Johnston, APR, Such, GK, Ng, SL, Caruso, F. Challenges facing colloidal delivery systems: from synthesis to the clinic. Curr Opin Colloid 2011, 16:171–181.
Van Dongen, SFM, De Hoog HPM, Peters RJRW, Nallani M, Nolte RJM, Van Hest JCM. Biohybrid polymer capsules. Chem Rev 2009, 109:6212–6274.
Zhang, L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008, 83:761–769.
De Geest, BG, Willart MA, Hammad H, Lambrecht BN, Pollard C, Bogaert P, De Filette M, Saelens X, Vervaet C, Remon JP, et al. Polymeric multilayer capsule‐mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano 2012, 6:2136–2149.
Davis, ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464:1067–1070.
Singh, R, Lillard, JW Jr. Nanoparticle‐based targeted drug delivery. Exp Mol Pathol 2009, 86:215–223.
Canton, I, Battaglia, G. Endocytosis at the nanoscale. Chem Soc Rev 2012, 41:2718–2739.
Kanasty, R, Dorkin, JR, Vegas, A, Anderson, D. Delivery materials for siRNA therapeutics. Nat Mater 2013, 12:967–977.
Pack, DW, Hoffman, AS, Pun, S, Stayton, PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005, 4:581–593.
Zhao, L, Seth A, Wibowo N, Zhao C‐X, Mitter N, Yu C, Middelberg APJ. Nanoparticle vaccines. Vaccine 2014, 32:327–337.
Torchilin, V. Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol 2008, 5:e95–e103.
Leader, B, Baca, QJ, Golan, DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008, 7:21–39.
Shete, HK, Prabhu, RH, Patravale, VB. Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 2014, 14:460–474.
Varkouhi, AK, Scholte, M, Storm, G, Haisma, HJ. Endosomal escape pathways for delivery of biologicals. J Control Release 2011, 151:220–228.
Heath, F, Haria, P, Alexander, C. Varying polymer architecture to deliver drugs. AAPS J 2007, 9:E235–E240.
Wagner, E, Plank, C, Zatloukal, K, Cotten, M, Birnstiel, ML. Influenza virus hemagglutinin HA‐2N‐terminal fusogenic peptides augment gene transfer by transferrin‐polylysine‐DNA complexes: toward a synthetic virus‐like gene‐transfer vehicle. Proc Natl Acad Sci USA 1992, 89:7934–7938.
Erazo‐Oliveras, A, Najjar K, Dayani L, Wang T‐Y, Johnson G a, Pellois J‐P. Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods 2014, 11:861–867.
Kakimoto, S, Hamada T, Komatsu Y, Takagi M, Tanabe T, Azuma H, Shinkai S, Nagasaki T. The conjugation of diphtheria toxin T domain to poly(ethylenimine) based vectors for enhanced endosomal escape during gene transfection. Biomaterials 2009, 30:402–408.
Cross, KJ, Burleigh, LM, Steinhauer, DA. Mechanisms of cell entry by influenza virus. Expert Rev Mol Med 2001, 3:1–18.
Collier, RJ. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 2001, 39:1793–1803.
Wyman, T, Nicol, F, Zelphati, O, Scaria, P. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997, 2960:3008–3017.
Subbarao, NK, Parente, RA, Szoka, FC, Nadasdi, L, Pongracz, K. The pH‐dependent bilayer destabilization by an amphipathic peptide. Biochemistry 1987, 26:2964–2972.
Raoof, M, Mackeyev, Y, Cheney, MA, Wilson, LJ, Curley, SA. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 2012, 33:2952–2960.
Cheung, W, Pontoriero, F, Taratula, O, Chen, AM, He, H. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 2010, 62:633–649.
Probst, CE, Zrazhevskiy, P, Bagalkot, V, Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013, 65:703–718.
Bogart, LK, Pourroy, G, Murphy, CJ, Puntes, V, Pellegrino, T, Rosenblum, D, Peer, D, Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014, 8:3107–3122.
Jiang, Y, Huo, S, Hardie, J, Liang, X, Rotello, VM. Progress and perspective of inorganic nanoparticle‐based siRNA delivery systems. Expert Opin Drug Deliv 2016, 13:547–559.
Cho, YW, Kim, J‐D, Park, K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 2003, 55:721–734.
Yessine, M‐A, Leroux, J‐C. Membrane‐destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev 2004, 56:999–1021.
Nazarenus, M, Zhang Q, Soliman MG, Del Pino P, Pelaz B, Carregal‐Romero S, Rejman J, Rothen‐Rutishauser B, Clift MJD, Zellner R, et al. In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J Nanotechnol 2014, 5:1477–1490.
Sahay, G, Alakhova, DY, Kabanov, AV. Endocytosis of nanomedicines. J Control Release 2010, 145:182–195.
Parton, RG, Simons, K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007, 8:185–194.
Kinchen, JM, Ravichandran, KS. Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 2008, 9:781–795.
Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009, 10:513–525.
Tang, R, Kim CS, Solfiell DJ, Rana S, Mout R, Velázquez‐Delgado EM, Chompoosor A, Jeong Y, Yan B, Zhu ZJ, et al. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle‐stabilized nanocapsules. ACS Nano 2013, 7:6667–6673.
Doherty, GJ, McMahon, HT. Mechanisms of endocytosis. Annu Rev Biochem 2009, 78:857–902.
Kirkham, M, Parton, RG. Clathrin‐independent endocytosis: new insights into caveolae and non‐caveolar lipid raft carriers. Biochim Biophys Acta 2005, 1746:350–363.
Bhattacharyya, S, Singh RD, Pagano R, Robertson JD, Bhattacharya R, Mukherjee P. Switching the targeting pathways of a therapeutic antibody by nanodesign. Angew Chem Int Ed 2012, 51:1563–1567.
Mintern, JD, Percival C, Kamphuis MMJ, Chin WJ, Caruso F, Johnston APR. Targeting dendritic cells: the role of specific receptors in the internalization of polymer capsules. Adv Healthc Mater 2013, 2:940–944.
Lin, GG, Scott, JG. Transferrin receptor‐targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl‐2. Mol Pharm 2009, 6:221–230.
Van Steenis, JH, Van Maarseveen EM, Verbaan FJ, Verrijk R, Crommelin DJA, Storm G, Hennink WE. Preparation and characterization of folate‐targeted pEG‐coated pDMAEMA‐based polyplexes. J Control Release 2003, 87:167–176.
Pereira, P, Pedrosa SS, Wymant JM, Sayers E, Correia A, Vilanova M, Jones AT, Gama FM. siRNA inhibition of endocytic pathways to characterize the cellular uptake mechanisms of folate‐functionalized glycol chitosan nanogels. Mol Pharm 2015, 12:1970–1979.
Zhang, LW, Monteiro‐Riviere, NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 2009, 110:138–155.
Johnston APR. ACS Sensors 2017. DOI: 10.1021/acssensors.6b00725.
Iversen, T‐G, Skotland, T, Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 2011, 6:176–185.
Christoforidis, S, McBride, HM, Burgoyne, RD, Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999, 397:621–625.
Beyenbach, KW, Wieczorek, H. The V‐type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 2006, 209:577–589.
Casey, JR, Grinstein, S, Orlowski, J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010, 11:50–61.
Sheff, DR, Daro, EA, Hull, M, Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 2013, 145:123–139.
Lübke, T, Lobel, P, Sleat, DE. Proteomics of the lysosome. Biochim Biophys Acta 2009, 1793:625–635.
Pinto‐González Howell, D, Krieser, RJ, Eastman, A, Barry, MA. Deoxyribonuclease II is a lysosomal barriers to transfection. Mol Ther 2003, 8:957–963.
Laurent, N, Coninck SW, Mihaylova E, Leontieva E, Wattiaux R, Jadot M. Uptake by rat liver and intracellular fate of plasmid DNA complexed with poly‐L‐lysine or poly‐D‐lysine. FEBS Lett 1999, 443:61–65.
Johnston, APR, Lee, L, Wang, Y, Caruso, F. Controlled degradation of DNA capsules with engineered restriction‐enzyme cut sites. Small 2009, 5:1418–1421.
Roberg, K, Kågedal, K, Ollinger, K. Microinjection of cathepsin d induces caspase‐dependent apoptosis in fibroblasts. Am J Pathol 2002, 161:89–96.
Thomas, TP, Majoros I, Kotlyar A, Mullen D, Holl MMB, Baker JR. Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules 2009, 10:3207–3214.
Schmaljohann, D. Thermo‐ and pH‐responsive polymers in drug delivery. Adv Drug Deliv Rev 2006, 58:1655–1670.
Gao, W, Chan, J, Farokhzad, O. pH‐responsive nanoparticles for drug delivery. Mol Pharm 2010, 7:1913–1920.
Dutta, D, Donaldson, JG. Search for inhibitors of endocytosis. Cell Logist 2012, 2:203–208.
Parton, RG, Howes, MT. Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 2010, 191:439–441.
Hayer, A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A. Caveolin‐1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010, 191:615–629.
Albanese, A, Tang, PS, Chan, WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012, 14:1–16.
Zhao, F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7:1322–1337.
Parhamifar, L, Larsen, AK, Hunter, AC, Andresen, TL, Moghimi, SM. Polycation cytotoxicity: a delicate matter for nucleic acid therapy—focus on polyethylenimine. Soft Matter 2010, 6:4001.
Sohaebuddin, SK, Thevenot, PT, Baker, D, Eaton, JW, Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 2010, 7:1–17.
Nel, AE, Mädler L, Velegol D, Xia T, Hoek EM V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano‐bio interface. Nat Mater 2009, 8:543–557.
Lundqvist, M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008, 105:14265–14270.
Fleischer, CC, Payne, CK. Nanoparticle‐cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 2014, 47:2651–2659.
Salvati, A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA. Transferrin‐functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013, 8:137–143.
Maiorano, G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP. Effects of cell culture media on the dynamic formation of protein‐nanoparticle complexes and influence on the cellular response. ACS Nano 2010, 4:7481–7491.
Gabrielson, NP, Pack, DW. Efficient polyethylenimine‐mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release 2009, 136:54–61.
Rejman, J, Bragonzi, A, Conese, M. Role of clathrin‐ and caveolae‐mediated endocytosis in gene transfer mediated by lipo‐ and polyplexes. Mol Ther 2005, 12:468–474.
Gottstein, C, Wu, G, Wong, BJ, Zasadzinski, JA. Precise quantification of nanoparticle internalization. %3EACS Nano 2013, 7:4933–4945.
Fraser, L, Hamm‐alvarez, SF. Intracellular uptake and trafficking of difluoroboron dibenzoylmethane‐poly(lactic acid) nanoparticles in HeLa cells. ACS Nano 2011, 4:2735–2747.
Braun, GB, Friman T, Pang H‐B, Pallaoro A, de Mendoza TH, Willmore A‐MA, Kotamraju VR, Mann AP, She Z‐G, Sugahara KN, et al. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater 2014, 13:1–19.
Rosenholm, JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2009, 3:197–206.
Liu, H, Johnston, APR. A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Angew Chemie Int Ed 2013, 52:5744–5748.
Mann, SK, Czuba, E, Selby, LI, Such, GK, Angus, P, Johnston, R. Quantifying nanoparticle internalization using a high throughput internalization assay. Pharm Res 2016, 33:2421–2432.
Selby, LI, Kongkatigumjorn, N, Such, GK, Johnston, APR. HD flow cytometry: an improved way to quantify cellular interactions with nanoparticles. Advanced Healthcare Materials 2016, 5:2333–2338. doi:10.1002/adhm.201600445.
Behr, J. The proton sponge: a trick to enter cells the viruses did not exploit. Chim Int J Chem 1997, 2:34–36.
Zelphati, O, Szoka, F. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 1996, 93:11493–11498.
Patil, ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine PAMAM‐OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules 2009, 10:258–266.
Boussif, O, Lezoualc`h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995, 92:7297–7301.
Won, Y‐Y, Sharma, R, Konieczny, SF. Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release 2009, 139:88–93.
Benjaminsen, RV, Mattebjerg, MA, Henriksen, JR, Moghimi, SM, Andresen, TL. The possible ‘proton sponge’ effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 2013, 21:149–157.
Funhoff, AM, van Nostrum CF, Koning GA, Schuurmans‐Nieuwenbroek NME, Crommelin DJA, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules 2004, 5:32–39.
Massignani, M, Lopresti C, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G. Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale. Small 2009, 5:2424–2432.
Lomas, H, Massignani M, Abdullah KA, Canton I, Presti L, Macneil S, Du J, Blanazs A, Madsen J, Armes SP, et al. Non‐cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss 2008, 139:143–159.
White, JM, Whittaker, GR. Fusion of enveloped viruses in endosomes. Traffic 2016, 17:593–614.
Koltover, I, Salditt T, Rädler JO, Safinya CR. An inverted hexagonal phase of cationic liposome‐DNA complexes related to DNA release and delivery. Science 1998, 281:78–81.
Jones, RA, Cheung CY, Black FE, Zia JK, Stayton PS, Hoffman AS, Wilson MR. Poly(2‐alkylacrylic acid) polymers deliver molecules to the cytosol by pH‐sensitive disruption of endosomal vesicles. Biochem J 2003, 372:65–75.
Nakase, I, Kobayashi, S, Futaki, S. Endosome‐disruptive peptides for improving cytosolic delivery of bioactive macromolecules. Biopolymers 2010, 94:763–770.
Li, W, Nicol, F, Szoka, FC. GALA: a designed synthetic pH‐responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 2004, 56:967–985.
Danial, M, Perrier, S, Jolliffe, KA. Effect of the amino acid composition of cyclic peptides on their self‐assembly in lipid bilayers. Org Biomol Chem 2015, 13:2464–2473.
Qian, S, Wang, W, Yang, L, Huang, HW. Structure of the alamethicin pore reconstructed by x‐ray diffraction analysisa. Biophysical journal 2008, 94:3512–3522.
Tian, W, Ma, Y. Insights into the endosomal escape mechanism via investigation of dendrimer–membrane interactions. Soft Matter 2012, 8:6378.
Leroueil, PR, Berry SA, Duthie K, Han G, Rotello VM, McNerny DQ, Baker JR, Orr BG, Banaszak Holl MM. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 2008, 8:420–424.
Hong, S, Leroueil PR, Janus EK, Peters JL, Kober M‐M, Islam MT, Orr BG, Baker JR, Banaszak Holl MM. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 2006, 17:728–734.
Chen, J, Hessler JA, Putchakayala K, Panama BK, Khan DP, Tew GN, Lopatin AN, Baker JRJ, Banaszak Holl MM, Orr BG. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes. J Phys Chem B 2009, 113:11179–11185.
Bieber, T, Meissner, W, Kostin, S, Niemann, A, Elsasser, H‐P. Intracellular route and transcriptional competence of polyethylenimine‐DNA complexes. J Control Release 2002, 82:441–454.
Lee, Y, Johnson, G, Peltier, GC, Pellois, J. A HA2‐fusion tag limits the endosomal release of its protein cargo despite causing endosomal lysis. Biochim Biophys Acta 2011, 1810:752–758.
Turk, B, Turk, V. Lysosomes as ‘suicide bags’ in cell death: myth or reality? J Biol Chem 2009, 284:21783–21787.
Martens, TF, Remaut, K, Demeester, J, De Smedt, SC, Braeckmans, K. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today 2014, 9:344–364. doi:10.1016/j.nantod.2014.04.011.
Convertine, AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, Stayton PS. pH‐responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 2010, 11:2904–2911.
Mishra, S, Webster, P, Davis, ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non‐viral gene delivery particles. Eur J Cell Biol 2004, 83:97–111.
Lu, J, Liong, M, Zink, JI, Tamanoi, F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007, 3:1341–1346.
Panyam, J, Zhou, W‐Z, Prabha, S, Sahoo, SK, Labhasetwar, V. Rapid endo‐lysosomal escape of poly(DL‐lactide‐co‐glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002, 16:1217–1226.
Liu, P, Sun Y, Wang Q, Sun Y, Li H, Duan Y. Intracellular trafficking and cellular uptake mechanism of mPEG‐PLGA‐PLL and mPEG‐PLGA‐PLL‐Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 2014, 35:760–770.
Via, LE, Fratti RA, McFalone M, Pagan‐Ramos E, Deretic D, Deretic V. Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 1998, 905:897–905.
Chikte, S, Panchal, N, Warnes, G. Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytom Part A 2014, 85:169–178.
Chen, JW, Pan, W, D`Souza, MP, August, JT. Lysosome‐associated membrane proteins: characterization of LAMP‐1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 1985, 239:574–586.
Ames, RS, Kost, TA, Condreay, JP. BacMam technology and its application to drug discovery. Expert Opin Drug Discov 2007, 2:1669–1681.
Bivas‐Benita, M, Romeijn, S, Junginger, HE, Borchard, G. PLGA‐PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm 2004, 58:1–6.
Thavarajah, R, Mudimbaimannar, VK, Elisabeth, J, Rao, UK, Ranganathan, K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 2012, 16:400–405.
Wiedenmann, J, Oswald, F, Nienhaus, GU. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 2009, 61:1029–1042.
Lisenbee, CS, Karnik, SK, Trelease, RN. Overexpression and mislocalization of a tail‐anchored GFP redefines the identity of peroxisomal ER. Traffic 2003, 4:491–501.
Maiolo, JR III, Ottinger, EA, Ferrer, M. Specific redistribution of cell‐penetrating peptides from endosomes to the cytoplasm and nucleus upon laser illumination. J Am Chem Soc 2004, 126:15376–15377.
Weinstein, JN, Yoshikami, S, Henkart, P, Blumenthal, R, Hagins, WA. Liposome‐cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 1977, 195:489–492.
Madani, F, Perálvarez‐Marín, A, Gräslund, A. Liposome model systems to study the endosomal escape of cell‐penetrating peptides: transport across phospholipid membranes induced by a proton gradient. J Drug Deliv 2011, 2011:897592.
Funhoff, AM, van Nostrum CF, Lok MC, Kruijtzer JAW, Crommelin DJA, Hennink WE. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. J Control Release 2005, 101:233–246.
El‐Sayed, A, Khalil, IA, Kogure, K, Futaki, S, Harashima, H. Octaarginine‐ and octalysine‐modified nanoparticles have different modes of endosomal escape. J Biol Chem 2008, 283:23450–23461.
Evans, BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH‐responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp 2013:e50166. doi:10.3791/50166.
Wilson, JT, Keller S, Manganiello MJ, Cheng C, Lee C‐C, Opara C, Convertine A, Stayton PS. pH‐responsive nanoparticle vaccines for dual‐delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 2013, 7:3912–3925.
Gujrati, M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid‐based nanoparticles facilitate endosomal escape and reduction‐triggered cytosolic siRNA release. Mol Pharm 2014, 11:2734–2744.
Tomlinson, R, Klee M, Garrett S, Heller J, Duncan R, Brocchini S. Pendent chain functionalized polyacetals that display pH‐dependent degradation: a platform for the development of novel polymer therapeutics. Macromolecules 2002, 35:473–480.
Hu, Y, Atukorale PU, Lu JJ, Moon JJ, Um SH, Cho EC, Wang Y, Chen J, Irvine DJ. Cytosolic delivery mediated via electrostatic surface binding of protein, virus, or siRNA cargos to pH‐responsive core‐shell gel particles. Biomacromolecules 2009, 10:756–765.
Hu, Y, Litwin T, Nagaraja a R, Kwong B, Katz J, Watson N, Irvine DJ. Cytosolic delivery of membrane impermeable molecules in dendritic cells using pH responsive core‐shell nanoparticles. Nano Lett 2007, 7:3056–3064
Bonner, D, Leung C, Chen‐Liang J, Chinghozha L, Langer R, Hammond PT. Intracellular trafficking of polyamidoamine ‐ polyethylene glycol block copolymers in DNA delivery. Bioconjugate 2011, 22:1519–1525.
Su, X, Fricke, J, Kavanagh, D, Irvine, DJ, Chase, C. In vitro and in vivo mRNA delivery using lipid‐enveloped pH‐responsive polymer nanoparticles. Mol Pharm 2011, 8:774–787.
Zhan, X, Tran, KK, Wang, L, Shen, H. Controlled endolysosomal release of agents by pH‐responsive polymer blend particles. Pharm Res 2016, 32:2280–2291.
Su, X, Yang, N, Wittrup, KD, Irvine, DJ. Synergistic antitumor activity from two‐stage delivery of targeted toxins and endosome‐disrupting nanoparticles. Biomacromolecules 2013, 14:1093–1102.
Wang, K, Hu Q, Zhu W, Zhao M, Ping Y, Tang G. Structure‐invertible nanoparticles for triggered co‐delivery of nucleic acids and hydrophobic drugs for combination cancer therapy. Adv Funct Mater 2015, 25:3380–3392.
Zeng, Y, Cullen, BR. RNA interference in human cells is restricted to the cytoplasm. RNA 2002, 8:855–860.
Zelphati, O, Liang, X, Hobart, P, Felgner, PL. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum Gene Ther 1999, 10:15–24.
Glover, DJ, Leyton, DL, Moseley, GW, Jans, DA. The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level. J Gene Med 2010, 12:77–85.
Abdallah, B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix B. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 1996, 7:1947–1954.
Hatakeyama, H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H. A pH‐sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA‐containing nanoparticles in vitro and in vivo. J Control Release 2009, 139:127–132.
Pollard, H, Remy, H‐S, Loussouran, G, Demolombe, S, Behr, J‐P, Escande, D. Polyethylenimine but Not Cationic Lipids Promotes Transgene Delivery to the Nucleus in Mammalian Cells. J Biol Chem 1998, 273:7507–7511.
Haensler, J, Szoka, FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993, 4:372–379. doi:10.1021/bc00023a012.
Song, YK, Liu, F, Chu, S, Liu, D. Characterization of cationic liposome‐mediated transfer in vivo by intravenous gene administration. Hum Gene Ther 1997, 8:1585–1594.
Wang, Y, Gao, S, Ye, W‐H, Yoon, HS, Yang, Y‐Y. Co‐delivery of drugs and DNA from cationic core‐shell nanoparticles self‐assembled from a biodegradable copolymer. Nat Mater 2006, 5:791–796.
Spagnou, S, Miller, AD, Keller, M. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 2004, 43:13348–13356.
Lee, H, Lytton‐Jean AKR, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, et al. Molecularly self‐assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012, 7:389–393.
Godbey, WT, Wu, KK, Mikos, AG. Poly(ethylenimine)‐mediated gene delivery affects endothelial cell function and viability. Biomaterials 2001, 22:471–480.
Balazs, DA, Godbey, W, Balazs, DA, Godbey, W. Liposomes for use in gene delivery. J Drug Deliv 2011, 2011:1–12.
Cullis, PR, Hope, MJ, Tilcock, CPS. Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids 1986, 40:127–144.
Farhood, H, Serbina, N, Huang, L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1995, 1235:289–295.
Zhou, X, Huang, L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1994, 1189:195–203.
Deshpande, MC, Davies MC, Garnett MC, Williams PM, Armitage D, Bailey L, Vamvakaki M, Armes SP, Stolnik S. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. J Control Release 2004, 97:143–156.
Harvie, P, Wong, FMP, Bally, MB. Use of poly (ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J Pharm Sci 2000, 89:652–663.
Song, LY, Ahkong QF, Rong Q, Wang Z, Ansell S, Hope MJ, Mui B. Characterization of the inhibitory effect of PEG‐lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta 2002, 1558:1–13.
Remaut, K, Lucas, B, Braeckmans, K, Demeester, J, De Smedt, SC. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release 2007, 117:256–266.
Choi, JS, Mackay, JA, Szoka, FC. Low‐pH‐sensitive PEG‐stabilized plasmid‐lipid nanoparticles: preparation and characterization. Bioconjug Chem 2003, 14:420–429.
Kirpotin, D, Hong, K, Mullah, N, Papahadjopoulos, D, Zalipsky, S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface‐grafted poly (ethylene glycol). FEBS Lett 1996, 388:115–118.
Kuai, R, Yuan W, Qin Y, Chen H, Tang J, Yuan M, Zhang Z, He Q. Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG. Mol Pharm 2010, 7:1816–1826.
Meyer, O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, Papahadjopoulos D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem 1998, 273:15621–15627.
Zhong, Z, Zheng M, Zhong Z, Zhou L, Meng F, Peng R. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Biomacromolecules 2012, 13:881–888.
Wu, H, Zhu, L, Torchilin, VP. pH‐sensitive poly(histidine)‐PEG/DSPE‐PEG co‐polymer micelles for cytosolic drug delivery. Biomaterials 2013, 34:1213–1222.
Zhao, ZX, Gao SY, Wang JC, Chen CJ, Zhao EY, Hou WJ, Feng Q, Gao LY, Liu XY, Zhang LR, et al. Self‐assembly nanomicelles based on cationic mPEG‐PLA‐b‐polyarginine(R15) triblock copolymer for siRNA delivery. Biomaterials 2012, 33:6793–6807.
Kodama, Y, Yatsugi Y, Kitahara T, Kurosaki T, Egashira K, Nakashima M, Muro T, Nakagawa H, Higuchi N, Nakamura T, et al. Quaternary complexes modified from pDNA and poly‐L‐lysine complexes to enhance pH‐buffering effect and suppress cytotoxicity. J Pharm Sci 2015, 104:1470–1477.
Mura, S, Nicolas, J, Couvreur, P. Stimuli‐responsive nanocarriers for drug delivery. Nat Mater 2013, 12:991–1003.
Oishi, M, Nagasaki, Y. Synthesis, characterization, and biomedical applications of core–shell‐type stimuli‐responsive nanogels—nanogel composed of poly[2‐(N,N‐diethylamino)ethyl methacrylate] core and PEG tethered chains. React Funct Polym 2007, 67:1311–1329.
Wong, ASM, Mann, SK, Czuba, E, Sahut, A, Liu, H, Suekama, TC, Bickerton, T, Johnston, AP, Such, GK. Self‐assembling dual component nanoparticles with endosomal escape capability. Soft Matter 2015, 11:2993–3002. doi:10.1039/c5sm00082c.
Kongkatigumjorn, N, Cortez‐Jugo C, Czuba E, Wong ASM, Hodgetts RY, Johnston APR, Such GK. Probing endosomal escape using pHlexi nanoparticles. Macromol Biosci. Submitted for publication. doi:10.1002/mabi.201600248.
Gallon, E, Matini T, Sasso L, Mantovani G, Armiñan de Benito A, Sanchis J, Caliceti P, Alexander C, Vicent MJ, Salmaso S. Triblock copolymer nanovesicles for pH‐responsive targeted delivery and controlled release of siRNA to cancer cells. Biomacromolecules 2015, 16:1924–1937.
Suma, T, Miyata K, Anraku Y, Watanabe S, Christie RJ, Takemoto H, Shioyama M, Gouda N, Ishii T, Nishiyama N, et al. Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome‐disrupting polycation, and detachable PEG. ACS Nano 2012, 6:6693–6705.
Dual, AB, Zou Y, Wang Y, Huang X, Huang G, Sumer BD, Boothman D, Gao J. Overcoming endosomal barrier by amphotericin B‐loaded dual pH‐responsive PDMA‐b‐PDPA micelleplexes for siRNA delivery. ACS Nano 2011, 5:9246–9255.
Zhou, K, Wang, Y, Huang, X, Luby‐Phelps, K, Sumer, BD. Tunable ultrasensitive pH‐responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chemie Int Ed 2011, 50:6109–6114.
Appelbaum, JS, Larochelle JR, Smith BA, Balkin DM, Holub JM, Schepartz A. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem Biol 2012, 19:819–830.
Pantos, A, Tsogas, I, Paleos, CM. Guanidinium group: a versatile moiety inducing transport and multicompartmentalization in complementary membranes. Biochim Biophys Acta 2008, 1778:811–823.
Romani, B, Engelbrecht, S, Glashoff, RH. Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 2010, 91:1–12.
Erazo‐Oliveras, A, Muthukrishnan, N, Baker, R, Wang, T‐Y, Pellois, J‐P. Improving the endosomal escape of cell‐penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 2012, 5:1177–1209.
Sakurai, Y, Hatakeyama H, Sato Y, Akita H, Takayama K, Kobayashi S, Futaki S, Harashima H. Endosomal escape and the knockdown efficiency of liposomal‐siRNA by the fusogenic peptide shGALA. Biomaterials 2011, 32:5733–5742.
Li, M, Tao, Y, Shu, Y, LaRochelle, JR, Steinauer, A, Thompson, D, Schepartz, A, Chen, Z‐Y, Liu, DR. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. J Am Chem Soc 2015, 137:14084–14093.
Liang, K, Richardson, JJ, Ejima, H, Such, GK, Cui, J. Peptide‐tunable drug cytotoxicity via one‐step assembled polymer nanoparticles. Adv Mater 2014, 26:2398–2402.