Matsusaki, M, Waku, T, Kaneko, T, Kida, T, Akashi, M. One‐step advanced preparation of surface‐functional peptide nanospheres by the polymerization of L‐phenylalanine N‐carboxyanhydride with dual initiators. Langmuir 2006, 22:1396–1399.
Tsurkan, MV, Ogawa, MY. Formation of peptide nanospheres and nanofibrils by metal coordination. Biomacromolecules 2007, 8:3908–3913.
Etheridge, ML, Campbell, SA, Erdman, AG, Haynes, CL, Wolf, SM, McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 2013, 9:1–14.
Lehner, R, Wang, XY, Marsch, S, Hunziker, P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 2013, 9:742–757.
Williams, DF. On the mechanisms of biocompatibility. Biomaterials 2008, 29:2941–2953.
Rodriguez, PL, Harada, T, Christian, DA, Pantano, DA, Tsai, RK, Discher, DE. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971–975.
Photos, PJ, Bacakova, L, Discher, B, Bates, FS, Discher, DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003, 90:323–334.
Hong, RL, Huang, CJ, Tseng, YL, Pang, VF, Chen, ST, Liu, JJ, Chang, FH. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C‐26 tumor‐bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999, 5:3645–3652.
Knop, K, Hoogenboom, R, Fischer, D, Schubert, US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010, 49:6288–6308.
Scranton, R, Cincotta, A. Bromocriptine—unique formulation of a dopamine agonist for the treatment of type 2 diabetes. Expert Opin Pharmacother 2010, 11:269–279.
Wagh, A, Singh, J, Qian, S, Law, B. A short circulating peptide nanofiber as a carrier for tumoral delivery. Nanomedicine 2013, 9:449–457.
Ghanaati, S, Webber, MJ, Unger, RE, Orth, C, Hulvat, JF, Kiehna, SE, Barbeck, M, Rasic, A, Stupp, SI, Kirkpatrick, CJ. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 2009, 30:6202–6212.
Jayawarna, V, Ali, M, Jowitt, TA, Miller, AE, Saiani, A, Gough, JE, Ulijn, RV. Nanostructured hydrogels for three‐dimensional cell culture through self‐assembly of fluorenylmethoxycarbonyl‐dipeptides. Adv Mater 2006, 18:611–614.
Jokerst, JV, Lobovkina, T, Zare, RN, Gambhir, SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6:715–728.
Lim, WT, Tan, EH, Toh, CK, Hee, SW, Leong, SS, Ang, PCS, Wong, NS, Chowbay, B. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol (R)‐PM) in patients with solid tumors. Ann Oncol 2010, 21:382–388.
Nakase, I, Konishi, Y, Ueda, M, Saji, H, Futaki, S. Accumulation of arginine‐rich cell‐penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release 2012, 159:181–188.
Khafagy, ES, Morishita, M. Oral biodrug delivery using cell‐penetrating peptide. Adv Drug Deliv Rev 2012, 64:531–539.
de la Zerda, A, Liu, Z, Bodapati, S, Teed, R, Vaithilingam, S, Khuri‐Yakub, BT, Chen, X, Dai, H, Gambhir, SS. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 2010, 10:2168–2172.
Boohaker, RJ, Lee, MW, Vishnubhotla, P, Perez, JM, Khaled, AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 2012, 19:3794–3804.
Hancock, RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 2001, 1:156–164.
Wang, G, Li, X, Wang, Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009, 37:D933–D937.
Wang, G, Watson, KM, Peterkofsky, A, Buckheit, RW Jr. Identification of novel human immunodeficiency virus type 1‐inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 2010, 54:1343–1346.
Zhang, SG, Holmes, TC, Dipersio, CM, Hynes, RO, Su, X, Rich, A. Self‐complementary oligopeptide matrices support mammalian‐cell attachment. Biomaterials 1995, 16:1385–1393.
Kisiday, J, Jin, M, Kurz, B, Hung, H, Semino, C, Zhang, S, Grodzinsky, AJ. Self‐assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci U S A 2002, 99:9996–10001.
Oppenheim, RC. Solid colloidal drug delivery systems—nanoparticles. Int J Pharm 1981, 8:217–234.
Batten, TFC, Hopkins, CR. Use of protein a coated colloidal gold particles for immunoelectronmicroscopic localization of acth on ultrathin sections. Histochemistry 1979, 60:317–320.
Britto, PJ, Santhanam, KSV, Ajayan, PM. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 1996, 41:121–125.
Tanaka, K, Sato, T, Yamabe, T, Okahara, K, Uchida, K, Yumura, M, Niino, H, Ohshima, S, Kuriki, Y, Yase, K, et al. Electronic‐properties of carbon nanotube. Chem Phys Lett 1994, 223:65–68.
Hong, YL, Fan, HS, Li, B, Guo, B, Liu, M, Zhang, XD. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R Rep 2010, 70:225–242.
Arsiwala, A, Desai, P, Patravale, V. Recent advances in micro/nanoscale biomedical implants. J Control Release 2014, 189C:25–45.
Oh, S, Daraio, C, Chen, LH, Pisanic, TR, Finones, RR, Jin, S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 2006, 78A:97–103.
Oyefusi, A, Olanipekun, O, Neelgund, GM, Peterson, D, Stone, JM, Williams, E, Carson, L, Regisford, G, Oki, A. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials. Spectrochim Acta A Mol Biomol Spectrosc 2014, 132:410–416.
Goudarzi, M, Batmanghelich, F, Afshar, A, Dolati, A, Mortazavi, G. Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature. Appl Surf Sci 2014, 301:250–257.
Batmanghelich, F, Ghorbani, M. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan‐hydroxyapatite‐carbon nanotube composite coatings. Ceram Int 2013, 39:5393–5402.
Hosseinkhani, H, Hosseinkhani, M, Tian, FR, Kobayashi, H, Tabata, Y. Bone regeneration on a collagen sponge self‐assembled peptide‐amphiphile nanofiber hybrid scaffold. Tissue Eng 2007, 13:11–19.
Loo, Y, Wong, YC, Cai, EZ, Ang, CH, Raju, A, Lakshmanan, A, Koh, AG, Zhou, HJ, Lim, TC, Moochhala, SM, et al. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 2014, 35:4805–4814.
Soukasene, S, Toft, DJ, Moyer, TJ, Lu, HM, Lee, HK, Standley, SM, Cryns, VL, Stupp, SI. Antitumor activity of peptide amphiphile nanofiber‐encapsulated camptothecin. ACS Nano 2011, 5:9113–9121.
Pinto Reis, C, Neufeld, RJ, Ribeiro, AJ, Veiga, F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006, 2:53–65.
Cha, C, Shin, SR, Annabi, N, Dokmeci, MR, Khademhosseini, A. Carbon‐based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 2013, 7:2891–2897.
Fraczek‐Szczypta, A. Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater Sci Eng C Mater Biol Appl 2014, 34:35–49.
Singh, R, Lillard, JW Jr. Nanoparticle‐based targeted drug delivery. Exp Mol Pathol 2009, 86:215–223.
Calderon, L, Harris, R, Cordoba‐Diaz, M, Elorza, M, Elorza, B, Lenoir, J, Adriaens, E, Remon, JP, Heras, A, Cordoba‐Diaz, D. Nano and microparticulate chitosan‐based systems for antiviral topical delivery. Eur J Pharm Sci 2013, 48:216–222.
Zhou, HF, Liu, XD, Guo, X, Li, N, Yu, WT, Zhang, Y, Ma, XJ. Synthesis and characterization of amphiphilic chitosan derivatives as a nano‐carrier for paclitaxel delivery. J Control Release 2011, 152:E124–E125.
Wu, Y, Sadatmousavi, P, Wang, R, Lu, S, Yuan, YF, Chen, P. Self‐assembling peptide‐based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int J Nanomedicine 2012, 7:3221–3233.
Schluep, T, Gunawan, P, Ma, L, Jensen, GS, Duringer, J, Hinton, S, Richter, W, Hwang, J. Polymeric tubulysin‐peptide nanoparticles with potent antitumor activity. Clin Cancer Res 2009, 15:181–189.
Gui, L, Zhao, M, Wang, YJ, Wang, YY, Qin, Y, Li, L, Peng, SQ. Synthesis, nano‐features, ex vivo anti‐platelet aggregation and in vivo antithrombotic activities of poly‐alpha,beta‐DL‐aspartyl‐L‐arginine. Medchemcomm 2012, 3:102–108.
Branco, MC, Sigano, DM, Schneider, JP. Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Curr Opin Chem Biol 2011, 15:427–434.
Scognamiglio, V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 2013, 47:12–25.
Obataya, I, Nakamura, C, Enomoto, H, Hoshino, T, Nakamura, N, Miyake, J. Development of a herbicide biosensor using a peptide receptor screened from a combinatorial library. J Mol Catal B Enzym 2004, 28:265–271.
Jung, D, Han, M, Lee, GS. Gas sensor using a multi‐walled carbon nanotube sheet to detect hydrogen molecules. Sens Actuators B Chem 2014, 211:51–54.
Fernandes, KF, Lima, CS, Pinho, H, Collins, CH. Immobilization of horseradish peroxidase onto polyaniline polymers. Process Biochem 2003, 38:1379–1384.
Zhang, C, Luo, S, Chen, W. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties. Talanta 2013, 113:142–147.
Zhang, W, Yang, T, Huang, DM, Jiao, K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett 2008, 19:589–591.
Feyzizarnagh, H, Haushalter, EF, Grams, EK, Cameron, BD, Yoon, D‐Y, Kim, D‐S. Protein sensing with aptamer immobilized on an antifouling binary self‐assembled monolayer. Ind Eng Chem Res 2015, 54:4072–4077.
Zheng, R, Park, BW, Kim, DS, Cameron, BD. Development of a highly specific amine‐terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection. Biomed Opt Express 2011, 2:2731–2740.
Viguier, B, Zor, K, Kasotakis, E, Mitraki, A, Clausen, CH, Svendsen, WE, Castillo‐Leon, J. Development of an electrochemical metal‐ion biosensor using self‐assembled peptide nanofibrils. ACS Appl Mater Interfaces 2011, 3:1594–1600.
Yang, H, Fung, SY, Pritzker, M, Chen, P. Ionic‐complementary peptide matrix for enzyme immobilization and biomolecular sensing. Langmuir 2009, 25:7773–7777.
Yemini, M, Reches, M, Gazit, E, Rishpon, J. Peptide nanotube‐modified electrodes for enzyme‐biosensor applications. Anal Chem 2005, 77:5155–5159.
Park, BW, Zheng, R, Ko, KA, Cameron, BD, Yoon, DY, Kim, DS. A novel glucose biosensor using bi‐enzyme incorporated with peptide nanotubes. Biosens Bioelectron 2012, 38:295–301.
Castillo, JJ, Svendsen, WE, Rozlosnik, N, Escobar, P, Martineza, F, Castillo‐Leon, J. Detection of cancer cells using a peptide nanotube‐folic acid modified graphene electrode. Analyst 2013, 138:1026–1031.
Kim, JH, Ryu, J, Park, CB. Selective detection of neurotoxin by photoluminescent peptide nanotubes. Small 2011, 7:718–722.
Cipriano, TC, Takahashi, PM, de Lima, D, Oliveira, VX, Souza, JA, Martinho, H, Alves, WA. Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 2010, 45:5101–5108.
Kim, JH, Lim, SY, Nam, DH, Ryu, J, Ku, SH, Park, CB. Self‐assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme‐based optical biosensors. Biosens Bioelectron 2011, 26:1860–1865.
Matos, ID, Alves, WA. Electrochemical determination of dopamine based on self‐assembled peptide nanostructure. ACS Appl Mater Interfaces 2011, 3:4437–4443.
Sasso, L, Vedarethinam, I, Emneus, J, Svendsen, WE, Castillo‐Leon, J. Self‐assembled diphenylalanine nanowires for cellular studies and sensor applications. J Nanosci Nanotechnol 2012, 12:3077–3083.
Baker, PA, Goltz, MN, Schrand, AM, Yoon do, Y, Kim, DS. Organophosphate vapor detection on gold electrodes using peptide nanotubes. Biosens Bioelectron 2014, 61:119–123.
de la Rica, R, Pejoux, C, Fernandez‐Sanchez, C, Baldi, A, Matsui, H. Peptide‐nanotube biochips for label‐free detection of multiple pathogens. Small 2010, 6:1092–1095.
Park, BW, Kim, DS. Peptide nanotubes for biomedical and environmental applications. In: Mukhopadhyay, S, ed. Nanoscale Multifunctional Materials: Science %26 Applications. New York: John Wiley %26 Sons; 2011.
Reches, M, Gazit, E. Molecular self‐assembly of peptide nanostructures: mechanism of association and potential uses. Curr Nanosci 2006, 2:105–111.
Schleeger, M, vandenAkker, CC, Deckert‐Gaudig, T, Deckert, V, Velikov, KP, Koenderink, G, Bonn, M. Amyloids: from molecular structure to mechanical properties. Polymer 2013, 54:2473–2488.
Hettiarachchi, CA, Melton, LD, Gerrard, JA, Loveday, SM. Formation of beta‐lactoglobulin nanofibrils by microwave heating gives a peptide composition different from conventional heating. Biomacromolecules 2012, 13:2868–2880.
Meier, C, Weil, T, Kirchhoff, F, Munch, J. Peptide nanofibrils as enhancers of retroviral gene transfer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014, 6:438–451.
Deng, M, Yu, D, Hou, Y, Wang, Y. Self‐assembly of peptide‐amphiphile C12‐Abeta(11–17) into nanofibrils. J Phys Chem B 2009, 113:8539–8544.
Gelain, F, Bottai, D, Vescovi, A, Zhang, SG. Designer self‐assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3‐dimensional cultures. PLoS One 2006, 1:e119.
Zhang, SG, Gelain, F, Zhao, XJ. Designer self‐assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 2005, 15:413–420.
Yang, HN, Qu, TY, Yang, H, Wei, LF, Xie, ZH, Wang, P, Bi, JZ. Self‐assembling nanofibers improve cognitive impairment in a transgenic mice model of Alzheimer`s disease. Neurosci Lett 2013, 556:63–68.
Matsuura, K, Murasato, K, Kimizuka, N. Artificial peptide‐nanospheres self‐assembled from three‐way junctions of beta‐sheet‐forming peptides. J Am Chem Soc 2005, 127:10148–10149.
Fatouros, DG, Lamprou, DA, Urquhart, AJ, Yannopoulos, SN, Vizirianakis, IS, Zhang, SG, Koutsopoulos, S. Lipid‐like self‐assembling peptide nanovesicles for drug delivery. ACS Appl Mater Interfaces 2014, 6:8184–8189.
Gudlur, S, Sukthankar, P, Gao, J, Avila, LA, Hiromasa, Y, Chen, JH, Iwamoto, T, Tomich, JM. Peptide nanovesicles formed by the self‐assembly of branched amphiphilic peptides. PLoS One 2012, 7:e45374.
Matsusaki, M, Matsumoto, M, Waku, T, Akashi, M. Self‐assembled structure of peptide nanospheres induces high stability against hydrolysis and sterilization. J Biomater Sci Polym Ed 2011, 22:1035–1048.
Matsumoto, M, Matsusaki, M, Akashi, M. Preparation of biodegradable peptide nanospheres with hetero PEG brush surfaces. Macromol Biosci 2014, 14:142–150.
Liu, LH, Xu, KJ, Wang, HY, Tan, PKJ, Fan, WM, Venkatraman, SS, Li, LJ, Yang, YY. Self‐assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 2009, 4:457–463.
Hartgerink, JD, Granja, JR, Milligan, RA, Ghadiri, MR. Self‐assembling peptide nanotubes. J Am Chem Soc 1996, 118:43–50.
Matsui, H, Gologan, B. Crystalline glycylglycine bolaamphiphile tubules and their pH‐sensitive structural transformation. J Phys Chem B 2000, 104:3383–3386.
Panda, JJ, Yandrapu, S, Kadam, RS, Chauhan, VS, Kompella, UB. Self‐assembled phenylalanine‐alpha,beta‐dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi‐targeted tyrosine kinase inhibitor. J Control Release 2013, 172:1151–1160.
Gerard, M, Chaubey, A, Malhotra, BD. Application of conducting polymers to biosensors. Biosens Bioelectron 2002, 17:345–359.
Yemini, M, Reches, M, Rishpon, J, Gazit, E. Novel electrochemical biosensing platform using self‐assembled peptide nanotubes. Nano Lett 2005, 5:183–186.
Fernandez‐Lopez, S, Kim, HS, Choi, EC, Delgado, M, Granja, JR, Khasanov, A, Kraehenbuehl, K, Long, G, Weinberger, DA, Wilcoxen, KM, et al. Antibacterial agents based on the cyclic D,L‐alpha‐peptide architecture. Nature 2001, 412:452. Erratum in Nature 2001, 414: 329.
Wang, HY, Xu, KJ, Liu, LH, Tan, JPK, Chen, YB, Li, YT, Fan, WM, Wei, ZQ, Sheng, JF, Yang, YY, et al. The efficacy of self‐assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 2010, 31:2874–2881.
Horne, WS, Wiethoff, CM, Cui, CL, Wilcoxen, KM, Amorin, M, Ghadiri, MR, Nemerow, GR. Antiviral cyclic D,L‐alpha‐peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 2005, 13:5145–5153.
Montero, A, Gastaminza, P, Law, M, Cheng, GF, Chisari, FV, Ghadiri, MR. Self‐assembling peptide nanotubes with antiviral activity against hepatitis C virus. Chem Biol 2011, 18:1453–1462.
Zhang, JJ, Mulvenon, A, Makarov, E, Wagoner, J, Knibbe, J, Kim, JO, Osna, N, Bronich, TK, Poluektova, LY. Antiviral peptide nanocomplexes as a potential therapeutic modality for HIV/HCV co‐infection. Biomaterials 2013, 34:3846–3857.
Chongsiriwatana, NP, Patch, JA, Czyzewski, AM, Dohm, MT, Ivankin, A, Gidalevitz, D, Zuckermann, RN, Barron, AE. Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci U S A 2008, 105:2794–2799.
Zuckermann, RN, Kodadek, T. Peptoids as potential therapeutics. Curr Opin Mol Ther 2009, 11:299–307.
Tran, H, Gael, SL, Connolly, MD, Zuckermann, RN. Solid‐phase submonomer synthesis of peptoid polymers and their self‐assembly into highly‐ordered nanosheets. J Vis Exp 2011, 57:e3373.
Olivier, GK, Cho, A, Sanii, B, Connolly, MD, Tran, H, Zuckermann, RN. Antibody‐mimetic peptoid nanosheets for molecular recognition. ACS Nano 2013, 7:9276–9286.
Porrata, P, Goun, E, Matsui, H. Size‐controlled self‐assembly of peptide nanotubes using polycarbonate membranes as templates. Chem Mater 2002, 14:4378–4381.
Nune, M, Kumaraswamy, P, Krishnan, UM, Sethuraman, S. Self‐assembling peptide nanofibrous scaffolds for tissue engineering: novel approaches and strategies for effective functional regeneration. Curr Protein Pept Sci 2013, 14:70–84.