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 2012, 7:1253–1271. doi:10.2217/nnm.12.87.
Sengupta, S. Clinical translational challenges in nanomedicine. MRS Bull 2014, 39:259–264. doi:10.1557/mrs.2014.29.
Barua, S, Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 2014, 9:223–243. doi:10.1016/j.nantod.2014.04.008.
Lazzari, S, Moscatelli, D, Codari, F, Salmona, M, Morbidelli, M, Diomede, L. Colloidal stability of polymeric nanoparticles in biological fluids. J Nanoparticle Res 2012, 14:1–10. doi:10.1007/s11051‐012‐0920‐7.
Xu, S, Wang, W, Li, X, Liu, J, Dong, A, Deng, L. Sustained release of PTX‐incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti‐tumor efficiency. Eur J Pharm Sci 2014, 62:267–273. doi:10.1016/j.ejps.2014.06.002.
Riviere, JE. Of mice, men and nanoparticle biocoronas: are in vitro to in vivo correlations and interspecies extrapolations realistic? Nanomedicine 2013, 8:1357–1359. doi:10.2217/nnm.13.129.
Fanciullino, R, Ciccolini, J, Milano, G. Challenges, expectations and limits for nanoparticles‐based therapeutics in cancer: a focus on nano‐albumin‐bound drugs. Crit Rev Oncol Hematol 2013, 88:504–513. doi:10.1016/j.critrevonc.2013.06.010.
Li, M, Al‐Jamal, KT, Kostarelos, K, Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010, 4:6303–6317. doi:10.1021/nn1018818.
Moss, DM, Siccardi, M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol 2014, 171:3963–3979. doi:10.1111/bph.12604.
Gilkey, MJ, Krishnan, V, Scheetz, L, Jia, X, Rajasekaran, AK, Dhurjati, PS. Physiologically based pharmacokinetic modeling of fluorescently labeled block copolymer nanoparticles for controlled drug delivery in leukemia therapy. CPT Pharmacometrics Syst Pharmacol 2015, 4:167–174. doi:10.1002/psp4.13.
Li, D, Emond, C, Johanson, G, Jolliet, O. Using a PBPK model to study the influence of different characteristics of nanoparticles on their biodistribution. J Phys Conf Ser 2013, 429:1–7. doi:10.1088/1742‐6596/429/1/012019.
Bao, G, Mitragotri, S, Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 2013, 15:253–282. doi:10.1146/annurev‐bioeng‐071812‐152409.
Ahmad, Z, Shah, A, Siddiq, M, Kraatz, H‐B. Polymeric micelles as drug delivery vehicles. RSC Adv 2014, 4:17028–17038. doi:10.1039/C3RA47370H.
Torchilin, VP. Multifunctional, stimuli‐sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014, 13:813–827. doi:10.1038/nrd4333.
Li, L, Zhou, G, Wang, Y, Yang, G, Ding, S, Zhou, S. Controlled dual delivery of BMP‐2 and dexamethasone by nanoparticle‐embedded electrospun nanofibers for the efficient repair of critical‐sized rat calvarial defect. Biomaterials 2015, 37:218–229. doi:10.1016/j.biomaterials.2014.10.015.
Barreto, JA, O`Malley, W, Kubeil, M, Graham, B, Stephan, H, Spiccia, L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater 2011, 23:H18–H40. doi:10.1002/adma.201100140.
Louage, B, Zhang, Q, Vanparijs, N, Voorhaar, L, Vande Casteele, S, Shi, Y, Hennink, WE, Bocxlaer, JV, Hoogenboom, R, De Geest, BG. Degradable ketal‐based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation. Biomacromolecules 2015, 16:336–350. doi:10.1021/bm5015409.
Cheng, L, Jin, C, Lv, W, Ding, Q, Han, X. Developing a highly stable PLGA‐mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS One 2011, 6:1–9. doi:10.1371/journal.pone.0025433.
Zhao, S, Tan, S, Guo, Y, Huang, J, Chu, M, Liu, H, Zhang, Z. pH‐sensitive docetaxel‐loaded D‐α‐tocopheryl polyethylene glycol succinate−poly(β‐amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules 2013, 14:2636–2646. doi:10.1021/bm4005113.
Lee, KS, Chung, HC, Im, SA, Park, YH, Kim, CS, Kim, SB, Rha, SY, Lee, MY, Ro, J. Multicenter phase II trial of Genexol‐PM, a cremophor‐free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008, 108:241–250. doi:10.1007/s10549‐007‐9591‐y.
Valle, JW, Armstrong, A, Newman, C, Alakhov, V, Pietrzynski, G, Brewer, J, Campbell, S, Corrie, P, Rowinsky, EK, Ranson, M. A phase 2 study of SP1049C, doxorubicin in P‐glycoprotein‐targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 2011, 29:1029–1037. doi:10.1007/s10637‐010‐9399‐1.
Ahn, HK, Jung, M, Sym, SJ, Shin, DB, Kang, SM, Kyung, SY, Park, J‐W, Jeong, SW, Cho, EK. A phase II trial of cremorphor EL‐free paclitaxel (Genexol‐PM) and gemcitabine in patients with advanced non‐small cell lung cancer. Cancer Chemother Pharmacol 2014, 74:277–282. doi:10.1007/s00280‐014‐2498‐5.
Hrkach, J, Von Hoff, D, Ali, MM, Andrianova, E, Auer, J, Campbell, T, Witt, DD, Figa, M, Figueiredo, M, Horhota, A, et al. Preclinical development and clinical translation of a PSMA‐targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012, 4:128ra39. doi:10.1126/scitranslmed.3003651.
Rademaker‐Lakhai, JM, Terret, C, Howell, SB, Baud, CM, de Boer, RF, Pluim, D, Beijnen, JH, Schellens, JH, Droz, JP. A Phase I and Pharmacological Study of the Platinum Polymer AP5280 Given as an Intravenous Infusion Once Every 3 Weeks in Patients with Solid Tumors. Clin Cancer Res 2004, 10:3386–3395. doi:10.1158/1078‐0432.CCR‐03‐0315.
Gonzalez‐Angulo, AM, Meric‐Bernstam, F, Chawla, S, Falchook, G, Hong, D, Akcakanat, A, Chen, H, Naing, A, Fu, S, Wheler, J. Weekly nab‐rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res 2013, 19:5474–5484. doi:10.1158/1078‐0432.CCR‐12‐3110.
http://bindtherapeutics.com. (Accessed August 10, 2015).
Goldsmith, M, Abramovitz, L, Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014, 8:1958–1965. doi:10.1021/nn501292z.
Agrawal, U, Chashoo, G, Sharma, PR, Kumar, A, Saxena, AK, Vyas, SP. Tailored polymer–lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids Surf B Biointerfaces 2015, 126:414–425. doi:10.1016/j.colsurfb.2014.12.045.
Zhang, C, Wan, X, Zheng, X, Shao, X, Liu, Q, Zhang, Q, Qian, Y. Dual‐functional nanoparticles targeting amyloid plaques in the brains of Alzheimer`s disease mice. Biomaterials 2014, 35:456–465. doi:10.1016/j.biomaterials.2013.09.063.
Trapani, A, De Giglio, E, Cafagna, D, Denora, N, Agrimi, G, Cassano, T, Gaetani, S, Cuomo, V, Trapani, G. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011, 419:296–307. doi:10.1016/j.ijpharm.2011.07.036.
Yin, R‐X, Yang, D‐Z, Wu, J‐Z. Nanoparticle drug‐ and gene‐eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014, 4:175–200. doi:10.7150/thno.7210.
Chan, JM, Rhee, J‐W, Drum, CL, Bronson, RT, Golomb, G, Langer, R, Farokhzad, OC. In vivo prevention of arterial restenosis with paclitaxel‐encapsulated targeted lipid‐polymeric nanoparticles. Proc Natl Acad Sci USA 2011, 108:19347–19352. doi:10.1073/pnas.1115945108.
Kim, Y, Lobatto, ME, Kawahara, T, Lee Chung, B, Mieszawska, AJ, Sanchez‐Gaytan, BL, Fay, F, Senders, ML, Calcagno, C, Becraft, J, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 2014, 111:1078–1083. doi:10.1073/pnas.1322725111.
Vinogradov, SV, Poluektova, LY, Makarov, E, Gerson, T, Senanayake, MT. Nano‐NRTIs: efficient inhibitors of HIV type‐1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother 2010, 21:1–14. doi:10.3851/IMP1680.
Liu, H, Webster, TJ. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J Biomed Mater Res Part A 2010, 93:1180–1192. doi:10.1002/jbm.a.32614.
Lim, WT, Tan, EH, Toh, CK, Hee, SW, Leong, SS, Ang, PC, Wong, NS, Chowbay, B. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®‐PM) in patients with solid tumors. Ann Oncol 2009, 21:382–388. doi:10.1093/annonc/mdp315.
Kim, DW, Kim, SY, Kim, HK, Kim, SW, Shin, SW, Kim, JS, Park, K, Lee, MY, Heo, DS. Multicenter phase II trial of Genexol‐PM, a novel cremophor‐free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non‐small‐cell lung cancer. Ann Oncol 2007, 18:2009–2014. doi:10.1093/annonc/mdm374.
Werner, ME, Cummings, ND, Sethi, M, Wang, EC, Sukumar, R, Moore, DT, Wang, AZ. Preclinical evaluation of Genexol‐PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non‐small cell lung cancer. Int J Radiat Oncol Biol Phys 2013, 86:463–468. doi:10.1016/j.ijrobp.2013.02.009.
Negishi, T, Koizumi, F, Uchino, H, Kuroda, J, Kawaguchi, T, Naito, S, Matsumura, Y. NK105, a paclitaxel‐incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel. Br J Cancer 2006, 95:601–606. doi:10.1038/sj.bjc.6603311.
Hamaguchi, T, Kato, K, Yasui, H, Morizane, C, Ikeda, M, Ueno, H, Muro, K, Yamada, Y, Okusaka, T, Shirao, K, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel‐incorporating micellar nanoparticle formulation. Br J Cancer 2007, 97:170–176. doi:10.1038/sj.bjc.6603855.
Danson, S, Ferry, D, Alakhov, V, Margison, J, Kerr, D, Jowle, D, Brampton, M, Halbert, G, Ranson, M. Phase I dose escalation and pharmacokinetic study of pluronic polymer‐bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004, 90:2085–2091. doi:10.1038/sj.bjc.6601856.
Wu, H, Cabral, H, Toh, K, Mi, P, Chen, YC, Matsumoto, Y, Yamada, N, Liu, X, Kinoh, H, Miura, Y. Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation. J Control Release 2014, 189:1–10. doi:10.1016/j.jconrel.2014.06.018.
Han, Y, He, Z, Schulz, A, Bronich, TK, Jordan, R, Luxenhofer, R, Kabanov, AV. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2‐oxazoline) micelles. Mol Pharm 2012, 9:2302–2313. doi:10.1021/mp300159u.
Chu, Y, Yu, H, Ma, Y, Zhang, Y, Chen, W, Zhang, G, Wei, H, Zhang, X, Zhuo, R, Jiang, X. Synthesis and characterization of biodegradable pH and reduction dual‐sensitive polymeric micelles for doxorubicin delivery. J Polym Sci Part A: Polym Chem 2014, 52:1771–1780. doi:10.1002/pola.27192.
Greco, F, Vicent, MJ. Combination therapy: opportunities and challenges for polymer‐drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009, 61:1203–1213. doi:10.1016/j.addr.2009.05.006.
Abouzeid, AH, Patel, NR, Sarisozen, C, Torchilin, VP. Transferrin‐targeted polymeric micelles co‐loaded with curcumin and paclitaxel: efficient killing of paclitaxel‐resistant cancer cells. Pharm Res 2014, 31:1938–1945. doi:10.1007/s11095‐013‐1295‐x.
Cho, H, Lai, TC, Kwon, GS. Poly(ethylene glycol)‐block‐poly(ε‐caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release 2013, 166:1–9. doi:10.1016/j.jconrel.2012.12.005.
Chitkara, D, Singh, S, Kumar, V, Danquah, M, Behrman, SW, Kumar, N, Mahato, RI. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm 2012, 9:2350–2357. doi:10.1021/mp3002792.
Madaan, A, Singh, P, Awasthi, A, Verma, R, Singh, AT, Jaggi, M, Mishra, SK, Kulkarni, S, Kulkarni, H. Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer‐based tumor‐targeted delivery system, Nanoxel™. Clin Transl Oncol 2013, 15:26–32. doi:10.1007/s12094‐012‐0883‐2.
https://clinicaltrials.gov/ct2/show/NCT00989131. (Accessed August 10, 2015).
Kato, K, Chin, K, Yoshikawa, T, Yamaguchi, K, Tsuji, Y, Esaki, T, Sakai, K, Kimura, M, Hamaguchi, T, Shimada, Y, et al. Phase II study of NK105, a paclitaxel‐incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 2012, 30:1621–1627. doi:10.1007/s10637‐011‐9709‐2.
Desale, SS, Cohen, SM, Zhao, Y, Kabanov, AV, Bronich, TK. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Control Release 2013, 171:339–348. doi:10.1016/j.jconrel.2013.04.026.
Sun, L, Deng, X, Yang, X, Li, Z, Wang, Z, Li, L, Wu, Q, Peng, F, Liu, L, Gong, C. Co‐delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv 2014, 4:46737–46750. doi:10.1039/C4RA07453J.
Ruiz‐Hernández, E, Hess, M, Melen, GJ, Theek, B, Talelli, M, Shi, Y, Ozbakir, B, Teunissen, EA, Ramírez, M, Moeckel, D, et al. PEG‐pHPMAm‐based polymeric micelles loaded with doxorubicin‐prodrugs in combination antitumor therapy with oncolytic vaccinia viruses. Polym Chem 2014:1674–1681. doi:10.1039/C3PY01097J.
Ke, X‐Y, Lin Ng, VW, Gao, S‐J, Tong, YW, Hedrick, JL, Yang, YY. Co‐delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 2014, 35:1096–1108. doi:10.1016/j.biomaterials.2013.10.049.
Ghamande, S, Lin, C‐C, Cho, DC, Shapiro, GI, Kwak, EL, Silverman, MH, Tseng, Y, Kuo, MW, Mach, WB, Hsu, SC, et al. A phase 1 open‐label, sequential dose‐escalation study investigating the safety, tolerability, and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Invest New Drugs 2014, 32:445–451. doi:10.1007/s10637‐013‐0044‐7.
Ueno, T, Endo, K, Hori, K, Ozaki, N, Tsuji, A, Kondo, S, Wakisaka, N, Murono, S, Kataoka, K, Kato, Y, et al. Assessment of antitumor activity and acute peripheral neuropathy of 1,2‐diaminocyclohexane platinum (II)‐incorporating micelles (NC‐4016). Int J Nanomedicine 2014, 9:3005–3012. doi:10.2147/IJN.S60564.
Wang, E, Xiong, H, Zhou, D, Xie, Z, Huang, Y, Jing, X, Sun, X. Co‐delivery of oxaliplatin and demethylcantharidin via a polymer‐drug conjugate. Macromol Biosci 2013, 14:588–596. doi:10.1002/mabi.201300402.
Mura, S, Nicolas, J, Couvreur, P. Stimuli‐responsive nanocarriers for drug delivery. Nat Mater 2013, 12:991–1003. doi:10.1038/nmat3776.
Thambi, T, Deepagan, VG, Yoon, HY, Han, HS, Kim, SH, Son, S, Jo, DG, Ahn, CH, Suh, YD, Kim, K, et al. Hypoxia‐responsive polymeric nanoparticles for tumor‐targeted drug delivery. Biomaterials 2014, 35:1735–1743. doi:10.1016/j.biomaterials.2013.11.022.
Fattal, E, Tsapis, N. Nanomedicine technology: current achievements and new trends. Clin Transl Imaging 2014, 2:77–87. doi:10.1007/s40336‐014‐0053‐3.
Cheng, R, Meng, F, Deng, C, Klok, HA, Zhong, Z. Dual and multi‐stimuli responsive polymeric nanoparticles for programmed site‐specific drug delivery. Biomaterials 2013, 34:3647–3657. doi:10.1016/j.biomaterials.2013.01.084.
Kim, D, Gao, ZG, Lee, ES, Bae, YH. In vivo evaluation of doxorubicin‐loaded polymeric micelles targeting folate receptors and early endosomal pH in drug‐resistant ovarian cancer. Mol Pharm 2009, 6:1353–1362. doi:10.1021/mp900021q.
Nam, JA, Al‐Nahain, A, Hong, S, Lee, KD, Lee, H, Park, SY. Synthesis and characterization of a multi‐sensitive crosslinked injectable hydrogel based on pluronic. Macromol Biosci 2011, 11:1594–1602. doi:10.1002/mabi.201100265.
Dan, M, Huo, F, Xiao, X, Su, Y, Zhang, W. Temperature‐sensitive nanoparticle‐to‐vesicle transition of ABC triblock copolymer corona‐shell‐core nanoparticles synthesized by seeded dispersion RAFT polymerization. Macromolecules 2014, 47:1360–1370. doi:10.1021/ma402370j.
Tagami, T, Foltz, WD, Ernsting, MJ, Lee, CM, Tannock, IF, May, JP, Li, SD. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 2011, 32:6570–6578. doi:10.1016/j.biomaterials.2011.05.029.
Chen, K‐J, Liang, H‐F, Chen, H‐L, Wang, Y, Cheng, PY, Liu, H‐L, Xia, Y, Sung, HW. A thermoresponsive bubble‐generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 2013, 7:438–446. doi:10.1021/nn304474j.
Cheng, Y, Hao, J, Lee, LA, Biewer, MC, Wang, Q, Stefan, MC. Thermally controlled release of anticancer drug from self‐assembled γ‐substituted amphiphilic poly(ε‐caprolactone) micellar nanoparticles. Biomacromolecules 2012, 13:2163–2173. doi:10.1021/bm300823y.
Pennakalathil, J, Özgün, A, Durmaz, I, Cetin‐Atalay, R, Tuncel, D. pH‐responsive near‐infrared emitting conjugated polymer nanoparticles for cellular imaging and controlled‐drug delivery. J Polym Sci Part A: Polym Chem 2015, 53:114–122. doi:10.1002/pola.27458.
Lee, ES, Shin, HJ, Na, K, Bae, YH. Poly(L‐histidine)–PEG block copolymer micelles and pH‐induced destabilization. J Control Release 2003, 90:363–374. doi:10.1016/S0168‐3659(03)00205‐0.
Du, JZ, Du, XJ, Mao, CQ, Wang, J. Tailor‐made dual pH‐sensitive polymer‐doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 2011, 133:17560–17563. doi:10.1021/ja207150n.
Dai, J, Lin, S, Cheng, D, Zou, S, Shuai, X. Interlayer‐crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem 2011, 50:9404–9408. doi:10.1002/anie.201103806.
Guerrero‐Cazares, H, Tzeng, SY, Young, NP, Abutaleb, AO, Quinones‐Hinojosa, A, Green, JJ. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. ACS Nano 2014, 8:5141–5153. doi:10.1021/nn501197v.
Lu, Z‐X, Liu, L‐T, Qi, X‐R. Development of small interfering RNA delivery system using PEI‐PEG‐APRPG polymer for antiangiogenic vascular endothelial growth factor tumor‐targeted therapy. Int J Nanomedicine 2011, 6:1661–1673. doi:10.2147/IJN.S22293.
Liu, X, Song, W, Sun, T, Zhang, P, Wang, J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD‐functionalized nanoparticles. Mol Pharm 2011, 8:250–259. doi:10.1021/mp100315q.
Ewe, A, Schaper, A, Barnert, S, Schubert, R, Temme, A, Bakowsky, U, Aigner, A. Storage stability of optimal liposome‐polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomater 2014, 10:2663–2673. doi:10.1016/j.actbio.2014.02.037.
Calabrese, CM, Merkel, TJ, Briley, WE, Randeria, PS, Narayan, SP, Rouge, JL, Walker, DA, Scott, AW, Mirkin, CA. Biocompatible infinite‐coordination‐polymer nanoparticle‐nucleic‐acid conjugates for antisense gene regulation. Angew Chem Int Ed 2015, 54:476–480. doi:10.1002/anie.201407946.
Suk, JS, Kim, AJ, Trehan, K, Schneider, CS, Cebotaru, L, Woodward, OM, Boylan, NJ, Boyle, MP, Lai, SK, Guggino, WB, et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release 2014, 178:8–17. doi:10.1016/j.jconrel.2014.01.007.
Babar, IA, Cheng, CJ, Booth, CJ, Liang, X, Weidhaas, JB, Saltzman, WM, Slack, FJ. Nanoparticle‐based therapy in an in vivo microRNA‐155 (miR‐155)‐dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012, 109:E1695–E1704. doi:10.1073/pnas.1201516109.
Liang, GF, Zhu, YL, Sun, B, Hu, FH, Tian, T, Li, SC, Xiao, ZD. PLGA‐based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res Lett 2011, 6:1–9. doi:10.1186/1556‐276X‐6‐447.
Jin, H, Yu, Y, Chrisler, WB, Xiong, Y, Hu, D, Lei, C. Delivery of microRNA‐10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer Basic Clin Res 2012, 6:9–19. doi:10.4137/BCBCR.S8513.
Baba, M, Itaka, K, Kondo, K, Yamasoba, T, Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release 2015, 201:41–48. doi:10.1016/j.jconrel.2015.01.017.
Qazi, Y, Stagg, B, Singh, N, Singh, S, Zhang, X, Luo, L, Simonis, J, Kompella, UB, Ambati, BK. Nanoparticle‐mediated delivery of shRNA.VEGF‐a plasmids regresses corneal neovascularization. Invest Ophthalmol Vis Sci 2012, 53:2837–2844. doi:10.1167/iovs.11‐9139.
Yang, J, Xie, S‐X, Huang, Y, Ling, M, Liu, J, Ran, Y, Wang, Y, Thrasher, JB, Berkland, C, Li, B. Prostate‐targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Nanomedicine 2012, 7:1297–1309. doi:10.2217/nnm.12.14.
Xiao, J, Duan, X, Meng, Q, Yin, Q, Zhang, Z, Yu, H, Chen, L, Gu, W, Li, Y. Effective delivery of p65 shRNA by optimized Tween 85‐polyethyleneimine conjugate for inhibition of tumor growth and lymphatic metastasis. Acta Biomater 2014, 10:2674–2683. doi:10.1016/j.actbio.2014.02.009.
Du, J, Sun, Y, Shi, QS, Liu, PF, Zhu, MJ, Wang, CH, Du, LF, Duan, YR. Biodegradable nanoparticles of mPEG‐PLGA‐PLL triblock copolymers as novel non‐viral vectors for improving siRNA delivery and gene silencing. Int J Mol Sci 2012, 13:516–533. doi:10.3390/ijms13010516.
Li, YH, Shi, QS, Du, J, Jin, LF, Du, LF, Liu, PF, Duan, YR. Targeted delivery of biodegradable nanoparticle with ultrasound‐targeted microbubble destruction‐mediated hVEGF‐siRNA transfection in human PC‐3 cells in vitro. Int J Mol Med 2013, 31:163–171. doi:10.3892/ijmm.2012.1175.
Pittella, F, Cabral, H, Maeda, Y, Mi, P, Watanabe, S, Takemoto, H, Kim, HJ, Nishiyama, N, Miyata, K, Kataoka, K. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 2014, 178:18–24. doi:10.1016/j.jconrel.2014.01.008.
Bildstein, L, Dubernet, C, Couvreur, P. Prodrug‐based intracellular delivery of anticancer agents. Adv Drug Deliv Rev 2011, 63:3–23. doi:10.1016/j.addr.2010.12.005.
Rautio, J, Kumpulainen, H, Heimbach, T, Oliyai, R, Oh, D, Järvinen, T, Savolainen, J. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008, 7:255–270. doi:10.1038/nrd2468.
Li, Y, Lin, T‐Y, Luo, Y, Liu, Q, Xiao, W, Guo, W, Lac, D, Zhang, H, Feng, C, Wachsmann‐Hogiu, S, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 2014, 5:1–15. doi:10.1038/ncomms5712.
Srikar, R, Upendran, A, Kannan, R. Polymeric nanoparticles for molecular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014, 6:245–267. doi:10.1002/wnan.1259.
Zhang, HW, Wang, LQ, Xiang, QF, Zhong, Q, Chen, LM, Xu, CX, Xiang, X‐H, Xu, B, Meng, F, Wan, Y‐Q, et al. Specific lipase‐responsive polymer‐coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials 2014, 35:356–367. doi:10.1016/j.biomaterials.2013.09.046.
Hong, GB, Zhou, JX, Yuan, RX. Folate‐targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity. Int J Nanomedicine 2012, 7:2863–2872. doi:10.2147/IJN.S25739.
Huang, C‐H, Nwe, K, Al Zaki, A, Brechbiel, MW, Tsourkas, A. Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 2012, 6:9416–9424. doi:10.1021/nn304160p.
Hashim, Z, Green, M, Chung, P‐H, Suhling, K, Protti, A, Phinikaridou, A, Botnar, R, Khanbeigi, RA, Thanou, M, Dailey, LA, et al. Gd‐containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging. Nanoscale 2014, 6:8376–8386. doi:10.1039/c4nr01491j.
Liu, Y, Chen, Z, Liu, C, Yu, D, Lu, Z, Zhang, N. Gadolinium‐loaded polymeric nanoparticles modified with anti‐VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32:5167–5176. doi:10.1016/j.biomaterials.2011.03.077.
Shalviri, A, Foltz, WD, Cai, P, Rauth, AM, Wu, XY. Multifunctional terpolymeric MRI contrast agent with superior signal enhancement in blood and tumor. J Control Release 2013, 167:11–20. doi:10.1016/j.jconrel.2013.01.014.
Liu, P, Yue, C, Shi, B, Gao, G, Li, M, Wang, B, Ma, Y, Cai, L. Dextran based sensitive theranostic nanoparticles for near‐infrared imaging and photothermal therapy in vitro. Chem Commun 2013, 49:6143–6145. doi:10.1039/c3cc43633k.
Kim, TH, Chen, Y, Mount, CW, Gombotz, WR, Li, X, Pun, SH. Evaluation of temperature‐sensitive, indocyanine green‐encapsulating micelles for noninvasive near‐infrared tumor imaging. Pharm Res 2010, 27:1900–1913. doi:10.1007/s11095‐010‐0190‐y.
Yin, Q, Yap, FY, Yin, L, Ma, L, Zhou, Q, Dobrucki, LW, Fan, TM, Gaba, RC, Cheng, J. Poly(iohexal) nanoparticles as contrast agents for in vivo X‐ray computed tomography imaging. J Am Chem Soc 2013, 135:13620–13623. doi:10.1021/ja405196f.
Hong, G, Zou, Y, Antaris, AL, Diao, S, Wu, D, Cheng, K, Zhang, X, Chen, C, Liu, B, He, Y, et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near‐infrared window. Nat Commun 2014, 5:1–9. doi:10.1038/ncomms5206.
Lee, C‐M, Jeong, HJ, Cheong, S‐J, Kim, E‐M, Kim, DW, Lim, ST, Sohn, M–H. Prostate cancer‐targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm Res 2010, 27:712–721. doi:10.1007/s11095‐010‐0072‐3.
Zhang, Y, Yue, X, Kim, B, Yao, S, Bondar, MV, Belfield, KD. Bovine serum albumin nanoparticles with fluorogenic near‐IR‐emitting squaraine dyes. ACS Appl Mater Interfaces 2013, 5:8710–8717. doi:10.1021/am402361w.
Yang, J, Zhang, Y, Gautam, S, Liu, L, Dey, J, Chen, W, Mason, RP, Serrano, CA, Schug, KA, Tang, L. Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 2009, 106:10086–10091. doi:10.1073/pnas.0900004106.
Mieszawska, AJ, Kim, Y, Gianella, A, van Rooy, I, Priem, B, Labarre, MP, Ozcan, C, Cormode, DP, Petrov, A, Langer, R, et al. Synthesis of polymer‐lipid nanoparticles for image‐guided delivery of dual modality therapy. Bioconjug Chem 2013, 24:1429–1434. doi:10.1021/bc400166j.
de Vries, A, Custers, E, Lub, J, van den Bosch, S, Nicolay, K, Grüll, H. Block‐copolymer‐stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 2010, 31:6537–6544. doi:10.1016/j.biomaterials.2010.04.056.
Herth, MM, Barz, M, Moderegger, D, Allmeroth, M, Jahn, M, Thews, O, Zentel, R, Rösch, F. Radioactive labeling of defined HPMA‐based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009, 10:1697–1703. doi:10.1021/bm8014736.
Pressly, ED, Pierce, RA, Connal, LA, Hawker, CJ, Liu, Y. Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug Chem 2013, 24:196–204. doi:10.1021/bc300473x.
Keliher, EJ, Yoo, J, Nahrendorf, M, Lewis, JS, Marinelli, B, Newton, A, Pittet, MJ, Weissleder, R. 89Zr‐labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem 2011, 22:2383–2389. doi:10.1021/bc200405d.
Simone, EA, Zern, BJ, Chacko, AM, Mikitsh, JL, Blankemeyer, ER, Muro, S, Stan, RV, Muzykantov, VR. Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine‐124. Biomaterials 2012, 33:5406–5413. doi:10.1016/j.biomaterials.2012.04.036.
Allmeroth, M, Moderegger, D, Gündel, D, Buchholz, HG, Mohr, N, Koynov, K, Rösch, F, Thews, O, Zentel, R. PEGylation of HPMA‐based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release 2013, 172:77–85. doi:10.1016/j.jconrel.2013.07.027.
Allmeroth, M, Moderegger, D, Biesalski, B, Koynov, K, Rösch, F, Thews, O, Zentel, R. Modifying the body distribution of HPMA‐based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011, 12:2841–2849. doi:10.1021/bm2005774.
Morales‐Avila, E, Ferro‐Flores, G, Ocampo‐Garcia, BE, de Maria Ramirez, F. Radiolabeled nanoparticles for molecular imaging. In: Schaller, B, ed. Molecular Imaging. InTech; 2012, 15–38. doi:10.5772/31109.
De Barros, AB, Tsourkas, A, Saboury, B, Cardoso, VN, Alavi, A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012, 2:1–15. doi:10.1186/2191‐219X‐2‐39.
Bates, S. Progress towards personalized medicine. Drug Discov Today 2010, 15:115–120. doi:10.1016/j.drudis.2009.11.001.
Kateb, B, Chiu, K, Black, KL, Yamamoto, V, Khalsa, B, Ljubimova, JY, Ding, H, Patil, R, Portilla‐Arias, JA, Modo, M, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 2011, 54:S106–S124. doi:10.1016/j.neuroimage.2010.01.105.
Mura, S, Couvreur, P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 2012, 64:1394–1416. doi:10.1016/j.addr.2012.06.006.
Diou, O, Tsapis, N, Giraudeau, C, Valette, J, Gueutin, C, Bourasset, F, Zanna, S, Vauthier, C, Fattal, E. Long‐circulating perfluorooctyl bromide nanocapsules for tumor imaging by 19FMRI. Biomaterials 2012, 33:5593–5602. doi:10.1016/j.biomaterials.2012.04.037.
Kim, K, Kim, JH, Park, H, Kim, YS, Park, K, Nam, H, Lee, S, Park, JH, Park, RW, Kim, IS, et al. Tumor‐homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 2010, 146:219–227. doi:10.1016/j.jconrel.2010.04.004.
Gao, A, Liao, L, Johnson, JA. Synthesis of Acid‐Labile PEG and PEG‐Doxorubicin‐Conjugate Nanoparticles via Brush‐First ROMP. ACS Macro Lett 2014, 3:854–857. doi:10.1021/mz5004097.