Baer, DR, Engelhard, MH, Johnson, GE, Laskin, J, Lai, J, Mueller, K, Munusamy, P, Thevuthasan, S, Wang, H, Washton, N, et al. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 2013, 31:50820.
Liu, M, Zhang, J, Shan, W, Huang, Y. Developments of mucus penetrating nanoparticles. Asian J Pharm Sci 2015, 10:275–282.
Lai, SK, Wang, Y‐Y, Hanes, J. Mucus‐penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009, 61:158–171.
Mansfield, EDH, Sillence, K, Hole, P, Williams, AC, Khutoryanskiy, VV. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale 2015, 7:13671–13679.
Shilo, M, Sharon, A, Baranes, K, Motiei, M, Lellouche, J‐PM, Popovtzer, R. The effect of nanoparticle size on the probability to cross the blood–brain barrier: an in‐vitro endothelial cell model. J Nanobiotechnol 2015, 13:19.
Koffie, RM, Farrar, CT, Saidi, L‐J, William, CM, Hyman, BT, Spires‐Jones, TL. Nanoparticles enhance brain delivery of blood–brain barrier—impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA 2011, 108:18837–18842.
Gao, K, Jiang, X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80‐coated polybutylcyanoacrylate nanoparticles. Int J Pharm 2006, 310:213–219.
Sharma, HS, Hussain, S, Schlager, J, Ali, SF, Sharma, A. Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. In: Czernicki, Z, Baethmann, A, Ito, U, Katayama, Y, Kuroiwa, T, Mendelow, D, eds. Brain Edema XIV. Vienna: Springer; 2010.
Chen, Y‐C, Hsieh, W‐Y, Lee, W‐F, Zeng, D‐T. Effects of surface modification of PLGA‐PEG‐PLGA nanoparticles on loperamide delivery efficiency across the blood–brain barrier. J Biomater Appl 2013, 27:909–922.
Cheng, Y, Dai, Q, Morshed, RA, Fan, X, Wegscheid, ML, Wainwright, DA, Han, Y, Zhang, L, Auffinger, B, Tobias, AL, et al. Blood–brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 2014, 10:5137–5150.
Lin, Z, Monteiro‐Riviere, NA, Riviere, JE. Pharmacokinetics of metallic nanoparticles: pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015, 7:189–217.
Huang, J, Bu, L, Xie, J, Chen, K, Cheng, Z, Li, X, Chen, X. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone‐coated iron oxide nanoparticles. ACS Nano 2010, 4:7151–7160.
He, C, Hu, Y, Yin, L, Tang, C, Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31:3657–3666.
Yin Win, K, Feng, S‐S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26:2713–2722.
Carnovale, C, Bryant, G, Shukla, R, Bansal, V. Size, shape and surface chemistry of nano‐gold dictate its cellular interactions, uptake and toxicity. Prog Mater Sci 2016, 83:152–190.
Osborne, OJ, Lin, S, Chang, CH, Ji, Z, Yu, X, Wang, X, Lin, S, Xia, T, Nel, AE. Organ‐specific and size‐dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 2015, 9:9573–9584.
Gliga, AR, Skoglund, S, Odnevall Wallinder, I, Fadeel, B, Karlsson, HL. Size‐dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 2014, 11:11.
Park, MVDZ, Neigh, AM, Vermeulen, JP, de la Fonteyne, LJJ, Verharen, HW, Briedé, JJ, van Loveren, H, de Jong, WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32:9810–9817.
Hinderliter, PM, Minard, KR, Orr, G, Chrisler, WB, Thrall, BD, Pounds, JG, Teeguarden, JG. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 2010, 7:1–20.
DeLoid, G, Cohen, JM, Darrah, T, Derk, R, Rojanasakul, L, Pyrgiotakis, G, Wohlleben, W, Demokritou, P. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 2014, 5:3514.
Cohen, JM, Teeguarden, JG, Demokritou, P. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 2014, 11:20.
Watson, CY, DeLoid, GM, Pal, A, Demokritou, P. Buoyant nanoparticles: implications for nano‐biointeractions in cellular studies. Small 2016, 12:3172–3180.
DeLoid, GM, Cohen, JM, Pyrgiotakis, G, Pirela, SV, Pal, A, Liu, J, Srebric, J, Demokritou, P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol 2015, 12:32.
Cohen, J, DeLoid, G, Pyrgiotakis, G, Demokritou, P. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 2013, 7:417–431.
Pal, AK, Bello, D, Cohen, J, Demokritou, P. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 2015, 9:871–885.
Liu, R, Liu, HH, Ji, Z, Chang, CH, Xia, T, Nel, AE, Cohen, Y. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model. ACS Nano 2015, 9:9303–9313.
Zhang, H, Burnum, KE, Luna, ML, Petritis, BO, Kim, J‐S, Qian, W‐J, Moore, RJ, Heredia‐Langner, A, Webb‐Robertson, B‐JM, Thrall, BD, et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 2011, 11:4569–4577.
Huang, R, Carney, RP, Stellacci, F, Lau, BLT. Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 2013, 5:6928–6935.
Huang, R, Carney, RP, Ikuma, K, Stellacci, F, Lau, BLT. Effects of surface compositional and structural heterogeneity on nanoparticle–protein interactions: different protein configurations. ACS Nano 2014, 8:5402–5412.
Yadav, I, Aswal, VK, Kohlbrecher, J. Size‐dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins. Phys Rev E 2016, 93:52601.
Zhang, H, Ji, Z, Xia, T, Meng, H, Low‐Kam, C, Liu, R, Pokhrel, S, Lin, S, Wang, X, Liao, Y‐P, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 2012, 6:4349–4368.
Kurtz‐Chalot, A, Klein, JP, Pourchez, J, Boudard, D, Bin, V, Alcantara, GB, Martini, M, Cottier, M, Forest, V. Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity. J Nanopart Res 2014, 16:2738.
Liu, X, Huang, N, Li, H, Jin, Q, Ji, J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 2013, 29:9138–9148.
Chen, R, Ratnikova, TA, Stone, MB, Lin, S, Lard, M, Huang, G, Hudson, JS, Ke, PC. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 2010, 6:612–617.
Sayes, CM, Fortner, JD, Guo, W, Lyon, D, Boyd, AM, Ausman, KD, Tao, YJ, Sitharaman, B, Wilson, LJ, Hughes, JB, et al. The differential cytotoxicity of water‐soluble fullerenes. Nano Lett 2004, 4:1881–1887.
Podila, R, Chen, R, Ke, PC, Brown, JM, Rao, AM. Effects of surface functional groups on the formation of nanoparticle‐protein corona. Appl Phys Lett 2012, 101:263701.
Hu, G, Jiao, B, Shi, X, Valle, RP, Fan, Q, Zuo, YY. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano 2013, 7:10525–10533.
Ashby, J, Pan, S, Zhong, W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces 2014, 6:15412–15419.
Ahmad Khanbeigi, R, Abelha, TF, Woods, A, Rastoin, O, Harvey, RD, Jones, M‐C, Forbes, B, Green, MA, Collins, H, Dailey, LA. Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells. Biomacromolecules 2015, 16:733–742.
Mahmoudi, M, Serpooshan, V. Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 2011, 115:18275–18283.
Ryman‐Rasmussen, JP, Riviere, JE, Monteiro‐Riviere, NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 2007, 127:143–153.
Arnida, J‐AMM, Ray, A, Peterson, CM, Ghandehari, H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011, 77:417–423.
Huang, C, Zhang, Y, Yuan, H, Gao, H, Zhang, S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett 2013, 13:4546–4550.
Chithrani, BD, Chan, WCW. Elucidating the mechanism of cellular uptake and removal of protein‐coated gold nanoparticles of different sizes and shapes. Nano Lett 2007, 7:1542–1550.
Li, X. Size and shape effects on receptor‐mediated endocytosis of nanoparticles. J Appl Phys 2012, 111:024702.
Samberg, ME, Oldenburg, SJ, Monteiro‐Riviere, NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 2009, 118:407–413.
Gilbert, B, Ono, RK, Ching, KA, Kim, CS. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 2009, 339:285–295.
Li, X, Lenhart, JJ. Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 2012, 46:5378–5386.
Bian, S‐W, Mudunkotuwa, IA, Rupasinghe, T, Grassian, VH. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27:6059–6068.
Pettibone, JM, Cwiertny, DM, Scherer, M, Grassian, VH. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 2008, 24:6659–6667.
Wen, Y, Geitner, NK, Chen, R, Ding, F, Chen, P, Andorfer, RE, Govindan, PN, Ke, PC. Binding of cytoskeletal proteins with silver nanoparticles. RSC Adv 2013, 3:22002–22007.
Zhang, W, Yao, Y, Sullivan, N, Chen, Y. Modeling the primary size effects of citrate‐coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 2011, 45:4422–4428.
Martin, MN, Allen, AJ, MacCuspie, RI, Hackley, VA. Dissolution, agglomerate morphology, and stability limits of protein‐coated silver nanoparticles. Langmuir 2014, 30:11442–11452.
Bolea, E, Jiménez‐Lamana, J, Laborda, F, Abad‐Álvaro, I, Bladé, C, Arola, L, Castillo, JR. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF‐UV–Vis‐ICPMS: application to nanotoxicity tests. Analyst 2014, 139:914–922.
Liu, J, Wang, Z, Liu, FD, Kane, AB, Hurt, RH. Chemical transformations of nanosilver in biological environments. ACS Nano 2012, 6:9887–9899.
Bushell, GC, Yan, YD, Woodfield, D, Raper, J, Amal, R. On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci 2002, 95:1–50.
Cormode, DP, Skajaa, T, van Schooneveld, MM, Koole, R, Jarzyna, P, Lobatto, ME, Calcagno, C, Barazza, A, Gordon, RE, Zanzonico, P, et al. Nanocrystal core high‐density lipoproteins: a multimodality contrast agent platform. Nano Lett 2008, 8:3715–3723.
Verma, A, Uzun, O, Hu, Y, Hu, Y, Han, H‐S, Watson, N, Chen, S, Irvine, DJ, Stellacci, F. Surface‐structure‐regulated cell‐membrane penetration by monolayer‐protected nanoparticles. Nat Mater 2008, 7:588–595.
Shah, NB, Vercellotti, GM, White, JG, Fegan, A, Wagner, CR, Bischof, JC. Blood–nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharm 2012, 9:2146–2155.
Bychkova, AV, Sorokina, ON, Kovarskii, AL, Leonova, VB, Rozenfel`d, MA. Interaction between blood plasma proteins and magnetite nanoparticles. Colloid J 2010, 72:696–702.
Deng, ZJ, Mortimer, G, Schiller, T, Musumeci, A, Martin, D, Minchin, RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009, 20:455101.
Dobrovolskaia, MA, Patri, AK, Zheng, J, Clogston, JD, Ayub, N, Aggarwal, P, Neun, BW, Hall, JB, McNeil, SE. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 2009, 5:106–117.
Aggarwal, P, Hall, JB, McLeland, CB, Dobrovolskaia, MA, McNeil, SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009, 61:428–437.
Tang, BC, Dawson, M, Lai, SK, Wang, Y‐Y, Suk, JS, Yang, M, Zeitlin, P, Boyle, MP, Fu, J, Hanes, J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 2009, 106:19268–19273.
Wang, X, Katwa, P, Podila, R, Chen, P, Ke, PC, Rao, AM, Walters, DM, Wingard, CJ, Brown, JM. Multi‐walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 2011, 8:24.
Kapralov, AA, Feng, WH, Amoscato, AA, Yanamala, N, Balasubramanian, K, Winnica, DE, Kisin, ER, Kotchey, GP, Gou, P, Sparvero, LJ, et al. Adsorption of surfactant lipids by single‐walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 2012, 6:4147–4156.
Lartigue, L, Wilhelm, C, Servais, J, Factor, C, Dencausse, A, Bacri, J‐C, Luciani, N, Gazeau, F. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 2012, 6:2665–2678.
Mirshafiee, V, Kim, R, Park, S, Mahmoudi, M, Kraft, ML. Impact of protein pre‐coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 2016, 75:295–304.
Ritz, S, Schöttler, S, Kotman, N, Baier, G, Musyanovych, A, Kuharev, J, Landfester, K, Schild, H, Jahn, O, Tenzer, S, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16:1311–1321.
Zhang, Z, Wang, C, Zha, Y, Hu, W, Gao, Z, Zang, Y, Chen, J, Zhang, J, Dong, L. Corona‐directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 2015, 9:2405–2419.
Caracciolo, G, Cardarelli, F, Pozzi, D, Salomone, F, Maccari, G, Bardi, G, Capriotti, AL, Cavaliere, C, Papi, M, Laganà, A. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2‐dioleoyl‐3‐trimethylammonium propane/DNA nanoparticles. ACS Appl Mater Interfaces 2013, 5:13171–13179.
Schäffler, M, Sousa, F, Wenk, A, Sitia, L, Hirn, S, Schleh, C, Haberl, N, Violatto, M, Canovi, M, Andreozzi, P, et al. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 2014, 35:3455–3466.
Prapainop, K, Witter, DP, Wentworth, P. A chemical approach for cell‐specific targeting of nanomaterials: small‐molecule‐initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 2012, 134:4100–4103.
Monteiro‐Riviere, NA, Samberg, ME, Oldenburg, SJ, Riviere, JE. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: Implications for in vitro to in vivo extrapolations? Toxicol Lett 2013, 220:286–293.
Salvati, A, Pitek, AS, Monopoli, MP, Prapainop, K, Bombelli, FB, Hristov, DR, Kelly, PM, Åberg, C, Mahon, E, Dawson, KA. Transferrin‐functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013, 8:137–143.
Caracciolo, G, Palchetti, S, Colapicchioni, V, Digiacomo, L, Pozzi, D, Capriotti, AL, La Barbera, G, Laganà, A. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir 2015, 31:10764–10773.
Schöttler, S, Becker, G, Winzen, S, Steinbach, T, Mohr, K, Landfester, K, Mailänder, V, Wurm, FR. Protein adsorption is required for stealth effect of poly(ethylene glycol)‐ and poly(phosphoester)‐coated nanocarriers. Nat Nanotechnol 2016, 11:372–377.
Nowinski, AK, White, AD, Keefe, AJ, Jiang, S. Biologically inspired stealth peptide‐capped gold nanoparticles. Langmuir 2014, 30:1864–1870.
Tenzer, S, Docter, D, Kuharev, J, Musyanovych, A, Fetz, V, Hecht, R, Schlenk, F, Fischer, D, Kiouptsi, K, Reinhardt, C, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013, 8:772–781.
Hajipour, MJ, Raheb, J, Akhavan, O, Arjmand, S, Mashinchian, O, Rahman, M, Abdolahad, M, Serpooshan, V, Laurent, S, Mahmoudi, M. Personalized disease‐specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 2015, 7:8978–8994.
Vroman, L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 1962, 196:476–477.
Vroman, L, Adams, AL, Fischer, GC, Munoz, PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55:156–159.
Vilaseca, P, Dawson, KA, Franzese, G. Understanding and modulating the competitive surface‐adsorption of proteins through coarse‐grained molecular dynamics simulations. Soft Matter 2013, 9:6978–6985.
Casals, E, Pfaller, T, Duschl, A, Oostingh, GJ, Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4:3623–3632.
Casals, E, Pfaller, T, Duschl, A, Oostingh, GJ, Puntes, VF. Hardening of the nanoparticle‐protein corona in metal (Au, Ag) and oxide (Fe(3) O(4) , CoO, and CeO(2)) nanoparticles. Small 2011, 7:1–8.
Darabi Sahneh, F, Scoglio, C, Riviere, J. Dynamics of nanoparticle‐protein corona complex formation: analytical results from population balance equations. PLoS One 2013, 8:e64690.
Lundqvist, M, Stigler, J, Cedervall, T, Berggård, T, Flanagan, MB, Lynch, I, Elia, G, Dawson, K. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 2011, 5:7503–7509.
Riviere, JE, Scoglio, C, Sahneh, FD, Monteiro‐Riviere, NA. Computational approaches and metrics required for formulating biologically realistic nanomaterial pharmacokinetic models. Comput Sci Discov 2013, 6:14005.
Sahneh, FD, Scoglio, CM, Monteiro‐Riviere, NA, Riviere, JE. Predicting the impact of biocorona formation kinetics on interspecies extrapolations of nanoparticle biodistribution modeling. Nanomedicine 2014, 10:25–33.
Pecora, R, ed. Dynamic Light Scattering. Boston, MA: Springer; 1985.
Chen, R, Choudhary, P, Schurr, RN, Bhattacharya, P, Brown, JM, Ke, PC. Interaction of lipid vesicle with silver nanoparticle‐serum albumin protein corona. Appl Phys Lett 2012, 100:13703.
Bhattacharya, P, Kim, SH, Chen, P, Chen, R, Spuches, AM, Brown, JM, Lamm, MH, Ke, PC. Dendrimer–fullerenol soft‐condensed nanoassembly. J Phys Chem C 2012, 116:15775–15781.
Geitner, NK, Bhattacharya, P, Steele, M, Chen, R, Ladner, DA, Ke, PC. Understanding dendritic polymer–hydrocarbon interactions for oil dispersion. RSC Adv 2012, 2:9371–9375.
Wang, B, Seabrook, SA, Nedumpully‐Govindan, P, Chen, P, Yin, H, Waddington, L, Epa, VC, Winkler, DA, Kirby, JK, Ding, F, et al. Thermostability and reversibility of silver nanoparticle–protein binding. Phys Chem Chem Phys 2014, 17:1728–1739.
Gurzov, EN, Wang, B, Pilkington, EH, Chen, P, Kakinen, A, Stanley, WJ, Litwak, SA, Hanssen, EG, Davis, TP, Ding, F, et al. Inhibition of hIAPP amyloid aggregation and pancreatic β‐cell toxicity by OH‐terminated PAMAM dendrimer. Small 2016, 12:1615–1626.
Sikora, A, Shard, AG, Minelli, C. Size and ζ‐potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir 2016, 32:2216–2224.
Pitek, AS, O`Connell, D, Mahon, E, Monopoli, MP, Baldelli Bombelli, F, Dawson, KA. Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One 2012, 7:e40685.
Sasidharan, A, Riviere, JE, Monteiro‐Riviere, NA. Gold and silver nanoparticle interactions with human proteins: impact and implications in biocorona formation. J Mater Chem B 2015, 3:2075–2082.
Hunter, RJ. Zeta Potential in Colloid Science: Principles and Applications. San Diego, CA: Academic Press; 2013.
Nedumpully‐Govindan, P, Kakinen, A, Pilkington, EH, Davis, TP, Chun Ke, P, Ding, F. Stabilizing off‐pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep 2016, 6:19463.
Ries, J, Schwille, P. Fluorescence correlation spectroscopy. Bioessays 2012, 34:361–368.
Milani, S, Bombelli, FB, Pitek, AS, Dawson, KA, Rädler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 2012, 6:2532–2541.
Monopoli, MP, Walczyk, D, Campbell, A, Elia, G, Lynch, I, Baldelli Bombelli, F, Dawson, KA. Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011, 133:2525–2534.
Laidlaw, I, Steinmetz, M. Introduction to differential sedimentation. In: Scott, DJ, Harding, SE, Rowe, AJ, eds. Analytical Ultracentrifugation: Techniques and Methods. Cambridge: Royal Society of Chemistry; 2005.
Lakowicz, JR, ed. Quenching of fluorescence. In: Principles of Fluorescence Spectroscopy. New York: Springer; 2006.
Chen, R, Radic, S, Choudhary, P, Ledwell, KG, Huang, G, Brown, JM, Ke, PC. Formation and cell translocation of carbon nanotube‐fibrinogen protein corona. Appl Phys Lett 2012, 101:133702.
Sekar, G, Mukherjee, A, Chandrasekaran, N. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi‐walled carbon nanotubes. Colloids Surf B Biointerfaces 2015, 128:315–321.
Devi, LB, Das, SK, Mandal, AB. Impact of surface functionalization of AgNPs on binding and conformational change of hemoglobin (Hb) and hemolytic behavior. J Phys Chem C 2014, 118:29739–29749.
Vaishanav, SK, Chandraker, K, Korram, J, Nagwanshi, R, Ghosh, KK, Satnami, ML. Protein nanoparticle interaction: a spectrophotometric approach for adsorption kinetics and binding studies. J Mol Struct 2016, 1117:300–310.
Mangaiyarkarasi, R, Chinnathambi, S, Aruna, P, Ganesan, S. Synthesis of 5‐fluorouracil conjugated LaF3:Tb3+/PEG‐COOH nanoparticles and its studies on the interaction with bovine serum albumin: spectroscopic approach. J Nanopart Res 2015, 17:1–13.
Comby, S, Gunnlaugsson, T. Luminescent lanthanide‐functionalized gold nanoparticles: exploiting the interaction with bovine serum albumin for potential sensing applications. ACS Nano 2011, 5:7184–7197.
Shang, L, Brandholt, S, Stockmar, F, Trouillet, V. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 2012, 8:661–665.
Li, Y, Budamagunta, MS, Luo, J, Xiao, W, Voss, JC, Lam, KS. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano 2012, 6:9485–9495.
Shang, L, Dörlich, RM, Trouillet, V, Bruns, M, Ulrich, NG. Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res 2012, 5:531–542.
Shang, L, Yang, L, Seiter, J, Heinle, M, Brenner‐Weiss, G, Gerthsen, D, Nienhaus, GU. Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Adv Mater Interfaces 2014, 1:1–10.
Jang, S, Newton, MD, Silbey, RJ. Multichromophoric förster resonance energy transfer. Phys Rev Lett 2004, 92:218301.
Medintz, I, Hildebrandt, N. FRET—Förster Resonance Energy Transfer: From Theory to Applications. Hoboken, New Jersey: John Wiley %26 Sons; 2013.
Wang, J, Yin, T, Huang, F, Song, Y, An, Y, Zhang, Z, Shi, L. Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using förster resonance energy transfer. ACS Appl Mater Interfaces 2015, 7:10238–10249.
Boeneman, K, Deschamps, JR, Buckhout‐White, S, Prasuhn, DE, Blanco‐Canosa, JB, Dawson, PE, Stewart, MH, Susumu, K, Goldman, ER, Ancona, M, et al. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. ACS Nano 2010, 4:7253–7266.
Colthup, NB, Daly, LH, Wiberley, SE. Introduction to Infrared and Raman Spectroscopy. 3rd ed. London: Academic Press; 2012.
Sengupta, B, Gregory, WE, Zhu, J, Dasetty, S, Karakaya, M, Brown, JM, Rao, AM, Barrows, JK, Sarupria, S, Podila, R. Influence of carbon nanomaterial defects on the formation of protein corona. RSC Adv 2015, 5:82395–82402.
Radic, S, Geitner, NK, Podila, R, Käkinen, A, Chen, P, Ke, PC, Ding, F. Competitive binding of natural amphiphiles with graphene derivatives. Sci Rep 2013, 3:2273.
Yigit, MV, Zhu, L, Ifediba, MA, Zhang, Y, Carr, K, Moore, A, Medarova, Z. Noninvasive MRI‐SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 2011, 5:1056–1066.
Cárdenas, B, Sánchez‐Obrero, G, Madueño, R, Sevilla, JM, Blázquez, M, Pineda, T. Influence of the global charge of the protein on the stability of lysozyme–AuNP bioconjugates. J Phys Chem C 2014, 118:22274–22283.
Whitmore, L, Wallace, BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008, 89:392–400.
Bootharaju, MS, Pradeep, T. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 2012, 28:2671–2679.
Serra, A, Filippo, E, Re, M, Palmisano, M, Vittori‐Antisari, M, Buccolieri, A, Manno, D. Non‐functionalized silver nanoparticles for a localized surface plasmon resonance‐based glucose sensor. Nanotechnology 2009, 20:165501.
Vongsvivut, J, Robertson, EG, McNaughton, D. Surface‐enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc 2010, 41:1137–1148.
Ernest, V, Sekar, G, Mukherjee, A, Chandrasekaran, N. Studies on the effect of AgNP binding on α‐amylase structure of porcine pancreas and Bacillus subtilis by multi‐spectroscopic methods. J Lumin 2014, 146:263–268.
Mansur, HS, Mansur, AAP, Curti, E, Almeida, MVD. Functionalized‐chitosan/quantum dot nano‐hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 2013, 1:1696–1711.
Wang, J, Jensen, UB, Jensen, GV, Shipovskov, S, Balakrishnan, VS, Otzen, D, Pedersen, JS, Besenbacher, F, Sutherland, DS. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett 2011, 11:4985–4991.
Liu, W, Rose, J, Plantevin, S, Auffan, M, Bottero, J‐Y, Vidaud, C. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 2013, 5:1658–1668.
Chen, P, Seabrook, SA, Epa, VC, Kurabayashi, K, Barnard, AS, Winkler, DA, Kirby, JK, Ke, PC. Contrasting effects of nanoparticle binding on protein denaturation. J Phys Chem C 2014, 118:22069–22078.
Radic, S, Nedumpully‐Govindan, P, Chen, R, Salonen, E, Brown, JM, Ke, PC, Ding, F. Effect of fullerenol surface chemistry on nanoparticle binding‐induced protein misfolding. Nanoscale 2014, 6:8340–8349.
Li, R, Chen, R, Chen, P, Wen, Y, Ke, PC, Cho, SS. Computational and experimental characterizations of silver nanoparticle–apolipoprotein biocorona. J Phys Chem B 2013, 117:13451–13456.
Wang, L, Li, J, Pan, J, Jiang, X, Ji, Y, Li, Y, Qu, Y, Zhao, Y, Wu, X, Chen, C. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation‐based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 2013, 135:17359–17368.
Doyle, G, Ashall, B, Galvin, M, Berndt, M, Crosbie, S, Zerulla, D. Mie scattering and surface plasmon based spectroscopy for the detection of nanoparticle–protein interactions. Appl Phys A 2007, 89:351–355.
Balachandran, YL, Girija, S, Selvakumar, R, Tongpim, S, Gutleb, AC, Suriyanarayanan, S. Differently environment stable bio‐silver nanoparticles: study on their optical enhancing and antibacterial properties. PLoS One 2013, 8:e77043.
Shannahan, JH, Brown, JM, Chen, R, Ke, PC, Lai, X, Mitra, S, Witzmann, FA. Comparison of nanotube–protein corona composition in cell culture media. Small 2013, 9:2171–2181.
Caracciolo, G, Pozzi, D, Capriotti, AL, Cavaliere, C, Piovesana, S, Amenitsch, H, Laganà, A. Lipid composition: a “key factor” for the rational manipulation of the liposome–protein corona by liposome design. RSC Adv 2014, 5:5967–5975.
Pozzi, D, Caracciolo, G, Capriotti, AL, Cavaliere, C, La Barbera, G, Anchordoquy, TJ, Laganà, A. Surface chemistry and serum type both determine the nanoparticle–protein corona. J Proteomics 2015, 119:209–217.
Caracciolo, G, Pozzi, D, Candeloro De Sanctis, S, Laura Capriotti, A, Caruso, G, Samperi, R, Laganà, A. Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Appl Phys Lett 2011, 99:033702.
Mortensen, NP, Hurst, GB, Wang, W, Foster, CM, Nallathamby, PD, Retterer, ST. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 2013, 5:6372–6380.
Arvizo, RR, Giri, K, Moyano, D, Miranda, OR, Madden, B, McCormick, DJ, Bhattacharya, R, Rotello, VM, Kocher, J‐P, Mukherjee, P. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles. PLoS One 2012, 7:e33650.
Cedervall, T, Lynch, I, Lindman, S, Berggård, T, Thulin, E, Nilsson, H, Dawson, KA, Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 2007, 104:2050–2055.
Settle, FA, Hites, RA, eds. Gas chromatography mass spectrometry. In: Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall PTR: Upper Saddle River, NJ; 1997.
Wang, S, Zhao, P, Min, G, Fang, G. Multi‐residue determination of pesticides in water using multi‐walled carbon nanotubes solid‐phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 2007, 1165:166–171.
Xia, X‐R, Monteiro‐Riviere, NA, Riviere, JE. An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 2010, 5:671–675.
Xia, XR, Monteiro‐Riviere, NA, Mathur, S, Song, X, Xiao, L, Oldenberg, SJ, Fadeel, B, Riviere, JE. Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 2011, 5:9074–9081.
Bigdeli, A, Palchetti, S, Pozzi, D, Hormozi‐Nezhad, MR, Baldelli Bombelli, F, Caracciolo, G, Mahmoudi, M. Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 2016, 10:3723–3737.
Lewis, EA, Murphy, KP. Isothermal titration calorimetry. In: Nienhaus, GU, ed. Protein–Ligand Interactions. Totowa, NJ: Humana Press; 2005.
Sánchez‐Moreno, P, Buzón, P, Boulaiz, H, Peula‐García, JM, Ortega‐Vinuesa, JL, Luque, I, Salvati, A, Marchal, JA. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules. Biomaterials 2015, 61:266–278.
Eren, NM, Narsimhan, G, Campanella, OH. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano‐bio complexation. Nanoscale 2016, 8:3326–3336.
Shen, J‐W, Wu, T, Wang, Q, Kang, Y. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 2008, 29:3847–3855.
Zuo, G, Zhou, X, Huang, Q, Fang, H, Zhou, R. Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 2011, 115:23323–23328.
Brancolini, G, Kokh, DB, Calzolai, L, Wade, RC, Corni, S. Docking of ubiquitin to gold nanoparticles. ACS Nano 2012, 6:9863–9878.
Brancolini, G, Corazza, A, Vuano, M, Fogolari, F, Mimmi, MC, Bellotti, V, Stoppini, M, Corni, S, Esposito, G. Probing the influence of citrate‐capped gold nanoparticles on an amyloidogenic protein. ACS Nano 2015, 9:2600–2613.
Ratnikova, TA, Govindan, PN, Salonen, E, Ke, PC. In vitro polymerization of microtubules with a fullerene derivative. ACS Nano 2011, 5:6306–6314.
Comer, J, Chen, R, Poblete, H, Vergara‐Jaque, A, Riviere, JE. Predicting adsorption affinities of small molecules on carbon nanotubes using molecular dynamics simulation. ACS Nano 2015, 9:11761–11774.
Ding, F, Radic, S, Chen, R, Chen, P, Geitner, NK, Brown, JM, Ke, PC. Direct observation of a single nanoparticle‐ubiquitin corona formation. Nanoscale 2013, 5:9162–9169.
Riviere, JE, Brooks, JD. Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework. SAR QSAR Environ Res 2007, 18:31–44.
Moss, GP, Dearden, JC, Patel, H, Cronin, MTD. Quantitative structure–permeability relationships (QSPRs) for percutaneous absorption. Toxicol In Vitro 2002, 16:299–317.
Basant, N, Gupta, S, Singh, KP. Predicting toxicities of diverse chemical pesticides in multiple avian species using tree‐based QSAR approaches for regulatory purposes. J Chem Inf Model 2015, 55:1337–1348.
Gramatica, P, Giani, E, Papa, E. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Graph Model 2007, 25:755–766.
Saxena, AK, Schaper, K‐J. QSAR analysis of the time‐ and dose‐dependent anti‐inflammatory in vivo activity of substituted imidazo[1,2‐a]pyridines using artificial neural networks. QSAR Comb Sci 2006, 25:590–597.
Xia, XR, Baynes, RE, Monteiro‐Riviere, NA, Riviere, JE. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. SAR QSAR Environ Res 2007, 18:579–593.
Puzyn, T, Leszczynska, D, Leszczynski, J. Toward the development of “nano‐QSARs”: advances and challenges. Small 2009, 5:2494–2509.
Fourches, D, Pu, D, Tassa, C, Weissleder, R, Shaw, SY, Mumper, RJ, Tropsha, A. Quantitative nanostructure–activity relationship modeling. ACS Nano 2010, 4:5703–5712.
Epa, VC, Burden, FR, Tassa, C, Weissleder, R, Shaw, S, Winkler, DA. Modeling biological activities of nanoparticles. Nano Lett 2012, 12:5808–5812.
Winkler, DA, Mombelli, E, Pietroiusti, A, Tran, L, Worth, A, Fadeel, B, McCall, MJ. Applying quantitative structure‐activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 2013, 313:15–23.
Chau, YT, Yap, CW. Quantitative nanostructure–activity relationship modelling of nanoparticles. RSC Adv 2012, 2:8489–8496.
Walkey, CD, Olsen, JB, Song, F, Liu, R, Guo, H, Olsen, DWH, Cohen, Y, Emili, A, Chan, WCW. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 2014, 8:2439–2455.
Liu, R, Jiang, W, Walkey, CD, Chan, WCW, Cohen, Y. Prediction of nanoparticles‐cell association based on corona proteins and physicochemical properties. Nanoscale 2015, 7:9664–9675.
Abraham, MH. Scales of solute hydrogen‐bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 1993, 22:73–83.
Dehmer, M, Varmuza, K, Bonchev, D. Statistical Modelling of Molecular Descriptors in QSAR/QSPR. Wiley‐Blackwell: Hoboken, NJ; 2012.
Karelson, M. Molecular Descriptors in QSAR/QSPR. Hoboken, NJ: Wiley‐Interscience; 2000.
Chen, R, Zhang, Y, Darabi Sahneh, F, Scoglio, CM, Wohlleben, W, Haase, A, Monteiro‐Riviere, NA, Riviere, JE. Nanoparticle surface characterization and clustering through concentration‐dependent surface adsorption modeling. ACS Nano 2014, 8:9446–9456.
Chen, R, Zhang, Y, Monteiro‐Riviere, NA, Riviere, JE. Quantification of nanoparticle pesticide adsorption: computational approaches based on experimental data. Nanotoxicology 2016, 10:1118–1128.
Lin, Z, Gehring, R, Mochel, JP, Lavé, T, Riviere, JE. Mathematical modeling and simulation in animal health—part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016, 39:421–438.
Li, M, Al‐Jamal, KT, Kostarelos, K, Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010, 4:6303–6317.
Lee, HA, Leavens, TL, Mason, SE, Monteiro‐Riviere, NA, Riviere, JE. Comparison of quantum dot biodistribution with a blood‐flow‐limited physiologically based pharmacokinetic model. Nano Lett 2009, 9:794–799.
Li, D, Johanson, G, Emond, C, Carlander, U, Philbert, M, Jolliet, O. Physiologically based pharmacokinetic modeling of polyethylene glycol‐coated polyacrylamide nanoparticles in rats. Nanotoxicology 2014, 8:128–137.
Bachler, G, von Goetz, N, Hungerbuhler, K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015, 9:373–380.
Lin, Z, Monteiro‐Riviere, NA, Riviere, JE. A physiologically based pharmacokinetic model for polyethylene glycol‐coated gold nanoparticles of different sizes in adult mice. Nanotoxicology 2016, 10:162–172.
Liang, X, Wang, H, Grice, JE, Li, L, Liu, X, Xu, ZP, Roberts, MS. Physiologically based pharmacokinetic model for long‐circulating inorganic nanoparticles. Nano Lett 2016, 16:939–945.
Lin, Z, Monteiro‐Riviere, NA, Kannan, R, Riviere, JE. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine 2015, 11:107–119.