Kwon, EJ, Lo, JH, Bhatia, SN. Smart nanosystems: bio‐inspired technologies that interact with the host environment. Proc Natl Acad Sci USA 2015, 112:14460–14466.
Yoo, J‐W, Irvine, DJ, Discher, DE, Mitragotri, S. Bio‐inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 2011, 10:521–535.
Dehaini, D, Fang, RH, Zhang, L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016, 1:30–46.
Giangrande, PLF. The history of blood transfusion. Br J Haematol 2000, 110:758–767.
Hillyer, CD, Silberstein, LE, Ness, PM, Anderson, KC, Roback, JD, eds. Blood Banking and Transfusion Medicine. Churchill Livingstone Elsevier; 2007.
Carson, JL, Hill, S, Carless, P, Hébert, P, Henry, D. Transfusion triggers: a systematic review of the literature. Transfus Med Rev 2002, 16:187–199.
Sharma, S, Sharma, P, Tyler, LN. Transfusion of blood and blood products: indications and complications. Am Fam Physician 2011, 83:719–724.
US Department of Health and Human Services. The 2011 National Blood Collection and Utilization Survey Report. Available at: http://www.aabb.org. (Accessed November 10, 2016).
D`Alessandro, A, Kriebardis, AG, Rinalducci, S, Antonelou, MH, Hansen, KC, Papassideri, IS, Zolla, L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2015, 55:205–219.
Devine, DV, Serrano, K. The platelet storage lesion. Clin Lab Med 2010, 30:475–487.
Goodnough, LT, Brecher, ME, Kanter, MH, AuBuchon, JP. Transfusion medicine—blood transfusion. N Engl J Med 1999, 340:438–447.
Hess, JR. An update on solutions for red cell storage. Vox Sang 2006, 91:13–19.
Greening, DW, Glenister, K, Sparrow, RL, Simpson, RJ. International blood collection and storage: clinical use of blood products. J Proteomics 2009, 73:386–395.
Smith, JW, Gilcher, RO. Red blood cells, plasma, and other new apheresis‐derived blood products: improving product quality and donor utilization. Transfus Med Rev 1999, 13:118–123.
Jobes, D, Wolfe, Y, O`Neill, D, Calder, J, Jones, L, Sesok‐Pizzini, D, Zheng, XL. Toward a definition of "fresh" whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion 2011, 51:43–51.
Hoffmeister, KM, Josefsson, EC, Isaac, NA, Clausen, H, Hartwig, JH, Stossel, TP. Glycosylation restores survival of chilled blood platelets. Science 2003, 301:1531–1534.
Pidcoke, HF, McFaul, SJ, Ramasubramanian, AK, Parida, BK, Mora, AG, Fedyk, CG, Valdez‐Delgado, KK, Montgomery, RK, Reddoch, KM, Rodriguez, AC, et al. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion 2013, 53:137S–149S.
Reddoch, KM, Pidcoke, HF, Montgomery, RK, Fedyk, CG, Aden, JK, Ramasubramanian, AK, Cap, AP. Hemostatic function of apheresis platelets stored at 4°C and 22°C. Shock 2014, 41:54–61.
D`Amici, GM, Mirasole, C, D`Alessandro, A, Yoshida, T, Dumont, LJ, Zolla, L. Red blood cell storage in SAGM and AS3: a comparison through the membrane two‐dimensional electrophoresis proteome. Blood Transfus 2012, 10:s46–s54.
Paglia, G, D`Alessandro, A, Rolfsson, Ó, Sigurjónsson, ÓE, Bordbar, A, Palsson, S, Nemkov, T, Hansen, KC, Gudmundsson, S, Palsson, BO. Biomarkers defining the metabolic age of red blood cells during cold storage. Blood 2016, 128:e43–e50.
Chaudhari, CN. Frozen red blood cells in transfusion. Med J Armed Forces India 2009, 65:55–58.
Hess, JR. Red cell freezing and its impact on supply chain. Transfus Med 2004, 14:1–8.
Corash, L. Inactivation of viruses, bacteria, protozoa, and leukocytes in platelet concentrates: current research perspectives. Transfus Med Rev 1999, 13:18–30.
Seghatchian, J, de Sousa, G. Pathogen‐reduction systems for blood components: the current position and future trends. Transfus Apher Sci 2006, 35:189–196.
Solheim, BG. Pathogen reduction of blood components. Transfus Apher Sci 2008, 39:75–82.
Spinella, PC, Dunne, J, Bellman, GJ, O`Connell, RJ, Borgman, MA, Cap, AP, Rentas, F. Constant challenges and evolution of US military transfusion medicine and blood operations in combat. Transfusion 2012, 52:1146–1153.
Lambert, MP, Sullivan, SK, Fuentes, R, French, DL, Poncz, M. Challenges and promises for the development of donor‐independent platelet transfusions. Blood 2013, 121:3319–3324.
Squires, JE. Artificial blood. Science 2002, 295:1002–1005.
Chang, TMS. Blood substitutes based on nanobiotechnology. Trends Biotechnol 2006, 24:372–377.
Blajchman, MA. Substitutes for success. Nat Med 1999, 5:17–18.
Sakai, H, Sou, K, Horinouchi, H, Kobayashi, K, Tsuchida, E. Review of hemoglobin‐vesicles as artificial oxygen carriers. Artif Organs 2009, 33:139–145.
Modery‐Pawlowski, CL, Tian, LL, Pan, V, Sen Gupta, A. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules 2013, 14:939–948.
Mohanty, D. Current concepts in platelet transfusion. Asian J Transfus Sci 2009, 3:18–21.
Lee, D, Blajchman, MA. Novel treatment modalities: new platelet preparations and substitutes. Br J Haematol 2001, 114:496–505.
Modery‐Pawlowski, CL, Tian, LL, Pan, V, McCrae, KR, Mitragotri, S, Sen Gupta, A. Approaches to synthetic platelet analogs. Biomaterials 2013, 34:526–541.
Natanson, C, Kern, SJ, Lurie, P, Banks, SM, Wolfe, SM. Cell‐free hemoglobin‐based blood substitutes and risk of myocardial infarction and death: a meta‐analysis. JAMA 2008, 299:2304–2312.
Goutelle, S, Maurin, M, Rougier, F, Barbaut, X, Bourguignon, L, Ducher, M, Maire, P. The Hill equation: a review of its capabilities in pharmacological modelling. Fund Clin Pharmacol 2008, 22:633–648.
Umbreit, J. Methemoglobin—it`s not just blue: a concise review. Am J Hematol 2007, 144:134–144.
Dorman, SC, Kenny, CF, Miller, L, Hirsch, RE, Harrington, JP. Role of redox potential of hemoglobin‐based oxygen carriers on methemoglobin reduction by plasma components. Artif Cells Blood Substit Immobil Biotechnol 2002, 30:39–51.
Stowell, CP, Levin, J, Spiess, BD, Winslow, RM. Progress in the development of RBC substitutes. Transfusion 2001, 41:287–299.
Winslow, RM. Red cell substitutes. Semin Hematol 2007, 44:51–59.
Chang, TMS. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. Artif Cell Blood Substit Immobil Biotechnol 2012, 40:197–199.
Napolitano, LM. Hemoglobin‐based oxygen carriers: first, second or third generation? Human or bovine? Where are we now? Crit Care Clin 2009, 25:279–301.
Piras, AM, Dessy, A, Chiellini, F, Chiellini, E, Farina, C, Ramelli, M, Valle, ED, eds. Polymeric nanoparticles for hemoglobin‐based oxygen carriers. Biochim Biophys Acta 1784, 2008:1454–1461.
Buehler, PW, Alayash, AI. All hemoglobin‐based oxygen carriers are not created equally. Biochim Biophys Acta 1784, 2008:1378–1381.
Winslow, RM. Cell‐free oxygen carriers: scientific foundations, clinical development, and new directions. Biochim Biophys Acta 1784, 2008:1382–1386.
Alayash, AI. Setbacks in blood substitutes research and development: a biochemical perspective. Clin Lab Med 2003, 106:76–85.
Amberson, WR, Jennings, JJ, Rhode, CM. Clinical experience with hemoglobin‐saline solutions. J Appl Physiol 1949, 1:469–489.
Bunn, H, Jandl, J. The renal handling of hemoglobin. Trans Assoc Am Physicians 1968, 81:147–152.
Buehler, PW, D`Agnillo, F, Schaer, DBJ. Hemoglobin‐based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med 2010, 16:447–457.
Kim‐Shapiro, DB, Schechter, AN, Gladwin, MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol 2006, 26:697–705.
Looker, D, Abbott‐Brown, D, Cozart, P, Durfee, S, Hoffman, S, Mathews, AJ, Miller‐Roehrich, J, Shoemaker, S, Trimble, S, Fermi, G, et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature 1992, 356:258–260.
Fronticelli, C, Koehler, RC, Brinigar, WS. Recombinant hemoglobins as artificial oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol 2007, 35:45–52.
Varnado, CL, Mollan, TL, Birukou, I, Smith, BJZ, Henderson, DP, Olson, JS. Development of recombinant hemoglobin‐based oxygen carriers. Antioxid Redox Signal 2013, 18:2314–2328.
Lamy, ML, Daily, EK, Brichant, JF, Larbuisson, RP, Demeyere, RJ, Vandermeersch, EA, Kehot, JJ, Parsloe, MR, Berridge, JC, Sinclair, CJ, et al. Randomized trial of diaspirin cross‐linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646–656.
Saxena, R, Wijnhoud, A, Carton, H, Hacke, W, Kaste, M, Przybelski, R, Stern, KN, Koudstaal, PJ. Controlled safety study of a hemoglobin‐based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993–996.
Sloan, EP, Koenigsberg, MD, Philbin, NB, Gao, W. DCLHb Traumatic Hemorrhagic Shock Study Group. European HOST Investigators. Diaspirin cross‐linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. J Trauma 2010, 68:1158–1171.
Winslow, RM. New transfusion strategies: red cell substitutes. Ann Rev Med 1999, 50:337–353.
Viele, MK, Weisopf, RB, Fisher, D. Recombinant human hemoglobin does not affect renal function in humans: analysis of safety and pharmacokinetics. Anesthesiology 1997, 86:848–858.
Gould, SA, Moore, EE, Hoyt, DB, Burch, JM, Haenel, JB, Garcia, J, DeWoskin, R, Moss, GS. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg 1998, 187:113–120.
Jahr, JS, Moallempour, M, Lim, JC. HBOC‐201, hemoglobin glutamer‐250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther 2008, 8:1425–1433.
Cheng, DC, Mazer, CD, Martineau, R, Ralph‐Edwards, A, Karski, J, Robblee, J, Finegan, B, Hall, RI, Latimer, R, Vuylsteke, A. A phase II dose‐response study of hemoglobin raffimer (Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg 2004, 127:79–86.
Alayash, AI. Blood substitutes: why haven`t we been more successful? Trends Biotechnol 2014, 32:177–185.
Chang, TMS. Future generations of red blood cell substitutes. J Intern Med 2003, 253:527–535.
Chen, J‐Y, Scerbo, M, Kramer, G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin‐based oxygen carriers. Clinics 2009, 64:803–813.
Vandegriff, KD, Winslow, RM. Hemospan: design principles for a new class of oxygen therapeutic. Artif Organs 2009, 33:133–138.
Bobofchak, KM, Tarasov, E, Olsen, KW. Effect of cross‐linker length on the stability of hemoglobin. Biochim Biophys Acta 1784, 2008:1410–1414.
Caretti, A, Fantacci, M, Caccia, D, Perrella, M, Lowe, KC, Samaja, M. Modulation of the NO/cGMP pathway reduces the vasoconstriction induced by acellular and PEGylated haemoglobin. Biochim Biophys Acta 1784, 2008:1428–1434.
Jahr, JS, Akha, AS, Holtby, RJ. Crosslinked, polymerized, and PEG‐conjugated hemoglobin‐based oxygen carriers: clinical safety and efficacy of recent and current products. Curr Drug Discov Technol 2012, 9:158–165.
Olofsson, C, Ahl, T, Johansson, T, Larsson, S, Nellgård, P, Ponzer, S, Fagrell, B, Przybelski, R, Keipert, P, Winslow, N, et al. A multicenter clinical study of the safety and activity of maleimide‐polyethylene glycol‐modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology 2006, 105:1153–1163.
Buehler, PW, Alayash, AI. Toxicities of hemoglobin solutions: in search of in‐vitro and in‐vivo model systems. Transfusion 2004, 44:1516–1530.
Alayash, AI. Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov 2004, 3:152–159.
Roche, CJ, Cassera, MB, Dantsker, D, Hirsch, RE, Friedman, JM. Generating S‐nitrosothiols from hemoglobin: mechanisms, conformational dependence and physiological relevance. J Biol Chem 2013, 288:22408–22425.
D`Agnillo, F, Chang, TMS. Polyhemoglobin–superoxide dismutase: catalase as a blood substitute with antioxidant properties. Nat Biotechnol 1998, 16:667–671.
Powanda, D, Chang, TMS. Cross‐linked polyhemoglobin–superoxide dismutase–catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia–reperfusion. Artif Cell Blood Substit Immob Biotechnol 2002, 30:25–42.
Simoni, J, Simoni, G, Moeller, JF, Feola, M, Wesson, DE. Artificial oxygen carrier with pharmacologic actions of adenosine‐5`‐triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions. Artif Organs 2014, 38:684–690.
Tomita, D, Kimura, T, Hosaka, H, Daijima, Y, Haruki, R, Ludwig, K, Böttcher, C, Komatsu, T. Covalent core‐shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules 2013, 14:1816–1825.
Hosaka, H, Haruki, R, Yamada, K, Böttcher, C, Komatsu, T. Hemoglobin‐Albumin cluster incorporating a Pt nanoparticle: artificial O2 carrier with antioxidant activities. PLoS One 2014, 9:e110541. doi:10.1371/journal.pone.0110541.
Chang, TMS. Hemoglobin corpuscles’ report of a research project for Honours Physiology, Medical Library, McGill University 1957. Reprinted as part of ‘30 anniversary in Artificial Red Blood Cells Research. J Biomat Artif Cells Artif Organs 1988, 16:1–9.
Chang, TMS, Poznansky, MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalsaemic mice. Nature 1968, 218:242–245.
Chang, TMS. Semipermeable microcapsules. Science 1964, 146:524–525.
Djordjevich, L, Miller, IF. Synthetic erythrocytes from lipid encapsulated hemoglobin. Exp Hematol 1980, 8:584.
Hunt, CA, Burnette, RR, MacGregor, RD, Strubbe, A, Lau, D, Taylor, N. Synthesis and evaluation of a prototypal artificial red cell. Science 1985, 230:1165–1168.
Rudolph, AS, Klipper, RW, Goins, B, Phillips, WT. In vivo biodistribution of a radiolabeled blood substitute: 99mTc‐labeled liposome‐encapsulated hemoglobin in an anesthetized rabbit. Proc Natl Acad Sci USA 1991, 88:10976–10980.
Pape, A, Kertscho, H, Meier, J, Horn, O, Laout, M, Steche, M, Lossen, M, Theissen, A, Zwissler, B, Habler, O. Improved short‐term survival with polyethylene glycol modified hemoglobin liposomes in critical normovolemic anemia. Intensive Care Med 2008, 34:1534–1543.
Kawaguchi, AT, Fukumoto, D, Haida, M, Ogata, Y, Yamano, M, Tsukada, H. Liposome‐encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery. Stroke 2007, 38:1626–1632.
Agashe, H, Awasthi, V. Current perspectives in liposome‐encapsulated hemoglobin as oxygen carrier. Adv Planar Lipid Bilayers Liposomes 2009, 9:1–28.
Ceh, B, Winterhalter, M, Frederik, PM, Vallner, JJ, Lasic, DD. Stealth® liposomes: from theory to product. Adv Drug Deliv Rev 1997, 24:165–177.
Immordino, ML, Dosio, F, Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006, 1:297–315.
Philips, WT, Klpper, RW, Awasthi, VD, Rudolph, AS, Cliff, R, Kwasiborski, V, Goines, VA. Polyethylene glycol modified liposome‐encapsulated hemoglobin: a long circulating red cell substitute. J Pharmacol Exp Ther 1999, 288:665–670.
Sakai, H, Sou, K, Horinouchi, H, Kobayashi, K, Tsuchida, E. Hemoglobin‐vesicle, a cellular artificial oxygen carrier that fulfils the physiological roles of the red blood cell structure. Adv Exp Med Biol 2010, 662:433–438.
Tsuchida, E, Sou, K, Nakagawa, A, Sakai, H, Komatsu, T, Kobayashi, K. Artificial oxygen carriers, hemoglobin vesicles and albumin‐hemes, based on bioconjugate chemistry. Bioconjug Chem 2009, 20:1419–1440.
Taguchi, K, Urata, Y, Anraku, M, Watanabe, H, Kadowaki, D, Sakai, H, Horinouchi, H, Kobayashi, K, Tsuchida, E, Maruyama, T, et al. Hemoglobin vesicles, polyethylene glycol (PEG)ylated liposomes developed as a red blood cell substitute, do not induce the accelerated blood clearance phenomenon in mice. Drug Metab Dispos 2009, 37:2197–2203.
Kaneda, S, Ishizuka, T, Goto, H, Kimura, T, Inaba, K, Kasukawa, H. Liposome‐encapsulated hemoglobin, TRM‐645: current status of the development and important issues for clinical application. Artif Organs 2009, 33:146–152.
Tao, Z, Ghoroghchian, PP. Microparticle, nanoparticle, and stem cell‐based oxygen carriers as advanced blood substitutes. Trends Biotechnol 2014, 32:466–473.
Sakai, H. Present situation of the development of cellular‐type hemoglobin‐based oxygen carrier (hemoglobin‐vesicles). Curr Drug Discov Technol 2012, 9:188–193.
Yadav, VR, Nag, O, Awasthi, V. Biological evaluation of liposome‐encapsulated hemoglobin surface‐modified with a novel PEGylated nonphospholipid amphiphile. Artif Organs 2014, 38:625–633.
Yadav, VR, Rao, G, Houson, H, Hedrick, A, Awasthi, S, Roberts, PR, Awasthi, V. Nanovesicular liposome‐encapsulated hemoglobin (LEH) prevents multi‐organ injuries in a rat model of hemorrhagic shock. Eur J Pharm Sci 2016, 93:97–106.
Kheir, JN, Scharp, LA, Borden, MA, Swanson, EJ, Loxley, A, Reese, JH, Black, KJ, Velazquez, LA, Thomson, LM, Walsh, BK, et al. Oxygen gas‐filled microparticles provide intravenous oxygen delivery. Sci Trans Med 2012, 4:140ra188.
Kheir, JN, Polizzotti, BD, Thomson, LM, O`Connell, DW, Black, KJ, Lee, RW, Wilking, JN, Graham, AC, Bell, DC, McGowan, FX. Bulk manufacture of concentrated oxygen gas‐filled microparticles for intravenous oxygen delivery. Adv Healthc Mater 2013, 2:1131–1141.
Yu, WP, Chang, TMS. Submicron polymer membrane hemoglobin nanocapsules as potential blood substitutes: preparation and characterization. Artif Cells Blood Substit Immobil Biotechnol 1996, 24:169–184.
Chang, TMS, Yu, WP. Nanoencapsulation of hemoglobin and RBC enzymes based on nanotechnology and biodegradable polymer. In: Chang, TMS, ed. Blood Substitutes: Principles, Methods, Products and Clinical Trials, vol. 2. Basel: Karger; 1998, 216–231.
Chang, TMS. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010, 2:418–430.
Rameez, S, Alosta, H, Palmer, AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjug Chem 2008, 19:1025–1032.
Sheng, Y, Yuan, Y, Liu, C, Tao, X, Shan, X, Xu, F. In vitro macrophage uptake and in vivo biodistribution of PLA‐PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med 2009, 20:1881–1891.
Arifin, DR, Palmer, AF. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromolecules 2005, 6:2172–2181.
Rameez, S, Bamba, I, Palmer, AF. Large scale production of vesicles by hollow fiber extrusion: a novel method for generating polymersome encapsulated hemoglobin dispersions. Langmuir 2010, 26:5279–5285.
Duan, L, Yan, X, Wang, A, Jia, Y, Li, J. Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano 2012, 6:6897–6904.
Xiong, Y, Liu, ZZ, Georgieva, R, Smuda, K, Steffen, A, Sendeski, M, Voigt, A, Patzak, A, Bäumler, H. Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano 2013, 7:7454–7461.
Li, B, Li, T, Chen, G, Li, X, Yan, L, Xie, Z, Jing, X, Huang, Y. Regulation of conjugated hemoglobin on micelles through copolymer chain sequences and the protein`s isoelectric aggregation. Macromol Biosci 2013, 13:893–902.
Qi, Y, Li, T, Wang, Y, Wei, X, Li, B, Chen, X, Xie, Z, Jing, X, Huang, Y. Synthesis of hemoglobin‐conjugated polymer micelles by thiol Michael‐addition reactions. Macromol Biosci 2016, 16:906–913.
Jia, Y, Cui, Y, Fei, J, Du, M, Dai, L, Li, J, Yang, Y. Construction and evaluation of hemoglobin‐based capsules as blood substitutes. Adv Funct Mater 2012, 22:1446–1453.
Chen, B, Jia, Y, Zhao, J, Li, H, Dong, W, Li, J. Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C 2013, 117:19751–19758.
Wang, X, Gao, W, Peng, W, Xie, J, Li, Y. Biorheological properties of reconstructed erythrocytes and its function of carrying‐releasing oxygen. Artif Cells Blood Substit Immobil Biotechnol 2009, 37:41–44.
Goldsmith, HL, Marlow, J. Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc R Soc Lond B 1972, 182:351–384.
Charoenphol, P, Mocherla, S, Bouis, D, Namdee, K, Pinsky, DJ, Eniola‐Adefeso, O. Targeting therapeutics to the vascular wall in atherosclerosis—carrier size matters. Atherosclerosis 2011, 217:364–370.
Doshi, N, Zahr, AS, Bhaskar, S, Lahann, J, Mitragotri, S. Red blood cell‐mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA 2009, 106:21495–21499.
Haghgooie, R, Toner, M, Doyle, PS. Squishy non‐spherical hydrogel microparticles. Macromol Rapid Commun 2010, 31:128–134.
Merkel, TJ, Jones, SW, Herlihy, KP, Kersey, FR, Shields, AR, Napier, M, Luft, JC, Wu, H, Zamboni, WC, Wang, AZ, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA 2011, 108:586–591.
Li, S, Nickels, J, Palmer, AF. Liposome‐encapsulated actin‐hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials 2005, 26:3759–3769.
Xu, F, Yuan, Y, Shan, X, Liu, C, Tao, X, Sheng, Y, Zhou, H. Long‐circulation of hemoglobin‐loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm 2009, 377:199–206.
Doctor, A, Pan, D, Rogers, S, Hare, G, Lanza, G, Spinella, P. ErythroMer: nanoscale bio‐synthetic red cell substitute. In: Poster Abstract, Military Health System Research Symposium, Kissimmee, FL, USA, 15–18 August, 2016.
Freitas, RA Jr. Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cell Blood Substit Immobil Biotechnol 1998, 26:411–430.
Krafft, MP, Riess, JG. Perfluorocarbons: life sciences and biomedical uses. J Polym Sci Part A: Polym Chem 2007, 45:1185–1198.
Riess, JG, Krafft, MP. Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 1998, 19:1529–1539.
Schutt, EG, Klein, DH, Mattrey, RM, Riess, JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 2003, 42:3218–3235.
Cosgrove, D. Ultrasound contrast agents: an overview. Eur J Radiol 2006, 60:324–330.
Spiess, BD. Basic mechanisms of gas transport and past research using perfluorocarbons. Diving Hyperb Med 2010, 40:23–28.
Riess, JG. Perfluorocarbon‐based oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol 2006, 34:567–580.
Freire, MG, Gomes, L, Santos, LM, Marrucho, IM, Coutinho, JA. Water solubility in linear fluoroalkanes used in blood substitute formulations. J Phys Chem B 2006, 110:22923–22929.
Gould, SA, Rosen, AL, Sehgal, LR, Sehgal, HL, Langdale, LA, Krause, LM, Rice, CL, Chamberlin, WH, Moss, GS. Fluosol‐DA as a red‐cell substitute in acute anemia. N Engl J Med 1986, 314:1653–1656.
Spahn, DR. Blood substitutes artificial oxygen carriers: perfluorocarbon emulsions. Crit Care 1999, 3:R93–R97.
Castro, CI, Briceno, JC. Perfluorocarbon‐based oxygen carriers: review of products and trials. Artif Organs 2010, 34:622–634.
Torres Filho, IP, Pedro, JRP, Narayanan, SV, Nguyen, NM, Roseff, SD, Spiess, BD. Perfluorocarbon emulsion improves oxygen transport of normal and sickle cell human blood in vitro. J Biomed Mater Res Part A 2014, 102A:2105–2115.
Keipert, PE. Perfluorochemical emulsions: future alternatives to transfusion. Blood Subst Princ Meth Prod Clin Trials 1998, 2:127–156.
Spiess, BD. Perfluorocarbon emulsions: one approach to intravenous artificial respiratory gas transport. Int Anesthesiol Clin 1995, 33:103–113.
Spahn, DR, vanBrempt, R, Theilmeier, G, Reibold, JP, Welte, M, Heinzerling, H, Birck, KM, Keipert, PE, Messmer, K. Perflubron emulsion delays blood transfusions in orthopedic surgery. European Perflubron Emulsion Study Group. Anesthesiology 1999, 91:1195–1208.
Flaim, SF. Perflubron‐based emulsion: efficacy as temporary oxygen carrier. In: Winslow, RM, Vandegriff, KD, Intaglietta, M, eds. Advances in Blood Substitutes. Boston, MA: Birkhäuser; 1997, 91–132.
Riess, JG, Keipert, E. Update on perfluorocarbon‐based oxygen delivery systems. In: Tsuchida, E, ed. Blood Substitutes: Present and Future Perspectives. Lausanne: Elsevier Science SA; 1998, 91–102.
Keipert, PE. Oxygent™, a perfluorochemical‐based oxygen therapeutic for surgical patients. In: Winslow, RM, ed. Blood Substitutes. London: Elsevier; 2006, 313–323.
Keipert, PE, Faithfull, NS, Bradley, JD, Hazard, DY, Hogan, J, Levisetti, MS, Peters, RM. Oxygen delivery augmentation by low‐dose perfluorochemical emulsion during profound normovolemic hemodilution. Adv Exp Med Biol 1994, 345:197–204.
Stern, SA, Dronen, SC, McGoron, AJ, Wang, X, Chaffins, K, Millard, R, Keipert, PE, Faithfull, NS. Effect of supplemental perfluorocarbon administration on hypotensive resuscitation of severe uncontrolled hemorrhage. Am J Emerg Med 1995, 13:269–275.
Manning, JE, Batson, DN, Payne, FB, Adam, N, Murphy, CA, Perretta, SG, Norfleet, EA. Selective aortic arch perfusion during cardiac arrest: enhanced resuscitation using oxygenated perflubron emulsion, with and without aortic arch epinephrine. Ann Emerg Med 1997, 29:580–587.
Wahr, JA, Trouwborst, A, Spence, RK, Henny, CP, Cernaianu, AC, Graziano, GP, Tremper, KK, Flaim, KE, Keipert, PE, Faithfull, NS, et al. A pilot study of the effects of a perflubron emulsion, AF 0104, on mixed venous oxygen tension in anesthetized surgical patients. Anesth Analg 1996, 82:103–107.
Daugherty, WP, Levasseur, JE, Sun, D, Spiess, BD, Bullock, MR. Perfluorocarbon emulsion improves cerebral oxygenation and mitochondrial function after fluid percussion brain injury in rats. Neurosurgery 2004, 54:1223–1230.
Zhou, Z, Sun, D, Levasseur, JE, Merenda, A, Hamm, RJ, Zhu, J, Spiess, BD, Bullock, MR. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats. Neurosurgery 2008, 63:799–806.
Yacoub, A, Hajec, MC, Stanger, R, Wan, W, Young, H, Mathern, BE. Neuroprotective effects of perflurocarbon (oxycyte) after contusive spinal cord injury. J Neurotrauma 2014, 31:256–267.
Henkel‐Hanke, T, Oleck, M. Artificial oxygen carriers: a current review. AANA J 2007, 75:205–211.
Maevsky, E, Ivanitsky, G, Bogdanova, L, Axenova, O, Karmen, N, Zhiburt, E, Senina, R, Pushkin, S, Maslennikov, I. Clinical results of Perftoran application: present and future. Artif Cells Blood Substit Immobil Biotechnol 2005, 33:37–46.
Collman, JP, Brauman, JI, Rose, E, Suslick, KS. Cooperativity in O2 binding to iron porphyrins. Proc Natl Acad Sci USA 1978, 75:1052–1055.
Kano, K, Kitagishi, H. HemoCD as an artificial oxygen carrier: oxygen binding and autoxidation. Artif Organs 2009, 33:177–182.
Collman, JP, Boulatov, R, Sunderland, CJ, Fu, L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev 2004, 104:561–588.
Kakizaki, T, Kobayashi, K, Komatsu, T, Nishide, H, Tsuchida, E. Lipidheme‐microsphere (LH‐M): a new type of totally synthetic oxygen carrier and its oxygen carrying ability. Artif Cells Blood Substit Immobil Biotechnol 1994, 22:933–938.
Yuasa, M, Aiba, K, Ogata, Y, Nishide, H, Tsuchida, E. Structure of the liposome composed of lipid‐heme and phospholipids. Biochim Biophys Acta 1986, 860:558–565.
Karasugi, K, Kitagishi, H, Kano, K. Modification of a dioxygen carrier, hemoCD, with PEGylated dendrons for extension of circulation time in the bloodstream. Bioconjug Chem 2012, 23:2365–2376.
Fåhraeus, R, Lindqvist, T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931, 96:562–568.
Vahidkhah, K, Diamond, SL, Bagchi, P. Platelet dynamics in three‐dimensional simulation of whole blood. Biophys J 2014, 106:2529–2540.
AlMomani, T, Udaykumar, HS, Marshall, JS, Chandran, KB. Micro‐scale dynamic simulation of erythrocyte‐platelet interaction in blood flow. Ann Biomed Eng 2008, 36:905–920.
Hoffman, M, Monroe, DM III. A cell‐based model of hemostasis. Thromb Haemost 2001, 85:958–965.
Smith, SA. The cell‐based model of coagulation. J Vet Emerg Crit Care 2009, 19:3–10.
Heal, JM, Blumberg, N. Optimizing platelet transfusion therapy. Blood Rev 2004, 18:149–165.
Rubella, P. Revisitation of the clinical indications for the transfusion of platelet concentrates. Rev Clin Exp Hematol 2001, 5:288–310.
Kauvar, DS, Lefering, R, Wade, CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma 2006, 60:S3–S11.
Liumbruno, G, Bennardello, F, Lattanzio, A, Piccoli, P, Rossetti, G. Recommendations for the transfusion of plasma and platelets. Blood Transfus 2009, 7:132–150.
Murphy, S. Platelet storage for transfusion. Semin Hematol 1985, 22:165–177.
Janetzko, K, Hinz, K, Marschner, S, Goodrich, R, Klüter, H. Pathogen reduction technology (Mirasol®) treated single‐donor platelets resuspended in a mixture of autologous plasma and PAS. Vox Sang 2009, 97:234–239.
Caspari, G, Gerlich, WH, Kiefel, V, Gürtler, L. Pathogen inactivation of cellular blood products—still plenty of reason to be careful. Transfus Med Hemother 2005, 32:258–260.
Marks, DC, Faddy, HM, Johnson, L. Pathogen reduction technologies. ISBT Sci Ser 2014, 9:44–50.
Kaufman, RM, Djulbegovic, B, Gernsheimer, T, Kleinman, S, Tinmouth, AT, Capocelli, KE, Cipolle, MD, Cohn, CS, Fung, MK, Grossman, BJ, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med 2015, 162:205–213.
Milford, EM, Reade, MC. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage. Transfusion 2016, 56:S140–S148.
Fitzpatrick, GM, Cliff, R, Tandon, N. Thrombosomes: a platelet‐derived hemostatic agent for control of noncompressible hemorrhage. Transfusion 2013, 53:S100S–S106S.
Johnson, L, Tan, S, Wood, B, Davis, A, Marks, DC. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion 2016, 56:1807–1818.
Schreiber, GB, Busch, MP, Kleinman, SH, Korelitz, JJ. The risk of transfusion‐ transmitted viral infections. The Retrovirus Epidemiology Donor Study. N Engl J Med 1996, 334:1685–1690.
Blajchman, MA. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J Thromb Haemost 2003, 1:1637–1641.
Kauskot, A, Hoylaerts, MF. Platelet receptors. In: Gresele, P et al., eds. Antiplatelet Agents, Handbook of Experimental Pharmacology. Berlin/Heidelberg: Springer‐Verlag; 2012. doi:10.1007/978‐3‐642‐29423‐5_2.
Bishop, P, Lawson, J. Recombinant biologics for treatment of bleeding disorders. Nat Rev Drug Discov 2004, 3:684–694.
Pipe, SW. Recombinant clotting factors. Thromb Haemost 2008, 99:840–850.
Peng, T. Biomaterials for Hemorrhage control. Trends Biomater Artif Organs 2010, 24:27–68.
Spotnitz, WD. Fibrin sealant: the only approved hemostat, sealant, and adhesive—a laboratory and clinical perspective. ISRN Surg 2014:203943. doi:10.1155/2014/203943.
Smith, AH, Laird, C, Porter, K, Bloch, M. Haemostatic dressings in prehospital care. Emerg Med J 2013, 30:784–789.
Pusateri, AE, Holcomb, JB, Kheirabadi, BS, Alam, HB, Wade, CE, Ryan, KL. Making sense of the preclinical literature on advanced hemostatic products. J Trauma 2006, 60:674–682.
Yeon, JH, Chan, KYT, Wong, T‐C, Chan, K, Sutherland, MR, Ismagilov, RF, Pruzdial, ELG, Kastrup, CJ. A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli. Sci Rep 2015, 5:10274. doi:10.1038/srep10274.
Chan, LW, Wang, X, Wei, H, Pozzo, LD, White, NJ, Pun, SH. A synthetic fibrin cross‐linking polymer for modulating clot properties and inducing hemostasis. Sci Trans Med 2015, 7:277ra29.
Hsu, BB, Conway, W, Tschabrunn, CM, Mehta, M, Perez‐Cuevas, MB, Zhang, S, Hammond, PT. Clotting mimicry from robust hemostatic bandages based on self‐assembling peptides. ACS Nano 2015, 9:9394–9406.
Avery, RK, Albadawi, H, Akbari, M, Zhang, YS, Duggan, MJ, Sahani, DV, Olsen, BD, Khademhosseini, A, Oklu, R. An injectable shear‐thinning biomaterial for endovascular embolization. Sci Trans Med 2016, 8:365ra156.
Annabi, N, Tamayol, A, Shin, SR, Ghaemmaghami, AM, Peppas, NA, Khademhosseini, A. Surgical materials: current challenges and nano‐enabled solutions. Nano Today 2014, 9:574–589.
Chan, LW, White, NJ, Pun, SH. Synthetic strategies for engineering intravenous hemostat. Bioconjug Chem 2015, 26:1224–1236.
Lashoff‐Sullivan, M, Shoffstall, A, Lavik, E. Intravenous hemostats: challenges in translation to patients. Nanoscale 2013, 5:10719–10728.
Wagner, DD. Cell biology of von Willebrand Factor. Annu Rev Cell Biol 1990, 6:217–246.
Ruggeri, ZM. Platelet adhesion under flow. Microcirculation 2009, 16:58–83.
Ruggeri, ZM, Mendolicchio, GL. Adhesion mechanisms in platelet function. Circ Res 2007, 100:1673–1685.
Rybak, ME, Renzulli, LA. A liposome based platelet substitute, the plateletsome, with hemostatic efficacy. Artif Cells Blood Substit Immobil Biotechnol 1993, 21:101–118.
Takeoka, S, Teramura, Y, Okamura, Y, Tsuchida, E, Handa, M, Ikeda, Y. Rolling properties of rGPIbalpha‐conjugated phospholipid vesicles with different membrane flexibilities on vWf surface under flow conditions. Biochem Biophys Res Commun 2002, 296:765–770.
Nishiya, T, Kainoh, M, Murata, M, Handa, M, Ikeda, Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor‐ligand interactions. Blood 2002, 100:136–142.
Nishiya, T, Kainoh, M, Murata, M, Handa, M, Ikeda, Y. Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Artif Cells Blood Substit Immobil Biotechnol 2001, 29:453–464.
Del Carpio Munoz, C, Campbell, W, Constantinescu, I, Gyongyossy‐Issa, MIC. Rational design of antithrombotic peptides to target the von Willebrand Factor (vWf)–GPIb integrin interaction. J Mol Model 2008, 14:1191–1202.
Gyongyossy‐Issa, MIC, Kizhakkedathu, J, Constantinescu, I, Campbell, W, del Carpio Munoz, CA. Synthetic platelets. US Patent Application Publication US 2008/0213369 A1, 2008.
Ravikumar, M, Modery, CL, Wong, TL, Sen Gupta, A. Mimicking adhesive functionalities of blood platelets using ligand‐decorated liposomes. Bioconjug Chem 2012, 23:1266–1275.
Haji‐Valizadeh, H, Modery‐Pawlowski, CL, Sen Gupta, A. A factor VIII‐derived peptide enables von Willebrand factor (VWF)‐binding of artificial platelet nanoconstructs without interfering with VWF‐adhesion of natural platelets. Nanoscale 2014, 6:4765–4773.
Li, Z, Delaney, MK, O`Brien, KA, Du, X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010, 30:2341–2349.
Shattil, SJ, Kashiwagi, H, Pampori, N. Integrin signaling: the platelet paradigm. Blood 1998, 91:2645–2657.
Pytela, R, Piersbacher, MD, Ginsberg, MH, Plow, EF, Ruoslahti, E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg‐Gly‐Asp‐specific adhesion receptors. Science 1986, 231:1559–1562.
Plow, EF, D`Souza, SE, Ginsberg, MH. Ligand binding to GPIIb‐IIIa: a status report. Semin Thromb Hemost 1992, 18:324–332.
Coller, BS. Interaction of normal, thrombasthenic and Bernard‐Soulier platelets with immobilized fibrinogen: defective platelet‐fibrinogen interaction in thrombasthenia. Blood 1980, 55:169–178.
Agam, G, Livne, A. Passive participation of fixed platelets in aggregation facilitated by covalently bound fibrinogen. Blood 1983, 61:186–191.
Agam, G, Livne, AA. Erythrocytes with covalently‐bound fibrinogen as a cellular replacement for the treatment of thrombocytopenia. Eur J Clin Invest 1992, 22:105–112.
Coller, BS, Springer, KT, Beer, JH, Mohandas, N, Scudder, LE, Norton, KJ, West, SM. Thromboerythrocytes. in vitro studies of a potential autologous, semi‐artificial alternative to platelet transfusions. J Clin Invest 1992, 89:546–555.
Levi, M, Friederich, PW, Middleton, S, de Groot, PG, Wu, YP, Harris, R, Biemond, BJ, Heijnen, HF, Levin, J, ten Cate, JW. Fibrinogen‐coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits. Nat Med 1999, 5:107–111.
Gelderman, MP, Vostal, JG. Current and future cellular transfusion products. Clin Lab Med 2010, 30:443–452.
Verhoef, C, Singla, N, Moneta, G, Muir, W, Rijken, A, Lockstadt, H, de Wilt, JH, O‐Yurvati, A, Zuckerman, LA, Frohna, P, et al. Fibrocaps for surgical hemostasis: two randomized, controlled phase II trials. J Surg Res 2015, 194:679–687.
Davies, AR, Judge, HM, May, JA, Glenn, JR, Heptinstall, S. Interactions of platelets with synthocytes, a novel platelet substitute. Platelets 2002, 13:197–205.
Yen, RCK, Ho, TWC, Blajchman, MA. A new haemostatic agent: thrombospheres shorten the bleeding time in thrombocytopenic rabbits. Thromb Haemost 1995, 73:986.
Brown, AC, Stabenfeldt, SE, Ahn, B, Hannan, RT, Dhada, KS, Herman, ES, Stefanelli, V, Guzzetta, N, Alexeev, A, Lam, WA, et al. Ultrasoft microgels displaying emergent platelet‐like behaviours. Nat Mater 2014, 13:1108–1114.
Yu, X, Song, SK, Chen, J, Scott, MJ, Fuhrhop, RJ, Hall, CS, Gaffney, PJ, Wickline, SA, Lanza, GM. High‐resolution MRI characterization of human thrombus using a novel fibrin‐targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 2000, 44:867–872.
Bertram, JP, Williams, CA, Robinson, R, Segal, SS, Flynn, NT, Lavik, EB. Intravenous hemostat: nanotechnology to halt bleeding. Sci Trans Med 2009, 1:11–22.
Du, X, Plow, EF, Frelinger, AL III, O`Toole, TE, Loftus, JC, Ginsberg, MH. Ligands ‘activate’ lntegrin αIIbβ3 (platelet GPllb‐llla). Cell 1991, 65:409–416.
Bassler, N, Loeffler, C, Mangin, P, Yuan, Y, Schwarz, M, Hagemeyer, CE, Eisenhardt, SU, Ahrens, I, Bode, C, Jackson, SP, et al. A mechanistic model for paradoxical platelet activation by ligand‐mimetic αIIbβ3 (GPIIb/IIIa) antagonists. Arterioscler Thromb Vasc Biol 2007, 27:e9–e15.
Lashof‐Sullivan, MM, Shoffstall, E, Atkins, KT, Keane, N, Bir, C, VandeVord, P, Lavik, EB. Intravenously administered nanoparticles increase survival following blast trauma. Proc Natl Acad Sci USA 2014, 111:10293–10298.
Okamura, Y, Takeoka, S, Teramura, Y, Maruyama, H, Tsuchida, E, Handa, M, Ikeda, Y. Hemostatic effects of fibrinogen gamma‐chain dodecapeptide‐conjugated polymerized albumin particles in vitro and in vivo. Transfusion 2005, 45:1221–1228.
Okamura, Y, Fujie, T, Nogawa, M, Maruyama, H, Handa, M, Ikeda, Y, Takeoka, S. Haemostatic effects of polymerized albumin particles carrying fibrinogen γ‐chain dodecapeptide as platelet substitutes in severely thrombocytopenic rabbits. Transfus Med 2008, 18:158–166.
Okamura, Y, Maekawa, I, Teramura, Y, Maruyama, H, Handa, M, Ikeda, Y, Takeoka, S. Hemostatic effects of phospholipid vesicles carrying fibrinogen γ chain dodecapeptide in vitro and in vivo. Bioconjug Chem 2005, 16:1589–1596.
Cheng, S, Craig, WS, Mullen, D, Tschopp, JF, Dixon, D, Piersbacher, MD. Design and synthesis of novel cyclic RGD‐containing peptides as highly potent and selective integrin αIIbβ3 antagonists. J Med Chem 1994, 79:659–667.
Ravikumar, M, Modery, CL, Wong, TL, Sen, GA. Peptide‐decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules 2012, 13:1495–1502.
Okamura, Y, Katsuno, S, Suzuki, H, Maruyama, H, Handa, M, Ikeda, Y, Takeoka, S. Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute. J Control Release 2010, 148:373–379.
Okamura, Y, Fukui, Y, Kabata, K, Suzuki, H, Handa, M, Ikeda, Y, Takeoka, S. Novel platelet substitutes: disk‐shaped biodegradable nanosheets and their enhanced effects on platelet aggregation. Bioconjug Chem 2009, 20:1958–1965.
Gale, AJ. Current understanding of hemostasis. Toxicol Pathol 2011, 39:273–280.
Ni, H, Freedman, J. Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus Apher Sci 2003, 28:257–264.
Okamura, Y, Handa, M, Suzuki, H, Ikeda, Y, Takeoka, S. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma‐chain dodecapeptide‐ or glycoprotein Ib alpha‐conjugated latex beads under flow conditions. J Artif Organs 2006, 9:251–258.
Modery‐Pawlowski, CL, Tian, LL, Ravikumar, M, Wong, TL, Sen Gupta, A. In vitro and in vivo hemostatic capabilities of a functionally integrated platelet‐mimetic liposomal nanoconstruct. Biomaterials 2013, 34:3031–3041.
Anselmo, AC, Modery‐Pawlowski, CL, Menegatti, S, Kumar, S, Vogus, DR, Tian, LL, Chen, M, Squires, TM, Sen Gupta, A, Mitragotri, S. Platelet‐like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 2014, 8:11243–11253.
Shukla, M, Sekhon, UDS, Betapudi, V, Li, W, Hickman, DA, Pawlowski, CL, Dyer, M, Neal, MD, McCrae, KR, Sen Gupta, A. In vitro characterization and in vivo evaluation of SynthoPlateTM (synthetic platelet) technology in severely thrombocytopenic mice. J Thromb Haemost 2017, 15:375–387.
Moghimi, SM, Hunter, AC, Murray, JC. Long‐circulating and target‐specific nanoparticles: theory to practice. Pharmacol Rev 2011, 53:283–318.
Oldenborg, P‐A, Zheleznyak, A, Fang, Y‐F, Lagenaur, C‐F, Gresham, HD, Lindberg, FP. Role of CD47 as a marker of self on red blood cells. Science 2000, 288:2051–2054.
Tsai, RK, Rodriguez, PL, Discher, DE. Self inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 2010, 45:67–74.
Hu, C‐MJ, Zhang, L, Aryal, S, Cheung, C, Fang, RH, Zhang, L. Erythrocyte membrane‐camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011, 108:10980–10985.
Fang, RH, Hu, C‐MJ, Chen, KNH, Luk, BT, Carpenter, CW, Gao, W, Li, S, Zhang, D‐E, Lue, W, Zhang, L. Lipid‐insertion enables targeting functionalization of erythrocyte membrane‐cloaked nanoparticles. Nanoscale 2013, 5:8884–8888.
Luk, BT, Hu, C‐MJ, Fang, RH, Dehaini, D, Carpenter, C, Gao, W, Zhang, L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014, 6:2730–2737.
Aryal, S, Hu, C‐MJ, Fang, RH, Dehaini, D, Carpenter, C, Zhang, D‐E, Zhang, L. Erythrocyte membrane‐cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 2013, 8:1271–1280.
Luk, BT, Fang, RH, Hu, C‐MJ, Copp, JA, Thamphiwatana, S, Dehaini, D, Gao, W, Zhang, K, Li, S, Zhang, L. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016, 6:1004–1011.
Hu, C‐MJ, Fang, RH, Wang, K‐C, Luk, BT, Thamphiwatana, S, Dehaini, D, Nguyen, P, Angsantikul, P, Wen, CH, Kroll, AV, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526:118–121.
Hu, Q, Sun, W, Qian, C, Wang, C, Bomba, HN, Gu, Z. Anticancer platelet‐mimicking nanovehicles. Adv Mater 2015, 27:7043–7050.
Li, J, Ai, Y, Wang, L, Bu, P, Sharkey, CC, Wu, Q, Wun, B, Roy, S, Shen, X, King, MR. Targeted drug delivery to circulating tumor cells via platelet membrane‐functionalized particles. Biomaterials 2016, 76:52–65.
Moghimi, SN, Hunter, AC, Peer, D. Platelet mimicry: the emperor`s new clothes? Nanomed Nanotechnol Biol Med 2016, 12:245–248.
Chao, FC, Kim, BK, Houranieh, AM, Liang, FH, Konrad, MW, Swisher, SN, Tullis, JL. Infusible platelet membrane microvesicles: a potential transfusion substitute for platelets. Transfusion 1996, 36:536–542.
Molinaro, R, Corbo, C, Martinez, JO, Taraballi, F, Evangelopoulos, M, Minardi, S, Yazdi, IK, Zhao, P, De Rosa, E, Sherman, MB, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater 2016, 15:1037–1047.
Hammer, DA, Robbins, GP, Haun, JB, Lin, JJ, Qi, W, Smith, LA, Ghoroghchian, PP, Therien, MJ, Bates, FS. Leuko‐polymersomes. Faraday Discuss 2008, 139:129–141.
Parodi, A, Quattrocchi, N, van de Ven, AL, Chiappini, C, Evangelopoulos, M, Martinez, JO, Brown, BS, Khaled, SZ, Yazdi, IK, Enzo, MV, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell‐like functions. Nat Nanotechnol 2013, 8:61–68.
Kumar, A, Graham, MD. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 2012, 8:10536–10548.
Reasor, DA Jr, Mehrabadi, M, Ku, DN, Aidun, CK. Determination of critical parameters in platelet margination. Ann Biomed Eng 2013, 41:238–249.
Wang, W, Diacovo, TG, Chen, J, Freund, JB, King, MR. Simulation of platelet, thrombus and erythrocyte hydrodynamic interactions in a 3D arteriole with in vivo comparison. PLoS One 2013, 8:e76949.
Müller, K, Fedosov, DA, Gompper, G. Margination of micro‐ and nano‐particles in blood flow and its effect on drug delivery. Sci Rep 2014, 4:4871.
Tokarev, AA, Butylin, AA, Ataullakhanov, FI. Platelet adhesion from shear blood flow is controlled by near‐wall rebounding collisions with erythrocytes. Biophys J 2011, 100:799–808.
Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016, 8:255–270.
Wang, Y, Merkel, TJ, Chen, K, Fromen, CA, Betts, DE, DeSimone, JM. Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master template. Langmuir 2011, 27:524–528.
Xu, J, Wong, DHC, Byrne, JD, Chen, K, Bowerman, C, DeSimone, JM. Future of the particle replication in nonwetting templates (PRINT) technology. Angew Chem Int Ed 2013, 52:6580–6589.
Dendukuri, D, Pregibon, DC, Collins, J, Hatton, TA, Doyle, PS. Continuous‐flow lithography for high‐throughput microparticle synthesis. Nat Mater 2006, 5:365–369.
Champion, JA, Katare, YK, Mitragotri, S. Making polymeric micro and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007, 104:11901–11904.
Glangchai, LC, Caldorera‐Moore, M, Shi, L, Roy, K. Nanoimprint lithography based fabrication of shape‐specific, enzymatically‐triggered smart nanoparticles. J Control Release 2008, 125:263–272.
Kolhar, P, Anselmo, A, Gupta, V, Prabhakarpandian, B, Pant, K, Ruoslahti, R, Mitragotri, S. Using shape effects to target nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013, 110:10753–10758.
Doshi, N, Orje, JN, Molins, B, Smith, JW, Mitragorti, S, Ruggeri, ZM. Platelet mimetic particles for targeting thrombi inflowing blood. Adv Mater 2012, 24:3864–3869.
Sarkar, S. Artificial blood. Indian J Crit Care Med 2008, 12:140–1444.
Booth, C, Highley, D. Crystalloids, colloids, blood, blood products and blood substitutes. Anaesth Intensive Care Med 2010, 11:50–55.
McCahon, R, Hardman, J. Pharmacology of plasma expanders. Anaesth Intensive Care Med 2007, 8:79–81.
Kudela, D, Smith, SA, May‐Masnou, A, Braun, GB, Pallaoro, A, Nguyen, CK, Chuong, TT, Nownes, S, Allen, R, Parker, NR, et al. Clotting activity of polyphosphate‐functionalized silica nanoparticles. Angew Chem 2015, 127:4090–4094.
Li, D, Li, P, Zang, J, Liu, J. Enhanced hemostatic performance of tranexamic acid‐loaded chitosan/alginate composite microparticles. J Biomed Biotechnol 2012, 981321. doi:10.1155/2012/981321.
Spitalnik, SL, Triulzi, D, Devine, DV, Dzik, WH, Eder, AF, Gernsheimer, T, Josephson, CD, Kor, DJ, Luban, NL, Roubinian, NH, et al. State of the science in transfusion medicine working groups. Transfusion 2015, 55:2282–2290.
Douay, L, Andreu, G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion? Transfus Med Rev 2007, 21:91–100.
Rousseau, GF, Giarratana, MC, Douay, L. Large‐scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J 2014, 9:28–38.
Avanzi, MP, Mitchell, WB. Ex vivo production of platelets from stem cells. Br J Haematol 2014, 165:237–247.
Nakamura, S, Takayama, N, Hirata, S, Seo, H, Endo, H, Ochi, K, Fujita, K, Koike, T, Harimoto, K, Dohda, T, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014, 14:535–548.
Thon, JN, Mazutis, L, Wu, S, Sylman, JL, Ehrlicher, A, Machlus, KR, Feng, Q, Lu, S, Lanza, R, Neeves, KB, et al. Platelet bioreactor‐on‐a‐chip. Blood 2014, 124:1857–1867.