Gramiak, R, Shah, PM. Echocardiography of the aortic root. Invest Radiol 1968, 3:356–366.
Nanda, NC. History of echocardiographic contrast agents. Clin Cardiol 1997, 20:7–11.
Quaia, E. Microbubble ultrasound contrast agents: an update. Eur Radiol 2007, 17:1995–2008.
Medwin, H. Counting bubbles acoustically: a review. Ultrasonics 1977, 15:7–13.
Leighton, TG. The Acoustic Bubble. San Diego: Academic Press; 1994.
Appis, AW, Tracy, MJ, Feinstein, SB. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Practice 2015, 2:R55–R62.
Sidhu, PS, Choi, BI, Nielsen, MB. The EFSUMB guidelines on the non‐hepatic clinical applications of contrast enhanced ultrasound (CEUS): a new dawn for the escalating use of this ubiquitous technique. Ultraschall Medizin 2012, 33:5–7.
Goertz, DE. An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble‐mediated bioeffects. Int J Hyperthermia 2015, 31:134–144.
Lentacker, I, De Cock, I, Deckers, R, De Smedt, SC, Moonen, CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014, 72:49–64.
Lentacker, I, De Smedt, SC, Sanders, NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 2009, 5:2161–2170.
Unger, EC, Porter, T, Culp, W, Labell, R, Matsunaga, T, Zutshi, R. Therapeutic applications of lipid‐coated microbubbles. Adv Drug Deliv Rev 2004, 56:1291–1314.
Kooiman, K, Vos, HJ, Versluis, M, de Jong, N. Acoustic behaviour of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014, 72:28–48.
Miller, DL, Dou, C, Armstrong, WF. The influence of agent delivery mode on cardiomyocyte injury induced by myocardial contrast echocardiography in rats. Ultrasound Med Biol 2005, 31:1257–1263.
Hwang, JH, Tu, J, Brayman, AA, Matula, TJ, Crum, LA. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 2006, 32:1611–1619.
Hwang, JH, Zhou, Y, Warren, C, Brayman, AA, Crum, LA. Targeted venous occlusion using pulsed high‐intensity focused ultrasound. IEEE Trans Biomed Eng 2010, 57:37–40.
Molina, C, Ribo, M, Rubiera, M, Montaner, J, Santamarina, E, Delgado‐Mederos, R, Arenillas, J, Huertas, R, Purroy, F, Delgado, P, et al. Microbubble administration accelerates clot lysis during continuous 2‐MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006, 37:425–429.
Datta, S, Coussios, CC, McAdory, LE, Tan, J, Porter, T, De Courten‐Myers, G, Holland, C k. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 2006, 32:1257–1267.
Song, J, Qi, M, Kaul, S, Price, RJ. Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation 2002, 106:1550–1555.
Song, J, Cottler, PS, Klibanov, AL, Kaul, S, Price, RJ. Microvascular remodeling and accelerated hyperemia blood flow restoration in arterially occluded skeletal muscle exposed to ultrasonic microbubble destruction. Am J Physiol 2004, 287:2754–2761.
Wood, AKW, Ansaloni, S, Ziemer, LS, Lee, WM‐F, Feldman, MD, Sehgal, CM. The antivascular action of physiotherapy ultrasound on murine tumors. Ultrasound Med Biol 2005, 31:1403–1410.
Goertz, DE, Todorova, M, Mortazavi, O, Agache, V, Chen, B, Karshafian, R, Hynynen, K. Antitumor effects of combining docetaxel (Taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One 2012, 7:e52307.
Mainprize, DT. Blood‐brain barrier disruption using transcranial MRI‐guided focused ultrasound. ClinicalTrials.gov, 12 January 2015. [Online]. Available at: https://clinicaltrials.gov/ct2/show/NCT02343991.
Burgess, A, Hynynen, K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem Nerosci 2013, 4:519–526.
Dimcevski, G, Kotopoulis, S, Bjanes, T, Hoem, D, Schjott, J, Gjertsen, BT, Biermann, M, Molven, A, Sorbye, H, McCormack, E, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 2016, 243:172–181.
Goertz, DE, de Jong, N, van der Steen, AFW. Attenuation and size distribution measurements of definity and manipulated definity populations. Ultrasound Med Biol 2007, 33:1376–1388.
Goertz, DE, Wong, SWS, Cherin, E, Chin, CT, Burns, PN, Foster, FS. Nonlinear scattering properties of microbubble contrast agents at high frequencies. In: Proceedings of IEEE Ultrasonics Symposium; 2001.
Goertz, DE, Frijlink, M, Bouakaz, A, Chin, CT, de Jong, N, van der Steen, AWF. The effect of bubble size on nonlinear scattering at high frequencies. In: Proceedings of IEEE Ultrasonics Symposium; 2003.
Alheshibri, M, Qian, J, Jehannin, M, Craig, VSJ. A history of nanobubbles. Langmuir 2016, 32:11086–11100.
Faez, T, Emmer, M, Kooiman, K, Versluis, M, van der Steen, AFW, de Jong, N. 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 2013, 60:7–20.
Krupka, TM, Solorio, L, Wilson, RE, Wu, H, Azar, N, Exner, AA. Formulation and characterization of echogenic lipid‐pluronic nanobubbles. Mol Pharm 2009, 7:49–59.
Jong, N d, Emmer, M, van Wamel, A, Versluis, M. Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput 2009, 47:861–873.
Goertz, DE, Frijlink, ME, De Jong, N, van der Steen, AFW. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent. Ultrasound Med Biol 2006, 32:569–577.
Wang, Y, Liu, G, Hu, H, Li, TY, Johri, AM, Li, X, Wang, J. Stable encapsulated air nanobubbles in water. Angew Chem Int Ed 2015, 54:14291–14294.
Wu, H, Rognin, NG, Krupka, TM, Solorio, L, Yoshiara, H, Guenette, G, Sanders, C, Kamiyama, N, Exner, AA. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 2013, 39:2137–2146.
Perera, RH, Wu, H, Peiris, P, Hernandez, C, Burke, A, Zhang, H, Exner, AA. Improving performance of nanoscale ultrasound contrast agents using N,N‐diethylacrylamide stabilization. Nanomed Nanotechnol Biol Med 2017, 13:59–67.
Dube, NK, Oeffinger, BE, Wheatley, MA. Development and characterization of a nano‐sized surfactant stabilized contrast agent for diagnostic ultrasound. In: IEEE, pp. 102–103; 2003.
Xing, Z, Wang, J, Ke, H, Zhao, B, Yue, X, Dai, Z, Liu, J. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 2010, 21:145607.
Wheatley, MA, Lewandowski, J. Nano‐sized ultrasound contrast agent: salting‐out method. Mol Imaging 2010, 9:96–107.
Cavalli, R, Bisazza, A, Giustetto, P, Civra, A, Lembo, D, Trotta, G, Guiot, C, Trotta, M. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm 2009, 381:160–165.
Cai, WB, Yang, HL, Zhang, J, Yin, JK, Yang, YL, Yuan, LJ, Zhang, L, Duan, YY. The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci Rep 2015, 5:13725.
Yin, T, Wang, P, Zheng, R, Zheng, B, Cheng, D, Zhang, X, Shuai, X. Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine 2012, 7:895–904.
Sirsi, SR, Borden, MA. State‐of‐the‐art materials for ultrasound‐triggered drug delivery. Adv Drug Deliv Rev 2014, 72:3–14.
Helfield, B, Cherin, E, Foster, FS, Goertz, DE. Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: a comparative study of five agents. Ultrasound Med Biol 2012, 38:846–863.
Alkan‐Onyuksel, H, Demos, SM, Lanza, GM, Vonesh, MJ, Klegerman, ME, Kane, BJ, Kuszak, J, McPherson, DD. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 1996, 85:486–490.
Huang, S‐L. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008, 60:1167–1176.
Huang, S‐L, McPherson, DD, MacDonald, RC. A method to co‐encapsulate gas and drugs in liposomes for ultrasound‐controlled drug delivery. Ultrasound Med Biol 2008, 34:1272–1280.
Huang, S‐L, MacDonald, RC. Acoustically active liposomes for drug encapsulation and ultrasound‐triggered release. Biochim Biophys Acta Biomembr 2004, 1665:134–141.
Coussios, CC, Holland, CK, Jakubowska, L, Huang, S‐L, MacDonald, RC, Nagaraj, A, McPherson, DD. In vitro characterization of liposomes and optison by acoustic scattering at 3.5 MHz. Ultrasound Med Biol 2004, 30:181–190.
Radhakrishnan, K, Haworth, KJ, Huang, S‐L, Klegerman, ME, McPherson, DD, Holland, CK. Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom. Ultrasound Med Biol 2012, 38:1970–1981.
Huang, S, Hamilton, AJ, Tiukinhoy, SD, Nagaraj, A, Kane, BJ, Klegerman, M, McPherson, DD, MacDonald, RC. Liposomes as ultrasound imaging contrast agents and as utlrasound‐sensitive drug delivery agents. Cell Mol Biol Lett 2002, 7:233–235.
Kopechek, J, Abruzzo, T, Wang, B, Chrzanowski, S, Smith, D, Kee, PH, Huang, S‐L, Collier, J, McPherson, DD, Holland, CK. Ultrasound‐mediated release of hydrophilic and lipophilic agents from echogenic liposomes. J Ultrasound Med 2008, 27:1597–1606.
Klegerman, ME, Wassler, M, Huang, S‐L, Zhou, Y, Kim, H, Shelat, HS, Holland, CK, Geng, Y‐J, McPherson, DD. Liposomal modular complexes for simultaneous delivery of bioactive gases and therapeutics. J Control Release 2010, 142:326–331.
Fix, SM, Borden, MA, Dayton, PA. Therapeutic gas delivery via microbubbles and liposomes. J Control Release 2015, 209:139–149.
Bouakaz, A, De Jong, N, Cachard, C. Standard properties of ultrasound contrast agents. Ultrasound Med Biol 1998, 24:469–472.
Walsby, AE. Gas Vesicles. Microbiol Rev 1994, 58:94–144.
Shapiro, MG, Goodwill, PW, Neogy, A, Yin, M, Foster, FS, Schaffer, DV, Conolly, SM. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 2014, 9:311–316.
Lakshmanan, A, Farhadi, A, Nety, SP, Lee‐Gosselin, A, Bourdeau, RW, Maresca, D, Shapiro, MG. Molecular engineering of acoustic protein nanostructures. ACS Nano 2016, 10:7314–7322.
Cherin, E, Melis, JM, Bourdeau, RW, Yin, M, Kochmann, DM, Foster, SF, Shapiro, MG. Acoustic behaviour of Halobacterium salinarium gas vesicles in the high‐frequency range: experiments and modeling. Ultrasound Med Biol 2017, 43:1016–1030.
Maresca, D, Lakshmanan, A, Lee‐Gosselin, A, Melis, JM, Ni, Y‐L, Bourdeau, RW, Kochmann, DM, Shapiro, MG. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl Phys Lett 2017, 110:073704.
Yang, Y, Qiu, Z, Liu, C, Huang, Y, Sun, L. Acoustic characterization of nano gas vesicles. In: IEEE International Ultrasonics Symposium Proceedings, 2015.
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol 2012, 10:705–715.
Borkent, BM, Gekle, S, Prosperetti, A, Lohse, D. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys Fluids 2009, 21:102003.
Harvey, EN, Barnes, KK, McElroy, WD, Whitely, AH, Pease, DC, Cooper, KW. Bubble formation in animals. I. Physical factors. J Cell Comp Physiol 1944, 24:1–22.
Apfel, RE. The role of impurities in cavitation‐threshold determination. J Acoust Soc Am 1970, 48:1179–1186.
Atchley, AA, Prosperetti, A. The crevice model of bubble nucleation. J Acoust Soc Am 1989, 86:1065–1084.
Crum, LA. Tensile strength of water. Nature 1979, 278:148–149.
Zhao, Y, Zhu, Y. Synergistic cytotoxicity of low‐energy ultrasound and innovative mesoporous silica‐based sensitive nanoagents. J Mater Sci 2014, 49:3665–3673.
Yildirim, A, Chattaraj, R, Blum, NT, Goldscheitter, GM, Goodwin, AP. Stable encapsulation of air in mesoporous silica nanoparticles: fluorocarbon‐free nanoscale ultrasound contrast agents. Adv Healthc Mater 2016, 5:1290–1298.
Yildirim, A, Chattaraj, R, Blum, NT, Goodwin, AP. Understanding acoustic cavitation initiation by porous nanoparticles: toward nanoscale agents for ultrasound imaging and therapy. Chem Mater 2016, 28:5962–5972.
Jin, Q, Kang, S‐T, Chang, Y‐C, Zheng, H, Yeh, C‐K. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation. Ultrason Sonochem 2016, 32:1–7.
Kwan, JJ, Myers, R, Coviello, CM, Grahan, SM, Shah, AR, Stride, E, Carlisle, RC, Coussios, CC. Ultrasound‐propelled nanocups for drug delivery. Small 2015, 11:5305–5314.
Kwan, JJ, Lajoinie, G, de Jong, N, Stride, E, Versluis, M, Coussios, CC. Ultrahigh‐speed dynamics of micrometer‐scale inertial cavitation from nanoparticles. Phys Rev Appl 2016, 6:044004.
Rapoport, N, Gao, Z, Kennedy, A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 2007, 99:1095–1106.
Ho, Y‐J, Chang, Y‐C, Yeh, C‐K. Improving nanoparticle penetration in tumors by vascular disruption with acoustic droplet vaporization. Theranostics 2016, 6:392–403.
Couture, O, Bevan, PD, Cherin, E, Cheung, K, Burns, PN, Foster, FS. Investigating perfluorohexane particles with high‐frequency ultrasound. Ultrasound Med Biol 2006, 32:73–82.
Lanza, GM, Wallace, KD, Scott, MJ, Chacheris, WP, Abendschein, DR, Christy, DH, Sharkey, AM, Miller, JG, Gaffney, PJ, Wickline, SA. A novel site‐targeted ultrasonic contrast agent with broad biomedical applications. Circulation 1996, 94:3334–3340.
Sheeran, P, Matsuura, N, Borden, MA, Williams, R, Matsunaga, TO, Burns, PN, Dayton, PA. Methods of generating submicrometer phase‐shift perfluorocarbon droplets for applications in medical ultrasonography. IEEE Trans Ultrason Ferroelectr Freq Control 2017, 64:252–263.
Tran, TD, Caruthers, SD, Hughes, M, Marsh, JN, Cyrus, T, Winter, PM, Neubauer, AM, Wickline, SA, Lanza, GM. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomedicine 2007, 2:515–526.
Lanza, GM, Trousil, RL, Wallace, KD, Rose, JH, Hall, CS, Scott, MJ, Miller, JG, Eisenberg, PR, Gaffney, PJ, Wickline, SA. In vitro characterization of a novel, tissue‐targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 1998, 104:3665–3672.
Paproski, RJ, Forbich, A, Huynh, E, Chen, J, Lewis, JD, Zheng, G, Zemp, RJ. Porphyrin nanodroplets: sub‐micrometer ultrasound and photoacoustic contrast imaging agents. Small 2016, 12:371–380, 2–5.
Martin, KH, Dayton, PA. Current status and prospects for microbubbles in ultrasound and theranostics. WIREs Nanomed Nanobiotechnol 2013, 5:329–345.
Kripfgans, OD, Fowlkes, JB, Miller, DL, Eldevik, OP, Carson, PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 2000, 26:1177–1189.
Schad, KC, Hynynen, K. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 2010, 55:4933–4947.
Giesecke, T, Hynynen, K. Ultrasound‐mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 2003, 29:1359–1365.
Sheeran, PS, Matsunaga, TO, Dayton, PA. Phase‐transition thresholds and vaporization phenomena for ultrasound phase‐change nanoemulsions assessed via high speed optical microscopy. Phys Med Biol 2013, 58:4513–4534.
Shpak, O, Verweij, M, Vos, HJ, de Jong, N, Lohse, D, Versluis, M. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci U S A 2013, 111:1697–1702.
Samuel, S, Duprey, A, Fabiilli, ML, Bull, JL, Fowlkes, BJ. In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization. Microcirculation 2012, 19:501–509.
Sheeran, PS, Dayton, PA. Phase‐change contrast agents for imaging and therapy. Curr Pharm Des 2012, 18:2152–2165.
Haworth, KJ, Fowlkes, JB, Carson, PL, Kripfgans, OD. Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization. Ultrasound Med Biol 2008, 34:435–445.
Sheeran, PS, Streeter, JE, Mullin, LB, Matsunaga, TO, Dayton, PA. Toward ultrasound molecular imaging with phase‐change contrast agents: an in vitro proof of principle. Ultrasound Med Biol 2013, 39:893–902.
Sheeran, PS, Rojas, JD, Puett, C, Hjelmquist, J, Arena, CB, Dayton, PA. Contrast‐enhanced ultrasound imaging and in vivo circulatory kinetics with low‐boiling‐point nanoscale phase‐change perfluorocarbon agents. Ultrasound Med Biol 2015, 41:814–831.
Rapoport, NY, Kennedy, AM, Shea, JE, Scaife, CL, Nam, K‐H. Controlled and targeted tumor chemotherapy by ultrasound‐activated nanoemulsions/microbubbles. J Control Release 2009, 138:268–276.
Sheeran, PS, Wong, VP, Luois, S, McFarland, RJ, Ross, WD, Feingold, S, Matsunaga, TO, Dayton, PA. Decafluorobutane as a phase‐change contrast agent for low‐energy extravascular ultrasonic imaging. Ultrasound Med Biol 2011, 37:1518–1530.
Reznik, N, Williams, R, Burns, PN. Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent. Ultrasound Med Biol 2011, 37:1271–1279.
Zhang, P, Porter, T. An in vitro study of a phase‐shift nanoemulsion: a potential nucleation agent for bubble‐enhanced HIFU tumor ablation. Ultrasound Med Biol 2010, 36:1856–1866.
Moyer, LC, Timbie, KF, Sheeran, PS, Price, RJ, Miller, GW, Dayton, PA. High‐intensity focused ultrasound ablation enhancement in vivo via phase‐shift nanodroplets compared to microbubbles. J Therap Ultrasound 2015, 3:7.
Seo, M, Williams, R, Matsuura, N. Size reduction of cosolvent‐infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets. Lab Chip 2015, 15:3581–3590.
Anderson, W, Kozak, D, Coleman, VA, Jamting, AK, Trau, M. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 2013, 405:322–330.
de Jong, N, Hoff, L, Skotland, T, Bom, N. Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 1992, 30:95–103.
van der Meer, SM, Dollet, B, Voormolen, MM, Chin, CT, Bouakaz, A, de Jong, N, Versluis, M, Lohse, D. Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 2007, 121:648–656.
Jong, N d, Emmer, M, Chin, CT, Bouakaz, A, Mastik, F, Lohse, D, Versluis, M. “Compression‐only” behaviour of phospholipid‐coated contrast bubbles. Ultrasound Med Biol 2007, 33:653–656.
Helfield, BL, Goertz, DE. Nonlinear resonance behaviour and linear shell estimates for Definity and MicroMarker assessed with acoustic microbubble spectroscopy. J Acoust Soc Am 2013, 133:1158–1168.
Fan, C‐H, Liu, H‐L, Ting, C‐Y, Lee, Y‐H, Huang, C‐Y, Ma, Y‐J, Wei, K‐C, Yen, T‐C, Yeh, C‐K. Submicron‐bubble‐enhanced focused ultrasound for blood brain barrier disruption and improved CNS drug delivery. PLoS One 2014, 5:9.
Matsuura, N, Koonar, E, Zhu, S, Leung, BY, Seo, M, Sivapalan, N, Goertz, DE. Inducing antivascular effects in tumors with ultrasound stimulated micron‐sized bubbles. In: IEEE International Ultrasonics Symposium; 2015.
Helfield, BL, Leung, BYC, Goertz, DE. The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles. Phys Med Biol 2014, 59:1721–1745.
Blake, J, Gibson, D. Cavitation bubbles near boundaries. Annu Rev Fluid Mech 1987, 19:99–123.
Kobayashi, H, Watanabe, R, Choyke, PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2014, 4:81–89.
Heneweer, C, Holland, JP, Divilov, V, Carlin, S, Lewis, JS. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89‐Zr‐albumin as a model system. J Nucl Med 2011, 52:625–633.
Wilhelm, S, Tavares, AJ, Dai, Q, Ohta, S, Audet, J, Dvorak, HF, Chan, WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016, 1:1–12.
Lanza, GM, Moonen, C, Baker, JRJ, Chang, E, Cheng, Z, Grodzinski, P, Ferrara, K, Hynynen, K, Kelloff, G, Lee, Y‐EK, et al. Assessing the barriers to image‐guided drug delivery. WIREs Nanomed Nanobiotechnol 2014, 6:1–14.
Huynh, E, Leung, BYC, Helfield, BL, Shakiba, M, Gandier, J‐A, Jin, CS, Master, ER, Wilson, BC, Goertz, DE, Zheng, G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 2015, 2:325–332.
Huynh, E, Jin, CS, Wilson, BC, Zheng, G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 2014, 25:796–801.
Huynh, E, Lovell, JF, Helfield, BL, Jeon, M, Kim, C, Goertz, DE, Wilson, BC, Zheng, G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 2012, 134:16464–16467.
Blum, NT, Yildirim, A, Chattaraj, R, Goodwin, AP. Nanoparticles formed by acoustic destruction of microbubbles and their utilization for imaging effects on therapy by high intensity focused ultrasound. Theranostics 2017, 7:694–702.
Lajoinie, G, De Cock, I, Coussios, CC, Lentacker, I, Le Gac, S, Stride, E, Versluis, M. In vitro methods to study bubble‐cell interactions: fundamentals and therapeutic applications. Biomicrofluidics 2016, 10:011501.
Nhan, T, Burgess, A, Hynynen, K. Transducer design and characterization for dorsal based ultrasound exposure and two photon imaging of in vivo blood‐brain barrier disruption in a rat model. IEEE Trans Ultrason Ferroelectr Freq Control 2013, 60:1376–1385.
Burgess, A, Cho, EE, Shaffaf, L, Nhan, T, Poon, C, Hynynen, K. The use of two‐photon microscopy to study the biological effects of focused ultrasound on the brain. In: Proc SPIE 8226; 2012.