Gentile, F, Curcio, A, Indolfi, C, Ferrari, M, Decuzzi, P. The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnol 2008, 6:9. doi:10.1186/1477-3155-6-9.
Whayne, TF. Atherosclerosis: current status of prevention and treatment. Int J Angiol 2011, 20:213–222. doi:10.1055/s-0031-1295520.
Wang, T, Palucci, D, Law, K, Yanagawa, B, Yam, J, Butany, J. Atherosclerosis: pathogenesis and pathology. Diagn Histopathol 2012, 18:461–467. doi:10.1016/j.mpdhp.2012.09.004.
Kim, Y, Lobatto, ME, Kawahara, T, Chung, BL, Mieszawska, AJ, Sanchez‐Gaytan, BL, Fay, F, Senders, ML, Calcagno, C, Becraft, J, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 2014, 111:1078–1083.
Lobatto, ME, Calcagno, C, Millon, A, Senders, ML, Fay, F, Robson, PM, Ramachandran, S, Binderup, T, Paridaans, MP, Sensarn, S, et al. Atherosclerotic plaque targeting mechanism of long‐circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9:1837–1847.
Prijic, S, Sersa, G. Magnetic nanoparticles as targeted delivery systems in oncology. Magn Nanopart 2011, 45:1–16. doi:10.2478/v10019-011-0001-z.
Freund, JB, Shapiro, B. Transport of particles by magnetic forces and cellular blood flow in a model microvessel. Phys Fluids 2012, 24:1–12. doi:10.1063/1.4718752.
Chorny, M, Hood, E, Levy, RJ, Muzykantov, VR. Endothelial delivery of antioxidant enzymes loaded into non‐polymeric magnetic nanoparticles. J Control Release 2010, 146:144–151. doi:10.1016/j.jconrel.2010.05.003.
Chorny, M, Fishbein, I, Tengood, JE, Adamo, RF, Alferiev, IS, Levy, RJ. Site‐specific gene delivery to stented arteries using magnetically guided zinc oleate‐based nanoparticles loaded with adenoviral vectors. FASEB J 2013, 27:2198–2206. doi:10.1096/fj.12-224659.
Mannell, H, Pircher, J, Räthel, T, Schilberg, K, Zimmermann, K, Pfeifer, A, Mykhaylyk, O, Gleich, B, Pohl, U, Krötz, F. Targeted Endothelial Gene Delivery by Ultrasonic Destruction of Magnetic Microbubbles Carrying Lentiviral Vectors. Pharm Res 2012, 29:1282–1294. doi:10.1007/s11095-012-0678-8.
Forbes, ZG, Yellen, BB, Halverson, DS, Fridman, G, Barbee, KA, Friedman, G. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans Biomed Eng 2008, 55:643–649.
Holme, MN, Fedotenko, IA, Abegg, D, Althaus, J, Babel, L, Favarger, F, Reiter, R, Tanasescu, R, Zaffalon, PL, Ziegler, A, et al. Shear‐stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 2012, 7:536–543. doi:10.1038/nnano.2012.84.
Korin, N, Kanapathipillai, M, Matthews, BD, Crescente, M, Brill, A, Mammoto, T, Ghosh, K, Jurek, S, Bencherif, SA, Bhatta, D, et al. Shear‐activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012, 337:738–743.
Charoenphol, P, Mocherla, S, Bouis, D, Namdee, K, Pinsky, DJ, Eniola‐Adefeso, O. Targeting therapeutics to the vascular wall in atherosclerosis‐carrier size matters. Atherosclerosis 2011, 217:364–370. doi:10.1016/j.atherosclerosis.2011.04.016.
Onyskiw, PJ, Eniola‐Adefeso, O. Effect of PEGylation on ligand‐based targeting of drug carriers to the vascular wall in blood flow. Langmuir 2013, 29:11127–11134. doi:10.1021/la402182j.
Sobczynski, DJ, Charoenphol, P, Heslinga, MJ, Onyskiw, PJ, Namdee, K, Thompson, AJ, Eniola‐Adefeso, O. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner. PLoS One 2014, 9:e107408. doi:10.1371/journal.pone.0107408.
Bhowmick, T, Berk, E, Cui, X, Muzykantov, V, Muro, S. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM‐1. J Control Release 2012, 157:485–492. doi:10.1016/j.biotechadv.2011.08.021.Secreted.
Yang, H, Zhao, F, Li, Y, Xu, M, Li, L, Wu, C, Miyoshi, H, Liu, Y. VCAM‐1‐targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide‐induced inflammation under shear flow and cellular magnetic resonance imaging in vitro. Int J Nanomedicine 2013, 8:1897–1906. doi:10.2147/IJN.S44997.
Calin, M, Stan, D, Schlesinger, M, Simion, V, Deleanu, M, Constantinescu, CA, Gan, AM, Pirvulescu, MM, Butoi, E, Manduteanu, I, et al. VCAM‐1 directed target‐sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes. Eur J Pharm Biopharm 2015, 89:18–29.
Petersen, LK, York, AW, Lewis, DR, Ahuja, S, Uhrich, KE, Prud`homme, RK, Moghe, PV. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down‐regulation. Mol Pharm 2014, 11:2815–2824.
Iverson, NM, Plourde, NM, Sparks, SM, Wang, J, Patel, EN, Shah, PS, Lewis, DR, Zablocki, KR, Nackman, GB, Uhrich, KE, et al. Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero‐inflammation. Biomaterials 2011, 32:8319–8327. doi:10.1016/j.biomaterials.2011.07.039.
Bagalkot, V, Badgeley, MA, Kampfrath, T, Deiuliis, JA, Rajagopalan, S, Maiseyeu, A. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals. J Control Release 2015, 217:243–255. doi:10.1016/j.jconrel.2015.09.027.
Sanchez‐Gaytan, BL, Fay, F, Lobatto, ME, Tang, J, Ouimet, M, Kim, Y, van der Staay, SE, van Rijs, SM, Priem, B, Zhang, L, et al. HDL‐mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem 2015, 26:443–451.
Duivenvoorden, R, Tang, J, Cormode, DP, Mieszawska, AJ, Izquierdo‐Garcia, D, Ozcan, C, Otten, MJ, Zaidi, N, Lobatto, ME, van Rijs, SM, et al. A statin‐loaded reconstituted high‐density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 2014, 5:3065.
Tu, C, Ng, TSC, Sohi, HK, Palko, HA, House A, Jacobs, RE, Louie, AY. Receptor‐targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials 2011, 32:7209–7216. doi:10.1016/j.biomaterials.2011.06.026.
Nie, S, Zhang, J, Martinez‐Zaguilan, R, Sennoune, S, Hossen, MN, Lichtenstein, AH, Cao, J, Meyerrose, GE, Paone, R, Soontrapa, S, et al. Detection of atherosclerotic lesions and intimal macrophages using CD36‐targeted nanovesicles. J Control Release 2015, 220(Pt A):61–70. doi:10.1016/j.jconrel.2015.10.004.
Marrachea, S, Dhar, S. Biodegradable synthetic high‐density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA 2013, 110:9445–9450. doi:10.1073/pnas.1301929110.
Jacobin‐Valat, MJ, Deramchia, K, Mornet, S, Hagemeyer, CE, Bonetto, S, Robert, R, Biran, M, Massot, P, Miraux, S, Sanchez, S, et al. MRI of inducible P‐selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed 2011, 24:413–424.
Anselmo, AC, Modery‐Pawlowski, CL, Menegatti, S, Kumar, S, Vogus, DR, Tian, LL, Chen, M, Squires, TM, Sen Gupta, A, Mitragotri, S. Platelet‐like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014, 8:11243–11253.
Lee, GY, Kim, JH, Choi, KY, Yoon, HY, Kim, K, Kwon, IC, Choi, K, Lee, BH, Park, JH, Kim, IS. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials 2015, 53:341–348.
Eniola, AO, Hammer, DA. In vitro characterization of leukocyte mimetic for targeting therapeutics to the endothelium using two receptors. Biomaterials 2005, 26:7136–7144. doi:10.1016/j.biomaterials.2005.05.005.
Rafat, M, Rotenstein, LS, You, J, Auguste, DT. Biomaterials dual functionalized PVA hydrogels that adhere endothelial cells synergistically. Biomaterials 2012, 33:3880–3886. doi:10.1016/j.biomaterials.2012.02.017.
McAteer, MA, Schneider, JE, Ali, ZA, Warrick, N, Bursill, CA, von zur Muhlen, C, Greaves, DR, Neubauer, S, Channon, KM, Choudhury, RP. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual‐targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2007, 28(1):77–83. doi:10.1161/ATVBAHA.107.145466.
Xu, H, Kona, S, Su, LC, Tsai, YT, Dong, JF, Brilakis, ES, Tang, L, Banerjee, S, Nguyen, KT. Multi‐ligand poly (L‐lactic‐co‐glycolic acid) nanoparticles inhibit activation of endothelial cells. J Cardiovasc Transl Res. 2013, 6:570–578. doi:10.1007/s12265-013-9460-5.
Papademetriou, I, Tsinas, Z, Hsu, J, Muro, S. Combination‐targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes. J Control Release 2014, 188:87–98. doi:10.1016/j.jconrel.2014.06.008.
Chacko, A, Nayak, M, Greineder, CF, Delisser, HM, Muzykantov, VR. Collaborative enhancement of antibody binding to distinct PECAM‐1 epitopes modulates endothelial targeting. PLoS One 2012, 7:e34958. doi:10.1371/journal.pone.0034958.
Chacko, AM, Han, J, Greineder, CF, Zern, BJ, Mikitsh, JL, Nayak, M, Menon, D, Johnston, IH, Poncz, M, Eckmann, DM, et al. Collaborative enhancement of endothelial targeting of nanocarriers by modulating platelet‐endothelial cell engagement. ACS Nano 2015, 9:6785–6793.
McMasters, J, Panitch, A. Prevention of collagen‐induced platelet binding and activation by thermosensitive nanoparticles. AAPS J 2015, 17:1117–1125.
Kamaly, N, Fredman, G, Subramanian, M, Gadde, S, Pesic, A, Cheung, L, Fayad, ZA, Langer, R, Tabas, I, Farokhzad, OC. Development and in vivo efficacy of targeted polymeric inflammation‐resolving nanoparticles. Proc Natl Acad Sci USA 2013, 110:6506–6511.
Crielaard, BJ, Lammers, T, Schiffelers, RM, Storm, G. Drug targeting systems for inflammatory disease: one for all, all for one. J Control Release 2012, 161:225–234. doi:10.1016/j.jconrel.2011.12.014.
Lobatto, ME, Fuster, V, Fayad, ZA, Mulder, WJM. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 2011, 10:835–852. doi:10.1038/nrd3578.
Jokerst, JV, Lobovkina, T, Zare, RN, Gambhir, SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6:715–728. doi:10.1016/j.surg.2006.10.010.Use.
Zhang, XQ, Even‐Or, O, Xu, X, van Rosmalen, M, Lim, L, Gadde, S, Farokhzad, OC, Fisher, EA. Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv Healthc Mater 2015, 4:228–236. doi:10.1002/adhm.201400337.
Wen, S, Liu, DF, Cui, Y, Harris, SS, Chen, YC, Li, KC, Ju, SH, Teng, GJ. In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE‐deficient mice by using LOX‐1 targeted iron nanoparticles. Nanomedicine 2014, 10:639–649.
Geng, YAN, Dalhaimer, P, Cai, S, TsaiR, Minko, T, Discher, DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007, 2:249–255. doi:10.1038/nnano.2007.70.Shape.
Amoozgar, Z, Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. WIREs Nanomed Nanobiotechnol 2012, 4:219–233. doi:10.1002/wnan.1157.
Jiang, S, Cao, Z. Ultralow-Fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 2010, 22:920–932. doi:10.1002/adma.200901407.
Xiao, W, Lin, J, Li, M, Ma, Y, Chen, Y, Zhang, C, Li, D, Gu, H. Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol Imaging 2012, 7:320–327. doi:10.1002/cmmi.501.
Sun, M, Hoffman, D, Sundaresan, G, Yang, L, Lamichhane, N, Zweit, J. Synthesis and characterization of intrinsically radio‐labeled quantum dots for bimodal detection. Am J Nucl Med Mol Imaging 2012, 2:122–135.
Chandramouli, S, Sanjana, S, Swathi, S. Use of super paramagnetic iron‐oxide nanoparticles in the treatment of atherosclerosis. In: IFBME Proceedings, 67–70. doi:10.1007/978-3-319-11776-8.
Spronk, HM, van der Voort, D, Ten Cate, H. Blood coagulation and the risk of atherothrombosis: a complex relationship. Thromb J 2004, 2:12. doi:10.1186/1477-9560-2-12.
Hu, CM, Fang, RH, Wang, KC, Luk, BT, Thamphiwatana, S, Dehaini, D, Nguyen, P, Angsantikul, P, Wen, CH, Kroll, AV, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526:118–121.
Calderon, AJ, Muzykantov, V, Muro, S, Eckmann, DM. Flow dynamics, binding and detachment of spherical carriers targeted to ICAM‐1 on endothelial cells. Biorheology 2009, 46:323–341. doi:10.1016/j.surg.2006.10.010.Use.
Malek, a M, Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 1996, 109:713–726.
Han, J, Zern, BJ, Shuvaev, VV, Davies, PF, Muro, S, Muzykantov, V. Acute and chronic shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet‐endothelial cell adhesion molecule‐1. ACS Nano 2012, 6:8824–8836. doi:10.1021/nn302687n.
Han, J, Shuvaev, VV, Davies, PF, Eckmann, DM, Muro, S, Muzykantov, VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM‐1. J Control Release 2015, 210:39–47. doi:10.1016/j.jconrel.2015.05.006.
Spyropoulos‐Antonakakis, N, Sarantopoulou, E, Trohopoulos, PN, Stefi, AL, Kollia, Z, Gavriil, VE, Bourkoula, A, Petrou, PS, Kakabakos, S, Semashko, VV, et al. Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: a photodynamic therapy for atherosclerosis. Nanoscale Res Lett 2015, 10:210–229.
Jacobin‐Valat, MJ, Laroche‐Traineau, J, Larivière, M, Mornet, S, Sanchez, S, Biran, M, Lebaron, C, Boudon, J, Lacomme, S, Cérutti, M, et al. Nanoparticles functionalised with an anti‐platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging. Nanomedicine 2015, 11:927–937. doi:10.1016/j.nano.2014.12.006.
Bachelet‐Violette, L, Silva, AKA, Maire, M, Michel, A, Brinza, O, Ou, P, Ollivier, V, Nicoletti, A, Wilhelm, C, Letourneur, D, et al. Strong and specific interaction of ultra small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating. RSC Adv 2014, 4:4864.
Gu, Z, Rolfe, BE, Xu, ZP, Campbell, JH, Lu, GQM, Thomas, AC. Antibody‐targeted drug delivery to injured arteries using layered double hydroxide nanoparticles. Adv Healthc Mater 2012, 1:669–673. doi:10.1002/adhm.201200069.
Thompson, AJ, Mastria, EM, Eniola‐Adefeso, O. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 2013, 34:5863–5871. doi:10.1016/j.biomaterials.2013.04.011.
Kumar, A, Graham, MD. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 2012, 109:1–5. doi:10.1103/PhysRevLett.109.108102.
Charoenphol, P, Huang, RB, Eniola‐Adefeso, O. Potential role of size and hemodynamics in the efficacy of vascular‐targeted spherical drug carriers. Biomaterials 2010, 31:1392–1402. doi:10.1016/j.biomaterials.2009.11.007.
Müller, K, Fedosov, DA, Gompper, G. Understanding particle margination in blood flow – a step toward optimized drug delivery systems. Med Eng Phys 2016, 38:2–10. doi:10.1016/j.medengphy.2015.08.009.
Jurney, P, Agarwal, R, Singh, V, Roy, K, Sreenivasan, S V, Shi, L. The effect of nanoparticle size on margination and adhesion propensity in artificial micro‐capillaries. In: Proceedings of the Asme Micro/Nanoscale Heat and Mass Transfer International Conference, 2012:109–115, 2012. doi:10.1115/MNHMT2012-75258.
Toy, R, Hayden, E, Shoup, C, Baskaran, H, Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 2011, 22:115101. doi:10.1088/0957-4484/22/11/115101.
Namdee, K, Thompson, AJ, Charoenphol, P, Eniola‐Adefeso, O. Margination propensity of vascular‐targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 2013, 29:2530–2535. doi:10.1021/la304746p.
Lee, T‐R, Choi, M, Kopacz, AM, Yun, S‐H, Liu, WK, Decuzzi, P. On the near‐wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep 2013, 3:2079.
Müller, K, Fedosov, DA, Gompper, G. Margination of micro‐ and nano‐particles in blood flow and its effect on drug delivery. Sci Rep 2014, 4:1–10. doi:10.1038/srep04871.
Shinde Patil, VR, Campbell, CJ, Yun, YH, Slack, SM, Goetz, DJ. Particle diameter influences adhesion under flow. Biophys J 2001, 80:1733–1743. doi:10.1016/S0006-3495(01)76144-9.
Kumar, A, Graham, MD. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 2012, 109:108102. doi:10.1103/PhysRevLett.109.108102.
Champion, JA, Katare, YK, Mitragotri, S. Making polymeric micro‐ and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007, 104:11901–11904. doi:10.1073/pnas.0705326104.
Vahidkhah, K, Bagchi, P. Microparticle shape effects on margination, near‐wall dynamics and adhesion in a three‐dimensional simulation of red blood cell suspension. Soft Matter 2015, 11:2097–2109. doi:10.1039/C4SM02686A.
Wen, AM, Wang, Y, Jiang, K, Hsu, GC, Gao, H, Lee, KL, Yang, AC, Yu, X, Simon, DI, Steinmetz, NF. Shaping bio‐inspired nanotechnologies to target thrombosis for dual optical‐magnetic resonance imaging. J Mater Chem B 2015, 3:6037–6045. doi:10.1039/C5TB00879D.
Namdee, K, Thompson, AJ, Golinski, A, Mocherla, S, Bouis, D, Eniola‐Adefeso, O. In vivo evaluation of vascular‐targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis. Atherosclerosis 2014, 237:279–286.
Fish, MB, Thompson, AJ, Fromen, CA, Eniola‐Adefeso, O. Emergence and utility of nonspherical particles in biomedicine. Ind Eng Chem Res 2015, 54:4043–4059. doi:10.1021/ie504452j.
Thompson, AJ, Eniola‐Adefeso, O. Dense nanoparticles exhibit enhanced vascular wall targeting over neutrally buoyant nanoparticles in human blood flow. Acta Biomater 2015:99–108. doi:10.1016/j.actbio.2015.04.005.
Howard, MD, Hood, ED, Zern, B, Shuvaev, VV, Grosser, T, Muzykantov, VR. Nanocarriers for vascular delivery of anti‐inflammatory agents. Annu Rev Pharmacol Toxicol 2014, 54:205–226. doi:10.1146/annurev-pharmtox-011613-140002.
Namdee, K, Carrasco‐Teja, M, Fish, MB, Charoenphol, P, Eniola‐Adefeso, O. Effect of Variation in hemorheology between human and animal blood on the binding efficacy of vascular‐targeted carriers. Sci Rep 2015, 5:11631. doi:10.1038/srep11631.
Namdee, K, Sobczynski, DJ, Onyskiw, PJ, Eniola‐Adefeso, O. Differential impact of plasma proteins on the adhesion efficiency of vascular‐targeted carriers (VTCs) in blood of common laboratory animals. Bioconjug Chem 2015. doi:10.1021/acs.bioconjchem.5b00474.