Alavijeh, MS, Chishty, M, Qaiser, MZ, Palmer, AM. Drug metabolism and pharmacokinetics, the blood‐brain barrier, and central nervous system drug discovery. NeuroRx 2005, 2:554–571.
van Rooy, I, Cakir‐Tascioglu, S, Hennink, WE, Storm, G, Schiffelers, RM, Mastrobattista, E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res 2011, 28:456–471.
Allen, TM, Cullis, PR. Drug delivery systems: entering the mainstream. Science 2004, 303:1818–1822.
Alexis, F, Pridgen, E, Molnar, LK, Farokhzad, OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008, 5:505–515.
Petros, RA, DeSimone, JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9:615–627.
Hutter, E, Boridy, S, Labrecque, S, Lalancette‐Hebert, M, Kriz, J, Winnik, FM, Maysinger, D. Microglial response to gold nanoparticles. ACS Nano 2010, 4:2595–2606.
Neumann, H, Kotter, MR, Franklin, RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288–295.
Floyd, RA, Hensley, K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002, 23:795–807.
Saunders, NR, Daneman, R, Dziegielewska, KM, Liddelow, SA. Transporters of the blood‐brain and blood‐CSF interfaces in development and in the adult. Mol Aspects Med 2013, 34:742–752.
Hagan, N, Ben‐Zvi, A. The molecular, cellular, and morphological components of blood‐brain barrier development during embryogenesis. Semin Cell Dev Biol 2015, 38:7–15.
Zhao, Z, Nelson, AR, Betsholtz, C, Zlokovic, BV. Establishment and dysfunction of the blood‐brain barrier. Cell 2015, 163:1064–1078.
Sweeney, MD, Sagare, AP, Zlokovic, BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer`s disease. J Cereb Blood Flow Metab 2015, 35:1055–1068.
Zlokovic, BV. Neurovascular pathways to neurodegeneration in Alzheimer`s disease and other disorders. Nat Rev Neurosci 2011, 12:723–738.
Sagare, AP, Bell, RD, Zhao, Z, Ma, Q, Winkler, EA, Ramanathan, A, Zlokovic, BV. Pericyte loss influences Alzheimer‐like neurodegeneration in mice. Nat Commun 2013, 4:2932.
Schlageter, KE, Molnar, P, Lapin, GD, Groothuis, DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999, 58:312–328.
Mabuchi, T, Lucero, J, Feng, A, Koziol, JA, del Zoppo, GJ. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 2005, 25:257–266.
Schmidt, RH, Grady, MS. Regional patterns of blood‐brain‐barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma 1993, 10:415–430.
Wolak, DJ, Thorne, RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 2013, 10:1492–1504.
Sykova, E, Nicholson, C. Diffusion in brain extracellular space. Physiol Rev 2008, 88:1277–1340.
Fenstermacher, J, Kaye, T. Drug "diffusion" within the brain. Ann N Y Acad Sci 1988, 531:29–39.
Dityatev, A, Seidenbecher, CI, Schachner, M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2010, 33:503–512.
Bruckner, G, Hartig, W, Kacza, J, Seeger, J, Welt, K, Brauer, K. Extracellular matrix organization in various regions of rat brain grey matter. J Neurocytol 1996, 25:333–346.
Pantazopoulos, H, Berretta, S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast 2016, 2016:9847696.
Benarroch, EE. Extracellular matrix in the CNS: dynamic structure and clinical correlations. Neurology 2015, 85:1417–1427.
Iliff, JJ, Wang, M, Liao, Y, Plogg, BA, Peng, W, Gundersen, GA, Benveniste, H, Vates, GE, Deane, R, Goldman, SA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012, 4:147ra111.
Xie, L, Kang, H, Xu, Q, Chen, MJ, Liao, Y, Thiyagarajan, M, O`Donnell, J, Christensen, DJ, Nicholson, C, Iliff, JJ, et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342:373–377.
Nedergaard, M. Neuroscience. Garbage truck of the brain. Science 2013, 340:1529–1530.
Salegio, EA, Streeter, H, Dube, N, Hadaczek, P, Samaranch, L, Kells, AP, San Sebastian, W, Zhai, Y, Bringas, J, Xu, T, et al. Distribution of nanoparticles throughout the cerebral cortex of rodents and non‐human primates: implications for gene and drug therapy. Front Neuroanat 2014, 8:9.
Lochhead, JJ, Thorne, RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012, 64:614–628.
Barua, NU, Bienemann, AS, Hesketh, S, Wyatt, MJ, Castrique, E, Love, S, Gill, SS. Intrastriatal convection‐enhanced delivery results in widespread perivascular distribution in a pre‐clinical model. Fluids Barriers CNS 2012, 9:2.
Krauze, MT, Saito, R, Noble, C, Bringas, J, Forsayeth, J, McKnight, TR, Park, J, Bankiewicz, KS. Effects of the perivascular space on convection‐enhanced delivery of liposomes in primate putamen. Exp Neurol 2005, 196:104–111.
Foley, CP, Nishimura, N, Neeves, KB, Schaffer, CB, Olbricht, WL. Real‐time imaging of perivascular transport of nanoparticles during convection‐enhanced delivery in the rat cortex. Ann Biomed Eng 2012, 40:292–303.
el‐Kareh, AW, Secomb, TW. Theoretical models for drug delivery to solid tumors. Crit Rev Biomed Eng 1997, 25:503–571.
Neuwelt, EA, Bauer, B, Fahlke, C, Fricker, G, Iadecola, C, Janigro, D, Leybaert, L, Molnar, Z, O`Donnell, ME, Povlishock, JT, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011, 12:169–182.
Olsson, Y. Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 1990, 5:265–311.
Weller, RO, Hawkes, CA, Kalaria, RN, Werring, DJ, Carare, RO. White matter changes in dementia: role of impaired drainage of interstitial fluid. Brain Pathol 2015, 25:63–78.
Block, ML, Zecca, L, Hong, JS. Microglia‐mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57–69.
Mishra, MK, Beaty, CA, Lesniak, WG, Kambhampati, SP, Zhang, F, Wilson, MA, Blue, MB, Troncoso, JC, Kannan, S, Jonhston, MV, et al. Dendrimer brain uptake and targeted therapy from brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 2014, 8:2134–2147.
Zhang, F, Lin, YA, Kannan, S, Kannan, RM. Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release 2015. doi: 10.1016/j.jconrel.2015.12.013.
Chamorro, A, Dirnagl, U, Urra, X, Planas, AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016, 15:869–881.
Hong, H, Kim, BS, Im, HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 2016, 20:S2–S7.
Sowers, JL, Johnson, KM, Conrad, C, Patterson, JT, Sowers, LC. The role of inflammation in brain cancer. Adv Exp Med Biol 2014, 816:75–105.
Durymanov, MO, Rosenkranz, AA, Sobolev, AS. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 2015, 5:1007–1020.
Abdul‐Muneer, PM, Chandra, N, Haorah, J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 2015, 51:966–979.
Carmichael, ST. The 3 Rs of stroke biology: radial, relayed, and regenerative. Neurotherapeutics 2016, 13:348–359.
Gonzalez, H, Elgueta, D, Montoya, A, Pacheco, R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014, 274:1–13.
Ratnayake, U, Quinn, T, Walker, DW, Dickinson, H. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci 2013, 7:180.
Molofsky, AV, Krencik, R, Ullian, EM, Tsai, HH, Deneen, B, Richardson, WD, Barres, BA, Rowitch, DH. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 2012, 26:891–907.
Minagar, A, Shapshak, P, Fujimura, R, Ownby, R, Heyes, M, Eisdorfer, C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV‐associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 2002, 202:13–23.
Kannan, RM, Nance, E, Kannan, S, Tomalia, DA. Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. J Intern Med 2014, 276:579–617.
Patel, T, Zhou, J, Piepmeier, JM, Saltzman, WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012, 64:701–705.
Tosi, G, Bortot, B, Ruozi, B, Dolcetta, D, Vandelli, MA, Forni, F, Severini, GM. Potential use of polymeric nanoparticles for drug delivery across the blood‐brain barrier. Curr Med Chem 2013, 20:2212–2225.
Liu, L, Guo, K, Lu, J, Venkatraman, SS, Luo, D, Ng, KC, Ling, EA, Moochhala, S, Yang, YY. Biologically active core/shell nanoparticles self‐assembled from cholesterol‐terminated PEG‐TAT for drug delivery across the blood‐brain barrier. Biomaterials 2008, 29:1509–1517.
Bjugstad, KB, Redmond, DE Jr, Lampe, KJ, Kern, DS, Sladek, JR Jr, Mahoney, MJ. Biocompatibility of PEG‐based hydrogels in primate brain. Cell Transplant 2008, 17:409–415.
Aparicio‐Blanco, J, Torres‐Suarez, AI. Glioblastoma multiforme and lipid nanocapsules: a review. J Biomed Nanotechnol 2015, 11:1283–1311.
Gastaldi, L, Battaglia, L, Peira, E, Chirio, D, Muntoni, E, Solazzi, I, Gallarate, M, Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm 2014, 87:433–444.
Velasco‐Aguirre, C, Morales, F, Gallardo‐Toledo, E, Guerrero, S, Giralt, E, Araya, E, Kogan, MJ. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine 2015, 10:4919–4936.
Mo, J, He, L, Ma, B, Chen, T. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood‐brain barrier. ACS Appl Mater Interfaces 2016, 8:6811–6825.
Patchin, ES, Anderson, DS, Silva, RM, Uyeminami, DL, Scott, GM, Guo, T, Van Winkle, LS, Pinkerton, KE. Size‐dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect. In press. doi: 10.1289/EHP234.
Liu, H, Zhang, J, Chen, X, Du, XS, Zhang, JL, Liu, G, Zhang, WG. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale 2016, 8:7808–7826.
Dilnawaz, F, Sahoo, SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today 2015, 20:1256–1264.
Paris‐Robidas, S, Brouard, D, Emond, V, Parent, M, Calon, F. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cereb Blood Flow Metab 2016, 36:731–742.
Wong, BS, Yoong, SL, Jagusiak, A, Panczyk, T, Ho, HK, Ang, WH, Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013, 65:1964–2015.
Kafa, H, Wang, JT, Rubio, N, Venner, K, Anderson, G, Pach, E, Ballesteros, B, Preston, JE, Abbott, NJ, Al‐Jamal, KT. The interaction of carbon nanotubes with an in vitro blood‐brain barrier model and mouse brain in vivo. Biomaterials 2015, 53:437–452.
Champion, JA, Katare, YK, Mitragotri, S. Particle shape: a new design parameter for micro‐ and nanoscale drug delivery carriers. J Control Release 2007, 121:3–9.
Perry, JL, Herlihy, KP, Napier, ME, Desimone, JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 2011, 44:990–998.
Duan, B, Wu, L, Yuan, X, Hu, Z, Li, X, Zhang, Y, Yao, K, Wang, M. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J Biomed Mater Res A 2007, 83:868–878.
Tomczak, N, Vancso, GJ. Elasticity of single poly(amido amine) dendrimers. Macromol Rapid Commun 2007, 28:1640–1644.
Kato, K, Matsui, D, Mayumi, K, Ito, K. Synthesis, structure, and mechanical properties of silica nanocomposite polyrotaxane gels. Beilstein J Org Chem 2015, 11:2194–2201.
Bagwe, RP, Hilliard, LR, Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22:4357–4362.
Cline, CF, Dunegan, HL, Henderso, GW. Elastic constants of hexagonal Beo, Zns and Cdse. J Appl Phys 1967, 38:1944–1948.
Liang, XM, Mao, GZ, Ng, KYS. Mechanical properties and stability measurement of cholesterol‐containing liposome on mica by atomic force microscopy. J Colloid Interface Sci 2004, 278:53–62.
Schlicke, H, Leib, EW, Petrov, A, Schroder, JH, Vossmeyer, T. Elastic and viscoelastic properties of cross‐linked gold nanoparticles probed by AFM bulge tests. J Phys Chem C 2014, 118:4386–4395.
Ramos, M, Ortiz‐Jordan, L, Hurtado‐Macias, A, Flores, S, Elizalde‐Galindo, JT, Rocha, C, Torres, B, Zarei‐Chaleshtori, M, Chianelli, RR. Hardness and elastic modulus on six‐fold symmetry gold nanoparticles. Materials 2013, 6:198–205.
Sperling, RA, Parak, WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci 2010, 368:1333–1383.
Muthiah, M, Park, IK, Cho, CS. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 2013, 31:1224–1236.
Treacy, MMJ, Ebbesen, TW, Gibson, JM. Exceptionally high Young`s modulus observed for individual carbon nanotubes. Nature 1996, 381:678–680.
Mittal, S, Sharma, V, Vallabani, NV, Kulshrestha, S, Dhawan, A, Pandey, AK. Toxicity evaluation of carbon nanotubes in normal human bronchial epithelial cells. J Biomed Nanotechnol 2011, 7:108–109.
Park, M, Lee, D, Shin, S, Hyun, J. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf B Biointerfaces 2015, 130:222–228.
Hamidi, M, Azadi, A, Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008, 60:1638–1649.
Albanese, A, Tang, PS, Chan, WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012, 14:1–16.
Nance, EA, Woodworth, GF, Sailor, KA, Shih, TY, Xu, Q, Swaminathan, G, Xiang, D, Eberhart, C, Hanes, J. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 2012, 4:149ra119.
Zhou, J, Patel, TR, Sirianni, RW, Strohbehn, G, Zheng, MQ, Duong, N, Schafbauer, T, Huttner, AJ, Huang, Y, Carson, RE, et al. Highly penetrative, drug‐loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci USA 2013, 110:11751–11756.
Euliss, LE, DuPont, JA, Gratton, S, DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 2006, 35:1095–1104.
Doshi, N, Prabhakarpandian, B, Rea‐Ramsey, A, Pant, K, Sundaram, S, Mitragotri, S. Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 2010, 146:196–200.
Decuzzi, P, Ferrari, M. The adhesive strength of non‐spherical particles mediated by specific interactions. Biomaterials 2006, 27:5307–5314.
Kolhar, P, Anselmo, AC, Gupta, V, Pant, K, Prabhakarpandian, B, Ruoslahti, E, Mitragotri, S. Using shape effects to target antibody‐coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013, 110:10753–10758.
Rehfeldt, F, Engler, AJ, Eckhardt, A, Ahmed, F, Discher, DE. Cell responses to the mechanochemical microenvironment—implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev 2007, 59:1329–1339.
Anselmo, AC, Mitragotri, S. Impact of particle elasticity on particle‐based drug delivery systems. Adv Drug Deliv Rev. In press. doi: 10.1016/j.addr.2016.01.007.
Bae, YH, Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 2011, 153:198–205.
Xiao, K, Li, Y, Luo, J, Lee, JS, Xiao, W, Gonik, AM, Agarwal, RG, Lam, KS. The effect of surface charge on in vivo biodistribution of PEG‐oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32:3435–3446.
Yue, ZG, Wei, W, Lv, PP, Yue, H, Wang, LY, Su, ZG, Ma, GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan‐based nanoparticles. Biomacromolecules 2011, 12:2440–2446.
Chiu, HW, Xia, T, Lee, YH, Chen, CW, Tsai, JC, Wang, YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 2015, 7:736–746.
Wang, S, Li, Y, Fan, J, Wang, Z, Zeng, X, Sun, Y, Song, P, Ju, D. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 2014, 35:7588–7597.
Kannan, S, Dai, H, Navath, RS, Balakrishnan, B, Jyoti, A, Janisse, J, Romero, R, Kannan, RM. Dendrimer‐based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med 2012, 4:130ra146.
Walters, R, Medintz, IL, Delehanty, JB, Stewart, MH, Susumu, K, Huston, AL, Dawson, PE, Dawson, G. The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 2015, 7. doi: 10.1177/1759091415592389.
Nance, E, Zhang, F, Mishra, MK, Zhang, Z, Kambhampati, SP, Kannan, RM, Kannan, S. Nanoscale effects in dendrimer‐mediated targeting of neuroinflammation. Biomaterials 2016, 101:96–107.
Gref, R, Luck, M, Quellec, P, Marchand, M, Dellacherie, E, Harnisch, S, Blunk, T, Muller, RH. `Stealth` corona‐core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B‐Biointerfaces 2000, 18:301–313.
Gref, R, Minamitake, Y, Peracchia, MT, Trubetskoy, V, Torchilin, V, Langer, R. Biodegradable long‐circulating polymeric nanospheres. Science 1994, 263:1600–1603.
Yang, Q, Lai, SK. Anti‐PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015, 7:655–677.
Liu, X, Li, H, Jin, Q, Ji, J. Surface tailoring of nanoparticles via mixed‐charge monolayers and their biomedical applications. Small 2014, 10:4230–4242.
Pombo Garcia, K, Zarschler, K, Barbaro, L, Barreto, JA, O`Malley, W, Spiccia, L, Stephan, H, Graham, B. Zwitterionic‐coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014, 10:2516–2529.
Casettari, L, Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014, 190:189–200.
Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001, 47:65–81.
Tahara, K, Miyazaki, Y, Kawashima, Y, Kreuter, J, Yamamoto, H. Brain targeting with surface‐modified poly(D,L‐lactic‐co‐glycolic acid) nanoparticles delivered via carotid artery administration. Eur J Pharm Biopharm 2011, 77:84–88.
Kreuter, J, Shamenkov, D, Petrov, V, Ramge, P, Cychutek, K, Koch‐Brandt, C, Alyautdin, R. Apolipoprotein‐mediated transport of nanoparticle‐bound drugs across the blood‐brain barrier. J Drug Target 2002, 10:317–325.
Zensi, A, Begley, D, Pontikis, C, Legros, C, Mihoreanu, L, Wagner, S, Buchel, C, von Briesen, H, Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009, 137:78–86.
Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014, 71:2–14.
Wohlfart, S, Khalansky, AS, Gelperina, S, Begley, D, Kreuter, J. Kinetics of transport of doxorubicin bound to nanoparticles across the blood‐brain barrier. J Control Release 2011, 154:103–107.
Tzeng, SY, Green, JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv 2013, 4:687–704.
Karim, R, Palazzo, C, Evrard, B, Piel, G. Nanocarriers for the treatment of glioblastoma multiforme: current state‐of‐the‐art. J Control Release 2016, 227:23–37.
Cheng, Y, Morshed, RA, Auffinger, B, Tobias, AL, Lesniak, MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014, 66:42–57.
Koo, YE, Reddy, GR, Bhojani, M, Schneider, R, Philbert, MA, Rehemtulla, A, Ross, BD, Kopelman, R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006, 58:1556–1577.
Ajetunmobi, A, Prina‐Mello, A, Volkov, Y, Corvin, A, Tropea, D. Nanotechnologies for the study of the central nervous system. Prog Neurobiol 2014, 123:18–36.
Ruan, S, Qian, J, Shen, S, Zhu, J, Jiang, X, He, Q, Gao, H. A simple one‐step method to prepare fluorescent carbon dots and their potential application in non‐invasive glioma imaging. Nanoscale 2014, 6:10040–10047.
Khalin, I, Alyautdin, R, Wong, TW, Gnanou, J, Kocherga, G, Kreuter, J. Brain‐derived neurotrophic factor delivered to the brain using poly (lactide‐co‐glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Deliv 2016:1–26.
Ruozi, B, Belletti, D, Sharma, HS, Sharma, A, Muresanu, DF, Mossler, H, Forni, F, Vandelli, MA, Tosi, G. PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol Neurobiol 2015, 52:899–912.
Ren, T, Xu, N, Cao, C, Yuan, W, Yu, X, Chen, J, Ren, J. Preparation and therapeutic efficacy of polysorbate‐80‐coated amphotericin B/PLA‐b‐PEG nanoparticles. J Biomater Sci Polym Ed 2009, 20:1369–1380.
Xu, N, Gu, J, Zhu, Y, Wen, H, Ren, Q, Chen, J. Efficacy of intravenous amphotericin B‐polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomedicine 2011, 6:905–913.
Kurakhmaeva, KB, Djindjikhashvili, IA, Petrov, VE, Balabanyan, VU, Voronina, TA, Trofimov, SS, Kreuter, J, Gelperina, S, Begley, D, Alyautdin, RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009, 17:564–574.
Gaudin, A, Yemisci, M, Eroglu, H, Lepetre‐Mouelhi, S, Turkoglu, OF, Donmez‐Demir, B, Caban, S, Sargon, MF, Garcia‐Argote, S, Pieters, G, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 2014, 9:1054–1062.
Kawaguchi, AT, Kurita, D, Furuya, H, Yamano, M, Ogata, Y, Haida, M. Liposome‐encapsulated hemoglobin alleviates brain edema after permanent occlusion of the middle cerebral artery in rats. Artif Organs 2009, 33:153–158.
Mori, N, Kurokouchi, A, Osonoe, K, Saitoh, H, Ariga, K, Suzuki, K, Iwata, Y. Liposome‐entrapped phenytoin locally suppresses amygdaloid epileptogenic focus created by db‐cAMP/EDTA in rats. Brain Res 1995, 703:184–190.
Kizelsztein, P, Ovadia, H, Garbuzenko, O, Sigal, A, Barenholz, Y. Pegylated nanoliposomes remote‐loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol 2009, 213:20–25.
Nilewski, LG, Sikkema, WK, Kent, TA, Tour, JM. Carbon nanoparticles and oxidative stress: could an injection stop brain damage in minutes? Nanomedicine (Lond) 2015, 10:1677–1679.
Bitner, BR, Marcano, DC, Berlin, JM, Fabian, RH, Cherian, L, Culver, JC, Dickinson, ME, Robertson, CS, Pautler, RG, Kent, TA, et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano 2012, 6:8007–8014.
Takamiya, M, Miyamoto, Y, Yamashita, T, Deguchi, K, Ohta, Y, Abe, K. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke‐ and tissue plasminogen activator‐related brain damages in mice. Neuroscience 2012, 221:47–55.
Heckman, KL, DeCoteau, W, Estevez, A, Reed, KJ, Costanzo, W, Sanford, D, Leiter, JC, Clauss, J, Knapp, K, Gomez, C, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 2013, 7:10582–10596.
Kim, CK, Kim, T, Choi, IY, Soh, M, Kim, D, Kim, YJ, Jang, H, Yang, HS, Kim, JY, Park, HK, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl 2012, 51:11039–11043.
Hardas, SS, Butterfield, DA, Sultana, R, Tseng, MT, Dan, M, Florence, RL, Unrine, JM, Graham, UM, Wu, P, Grulke, EA, et al. Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol Sci 2010, 116:562–576.
Reddy, MK, Labhasetwar, V. Nanoparticle‐mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia‐reperfusion injury. FASEB J 2009, 23:1384–1395.
Kwon, B, Roy, J, Lee, JHT, Okon, E, Zhang, H, Marx, J, Kindy, M. Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotrauma 2009, 26:1379–1393.
Bellavance, MA, Blanchette, M, Fortin, D. Recent advances in blood‐brain barrier disruption as a CNS delivery strategy. AAPS Journal 2008, 10:166–177.
Timbie, KF, Mead, BP, Price, RJ. Drug and gene delivery across the blood‐brain barrier with focused ultrasound. J Control Release 2015, 219:61–75.
Mead, BP, Mastorakos, P, Suk, JS, Klibanov, AL, Hanes, J, Price, RJ. Targeted gene transfer to the brain via the delivery of brain‐penetrating DNA nanoparticles with focused ultrasound. J Control Release 2016, 223:109–117.
Hu, K, Shi, Y, Jiang, W, Han, J, Huang, S, Jiang, X. Lactoferrin conjugated PEG‐PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson`s disease. Int J Pharm 2011, 415:273–283.
Huang, R, Ke, W, Liu, Y, Wu, D, Feng, L, Jiang, C, Pei, Y. Gene therapy using lactoferrin‐modified nanoparticles in a rotenone‐induced chronic Parkinson model. J Neurol Sci 2010, 290:123–130.
Huang, R, Han, L, Li, J, Ren, F, Ke, W, Jiang, C, Pei, Y. Neuroprotection in a 6‐hydroxydopamine‐lesioned Parkinson model using lactoferrin‐modified nanoparticles. J Gene Med 2009, 11:754–763.
Karatas, H, Aktas, Y, Gursoy‐Ozdemir, Y, Bodur, E, Yemisci, M, Caban, S, Vural, A, Pinarbasli, O, Capan, Y, Fernandez‐Megia, E, et al. A nanomedicine transports a peptide caspase‐3 inhibitor across the blood‐brain barrier and provides neuroprotection. J Neurosci 2009, 29:13761–13769.
Zhao, H, Bao, XJ, Wang, RZ, Li, GL, Gao, J, Ma, SH, Wei, JJ, Feng, M, Zhao, YJ, Ma, WB, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin‐targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther 2011, 22:207–215.
Han, L, Cai, Q, Tian, D, Kong, DK, Gou, X, Chen, Z, Strittmatter, SM, Wang, Z, Sheth, KN, Zhou, J. Targeted drug delivery to ischemic stroke via chlorotoxin‐anchored, lexiscan‐loaded nanoparticles. Nanomedicine. In press. doi: 10.1016/j.nano.2016.03.005.
Kwon, HJ, Cha, MY, Kim, D, Kim, DK, Soh, M, Shin, K, Hyeon, T, Mook‐Jung, I. Mitochondria‐targeting ceria nanoparticles as antioxidants for Alzheimer`s disease. ACS Nano 2016, 10:2860–2870.
Wang, Y, Ying, X, Chen, L, Liu, Y, Wang, Y, Liang, J, Xu, C, Guo, Y, Wang, S, Hu, W, et al. Electroresponsive nanoparticles improve antiseizure effect of phenytoin in generalized tonic‐clonic seizures. Neurotherapeutics 2016, 13:603–613.
Xu, K, Wang, H, Liu, L, Xu, W, Sheng, J, Fan, W, Yang, YY, Li, L. Efficacy of CG(3)R(6)TAT nanoparticles self‐assembled from a novel antimicrobial peptide for the treatment of Candida albicans meningitis in rabbits. Chemotherapy 2011, 57:417–425.
Tang, X, Liang, Y, Zhu, Y, Xie, C, Yao, A, Chen, L, Jiang, Q, Liu, T, Wang, X, Qian, Y, et al. Anti‐transferrin receptor‐modified amphotericin B‐loaded PLA‐PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int J Nanomedicine 2015, 10:6227–6241.
Schwartz, S, Thiel, E. Cerebral aspergillosis: tissue penetration is the key. Med Mycol 2009, 47(suppl 1):S387–S393.
Ensign, LM, Cone, R, Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012, 64:557–570.
Forbes, DC, Peppas, NA. Oral delivery of small RNA and DNA. J Control Release 2012, 162:438–445.
Pridgen, EM, Alexis, F, Farokhzad, OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv 2015, 12:1459–1473.
Das, D, Lin, S. Double‐coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 2005, 94:1343–1353.
Chonpathompikunlert, P, Yoshitomi, T, Vong, LB, Imaizumi, N, Ozaki, Y, Nagasaki, Y. Recovery of cognitive dysfunction via orally administered redox‐polymer nanotherapeutics in SAMP8 mice. PLoS One 2015, 10:e0126013.
Nance, E, Porambo, M, Zhang, F, Mishra, MK, Buelow, M, Getzenberg, R, Johnston, M, Kannan, RM, Fatemi, A, Kannan, S. Systemic dendrimer‐drug treatment of ischemia‐induced neonatal white matter injury. J Control Release 2015, 214:112–120.
Sordet, F, Aumjaud, Y, Fessi, H, Derouin, F. Assessment of the activity of atovaquone‐loaded nanocapsules in the treatment of acute and chronic murine toxoplasmosis. Parasite 1998, 5:223–229.
Niu, Z, Conejos‐Sanchez, I, Griffin, BT, O`Driscoll, CM, Alonso, MJ. Lipid‐based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. In press. doi: 10.1016/j.addr.2016.04.001.
Dening, TJ, Rao, S, Thomas, N, Prestidge, CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2016, 223:137–156.
Leyva‐Gomez, G, Gonzalez‐Trujano, ME, Lopez‐Ruiz, E, Couraud, PO, Wekslerg, B, Romero, I, Miller, F, Delie, F, Allemann, E, Quintanar‐Guerrero, D. Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole‐induced seizures: behavior and electroencephalogram. J Pharm Sci 2014, 103:2509–2519.
Hansraj, GP, Singh, SK, Kumar, P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti‐migraine potential. Int J Biol Macromol 2015, 81:467–476.
Elnaggar, YS, Etman, SM, Abdelmonsif, DA, Abdallah, OY. Novel piperine‐loaded Tween‐integrated monoolein cubosomes as brain‐targeted oral nanomedicine in Alzheimer`s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015, 10:5459–5473.
Yang, Z, Zhang, Y, Yang, Y, Sun, L, Han, D, Li, H, Wang, C. Pharmacological and toxicological target organelles and safe use of single‐walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 2010, 6:427–441.
Sajid, MI, Jamshaid, U, Jamshaid, T, Zafar, N, Fessi, H, Elaissari, A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 2016, 501:278–299.
Button, KS, Ioannidis, JP, Mokrysz, C, Nosek, BA, Flint, J, Robinson, ES, Munafo, MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 2013, 14:365–376.
Kurakhmaeva, KB, Voronina, TA, Kapica, IG, Kreuter, J, Nerobkova, LN, Seredenin, SB, Balabanian, VY, Alyautdin, RN. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate‐80. Bull Exp Biol Med 2008, 145:259–262.
Valenza, M, Chen, JY, Di Paolo, E, Ruozi, B, Belletti, D, Ferrari Bardile, C, Leoni, V, Caccia, C, Brilli, E, Di Donato, S, et al. Cholesterol‐loaded nanoparticles ameliorate synaptic and cognitive function in Huntington`s disease mice. EMBO Mol Med 2015, 7:1547–1564.
Wang, T, Hu, Y, Leach, MK, Zhang, L, Yang, W, Jiang, L, Feng, ZQ, He, N. Erythropoietin‐loaded oligochitosan nanoparticles for treatment of periventricular leukomalacia. Int J Pharm 2012, 422:462–471.
Yusuf, M, Khan, M, Khan, RA, Ahmed, B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted piperine solid lipid nanoparticles in an experimentally induced Alzheimer`s disease model. J Drug Target 2012, 21:300–311.
Frozza, RL, Bernardi, A, Hoppe, JB, Meneghetti, AB, Matte, A, Battastini, AM, Pohlmann, AR, Guterres, SS, Salbego, C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid‐core nanocapsules. Mol Neurobiol 2013, 47:1066–1080.
Bernardi, A, Frozza, RL, Meneghetti, A, Hoppe, JB, Battastini, AM, Pohlmann, AR, Guterres, SS, Salbego, CG. Indomethacin‐loaded lipid‐core nanocapsules reduce the damage triggered by Aβ1‐42 in Alzheimer`s disease models. Int J Nanomedicine 2012, 7:4927–4942.
Muhs, A, Hickman, DT, Pihlgren, M, Chuard, N, Giriens, V, Meerschman, C, van der Auwera, I, van Leuven, F, Sugawara, M, Weingertner, MC, et al. Liposomal vaccines with conformation‐specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci USA 2007, 104:9810–9815.
Xie, Y, Wang, Y, Zhang, T, Ren, G, Yang, Z. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive‐like behaviors. J Biomed Sci 2012, 19:14.
Han, D, Tian, Y, Zhang, T, Ren, G, Yang, Z. Nano‐zinc oxide damages spatial cognition capability via over‐enhanced long‐term potentiation in hippocampus of Wistar rats. Int J Nanomedicine 2011, 6:1453–1461.
Choi, J, Kim, H, Kim, P, Jo, E, Kim, HM, Lee, MY, Jin, SM, Park, K. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health A 2015, 78:226–243.
Barua, NU, Gill, SS, Love, S. Convection‐enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol 2014, 24:117–127.
Xing, WK, Shao, C, Qi, ZY, Yang, C, Wang, Z. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta‐analysis. Drug Des Devel Ther 2015, 9:3341–3348.
Zhang, YD, Dai, RY, Chen, Z, Zhang, YH, He, XZ, Zhou, J. Efficacy and safety of carmustine wafers in the treatment of glioblastoma multiforme: a systematic review. Turk Neurosurg 2014, 24:639–645.
Howard, MA 3rd, Gross, A, Grady, MS, Langer, RS, Mathiowitz, E, Winn, HR, Mayberg, MR. Intracerebral drug delivery in rats with lesion‐induced memory deficits. J Neurosurg 1989, 71:105–112.
Pean, J, Menei, P, Morel, O, Montero‐Menei, CN, Benoit, J. Intraseptal implantation of NGF‐releasing microspheres promote the survival of axotomized cholinergic neurons. Biomaterials 2000, 21:2097–2101.
Gu, H, Song, C, Long, D, Mei, L, Sun, H. Controlled release of recombinant human nerve growth factor (rhNGF) from poly[(lactic acid)‐co‐(glycolic acid)] microspheres for the treatment of neurodegenerative disorders. Polym Int 2007, 56:1272–1280.
Arica, B, Kas, HS, Moghdam, A, Akalan, N, Hincal, AA. Carbidopa/levodopa‐loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats. J Control Release 2005, 102:689–697.
McRae, A, Dahlstrom, A. Transmitter‐loaded polymeric microspheres induce regrowth of dopaminergic nerve terminals in striata of rats with 6‐OH‐DA induced parkinsonism. Neurochem Int 1993, 25:27–33.
Yurek, DM, Flectcher, AM, Kowalczyk, TH, Padegimas, L, Cooper, MJ. Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons. Cell Transplant 2009, 18:1183–1196.
Bourdenx, M, Daniel, J, Genin, E, Soria, FN, Blanchard‐Desce, M, Bezard, E, Dehay, B. Nanoparticles restore lysosomal acidification defects: implication for Parkinson and other lysosomal‐related diseases. Autophagy 2016, 12:472–483.
Hyun, H, Won, YW, Kim, KM, Lee, J, Lee, M, Kim, YH. Therapeutic effects of a reducible poly (oligo‐D‐arginine) carrier with the heme oxygenase‐1 gene in the treatment of hypoxic‐ischemic brain injury. Biomaterials 2010, 31:9128–9134.
Kim, ID, Lim, CM, Kim, JB, Nam, HY, Nam, K, Kim, SW, Park, JS, Lee, JK. Neuroprotection by biodegradable PAMAM ester (e‐PAM‐R)‐mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release 2010, 142:422–430.
Kim, ID, Shin, JH, Kim, SW, Choi, S, Ahn, J, Han, PL, Park, JS, Lee, JK. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 2012, 20:829–839.
Mastorakos, P, Zhang, C, Berry, S, Oh, Y, Lee, S, Eberhart, CG, Woodworth, GF, Suk, JS, Hanes, J. Highly PEGylated DNA nanoparticles provide uniform and widespread gene transfer in the brain. Adv Healthc Mater 2015, 4:1023–1033.
Saito, R, Krauze, MT, Noble, CO, Tamas, M, Drummond, DC, Kirpotin, DB, Berger, MS, Park, JW, Bankiewicz, KS. Tissue affinity of the infusate affects the distribution volume during convection‐enhanced delivery into rodent brains: implications for local drug delivery. J Neurosci Methods 2006, 154:225–232.
Neeves, KB, Sawyer, AJ, Foley, CP, Saltzman, WM, Olbricht, WL. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res 2007, 1180:121–132.
Sawyer, AJ, Saucier‐Sawyer, JK, Booth, CJ, Liu, J, Patel, T, Piepmeier, JM, Saltzman, WM. Convection‐enhanced delivery of camptothecin‐loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res 2011, 1:34–42.
Saucier‐Sawyer, JK, Seo, YE, Gaudin, A, Quijano, E, Song, E, Sawyer, AJ, Deng, Y, Huttner, A, Saltzman, WM. Distribution of polymer nanoparticles by convection‐enhanced delivery to brain tumors. J Control Release 2016, 232:103–112.
Lemke, J, von Karstedt, S, Zinngrebe, J, Walczak, H. Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014, 21:1350–1364.
Ksendzovsky, A, Walbridge, S, Saunders, RC, Asthagiri, AR, Heiss, JD, Lonser, RR. Convection‐enhanced delivery of M13 bacteriophage to the brain. J Neurosurg 2012, 117:197–203.
Soderquist, RG, Mahoney, MJ. Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Expert Opin Drug Deliv 2010, 7:285–293.
Shyam, R, Ren, Y, Lee, J, Braunstein, KE, Mao, HQ, Wong, PC. Intraventricular delivery of siRNA nanoparticles to the central nervous system. Mol Ther Nucleic Acids 2015, 4:e242.
Dengler, EC, Liu, J, Kerwin, A, Torres, S, Olcott, CM, Bowman, BN, Armijo, L, Gentry, K, Wilkerson, J, Wallace, J, et al. Mesoporous silica‐supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J Control Release 2013, 168:209–224.
Tian, XH, Wang, ZG, Meng, H, Wang, YH, Feng, W, Wei, F, Huang, ZC, Lin, XN, Ren, L. Tat peptide‐decorated gelatin‐siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm. Int J Nanomedicine 2013, 8:865–876.
Lee, HJ, Park, J, Yoon, OJ, Kim, HW, Lee do, Y, Kim do, H, Lee, WB, Lee, NE, Bonventre, JV, Kim, SS. Amine‐modified single‐walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 2011, 6:121–125.
Dai, H, Navath, RS, Balakrishnan, B, Guru, BR, Mishra, MK, Romero, R, Kannan, RM, Kannan, S. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine (Lond) 2010, 5:1317–1329.
Ong, WY, Shalini, SM, Costantino, L. Nose‐to‐brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 2014, 21:4247–4256.
Klementieva, O, Aso, E, Filippini, D, Benseny‐Cases, N, Carmona, M, Juves, S, Appelhans, D, Cladera, J, Ferrer, I. Effect of poly(propylene imine) glycodendrimers on β‐amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer`s disease. Biomacromolecules 2013, 14:3570–3580.
Klementieva, O, Benseny‐Cases, N, Gella, A, Appelhans, D, Voit, B, Cladera, J. Dense shell glycodendrimers as potential nontoxic anti‐amyloidogenic agents in Alzheimer`s disease. Amyloid‐dendrimer aggregates morphology and cell toxicity. Biomacromolecules 2011, 12:3903–3909.
Zhang, C, Chen, J, Feng, C, Shao, X, Liu, Q, Zhang, Q, Pang, Z, Jiang, X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer`s disease. Int J Pharm 2014, 461:192–202.
Jafarieh, O, Md, S, Ali, M, Baboota, S, Sahni, JK, Kumari, B, Bhatnagar, A, Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole‐loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 2015, 41:1674–1681.
Pardeshi, CV, Belgamwar, VS, Tekade, AR, Surana, SJ. Novel surface modified polymer‐lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med 2013, 24:2101–2115.
Pardeshi, CV, Rajput, PV, Belgamwar, VS, Tekade, AR, Surana, SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 2013, 20:47–56.
Haney, MJ, Klyachko, NL, Zhao, Y, Gupta, R, Plotnikova, EG, He, Z, Patel, T, Piroyan, A, Sokolsky, M, Kabanov, AV, et al. Exosomes as drug delivery vehicles for Parkinson`s disease therapy. J Control Release 2015, 207:18–30.
Lu, CT, Jin, RR, Jiang, YN, Lin, Q, Yu, WZ, Mao, KL, Tian, FR, Zhao, YP, Zhao, YZ. Gelatin nanoparticle‐mediated intranasal delivery of substance P protects against 6‐hydroxydopamine‐induced apoptosis: an in vitro and in vivo study. Drug Des Devel Ther 2015, 9:1955–1962.
Wen, Z, Yan, Z, Hu, K, Pang, Z, Cheng, X, Guo, L, Zhang, Q, Jiang, X, Fang, L, Lai, R. Odorranalectin‐conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson`s disease following intranasal administration. J Control Release 2011, 151:131–138.
Kubek, MJ, Domb, AJ, Veronesi, MC. Attenuation of kindled seizures by intranasal delivery of neuropeptide‐loaded nanoparticles. Neurotherapeutics 2009, 6:359–371.
Veronesi, MC, Aldouby, Y, Domb, AJ, Kubek, MJ. Thyrotropin‐releasing hormone d,l polylactide nanoparticles (TRH‐NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 2009, 1303:151–160.
Wurm, FR, Weiss, CK. Nanoparticles from renewable polymers. Front Chem 2014, 2:49.
Haque, S, Md, S, Fazil, M, Kumar, M, Sahni, JK, Ali, J, Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym 2012, 89:72–79.
Singh, D, Rashid, M, Hallan, SS, Mehra, NK, Prakash, A, Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride‐loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol 2016, 44:865–877.
Mahajan, HS, Mahajan, MS, Nerkar, PP, Agrawal, A. Nanoemulsion‐based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2014, 21:148–154.
Newland, B, Dunnett, SB, Dowd, E. Targeting delivery in Parkinson`s disease. Drug Discov Today 2016. In press. doi: 10.1016/j.drudis.2016.06.003.
Zhang, F, Nance, E, Alnasser, Y, Kannan, R, Kannan, S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016, 13:65.