Abbasi,, S., Zebarjad,, S. M., Baghban,, S. H. N., & Youssefi,, A. (2015). Synthesis of TiO2 nanoparticles and decorated multiwalled carbon nanotubes with various content of rutile titania. Synthesis and Reactivity in Inorganic, Metal‐Organic, and Nano‐Metal Chemistry, 45(10), 1539–1548. https://doi.org/10.1080/15533174.2013.862820
Adiga,, S. P., Jin,, C., Curtiss,, L. A., Monteiro‐Riviere,, N. A., & Narayan,, R. J. (2009). Nanoporous membranes for medical and biological applications. WIREs Nanomedicine and Nanobiotechnology, 1(5), 568–581. https://doi.org/10.1002/wnan.50
Algar,, W. R., Tavares,, A. J., & Krull,, U. J. (2010). Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 673(1), 1–25. https://doi.org/10.1016/j.aca.2010.05.026
Alvarez,, M., Calle,, A., Tamayo,, J., Lechuga,, L. M., Abad,, A., & Montoya,, A. (2003). Development of nanomechanical biosensors for detection of the pesticide DDT. Biosensors and Bioelectronics, 18(5–6), 649–653. https://doi.org/10.1016/S0956-5663(03)00035-6
Arntz,, Y., Seelig,, J. D., Lang,, H. P., Zhang,, J., Hunziker,, P., Ramseyer,, J. P., … Gerber,, C. (2003). Label‐free protein assay based on a nanomechanical cantilever array. Nanotechnology, 14(1), 86–90. https://doi.org/10.1088/0957-4484/14/1/319
Arora,, N., & Sharma,, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials, 50, 135–150. https://doi.org/10.1016/j.diamond.2014.10.001
Baer,, A., & Kehn‐Hall,, K. (2014). Viral concentration determination through plaque assays: Using traditional and novel overlay systems. Journal of Visualized Experiments, 93, e52065. https://doi.org/10.3791/52065
Balasubramanian,, K., & Burghard,, M. (2005). Chemically functionalized carbon nanotubes. Small, 1(2), 180–192. https://doi.org/10.1002/smll.200400118
Baller,, M. K., Lang,, H. P., Fritz,, J., Gerber,, C., Gimzewsk,, J. K., Drechsler,, U., … Guntherodt,, H. J. (2000). A cantilever array‐based artificial nose. Ultramicroscopy, 82(1–4), 1–9. https://doi.org/10.1016/S0304-3991(99)00123-0
Bellan,, L. M., Wu,, D., & Langer,, R. S. (2011). Current trends in nanobiosensor technology. WIREs Nanomedicine and Nanobiotechnology, 3(3), 229–246. https://doi.org/10.1002/wnan.136
Boisen,, A., Dohn,, S., Keller,, S. S., Schmid,, S., & Tenje,, M. (2011). Cantilever‐like micromechanical sensors. Reports on Progress in Physics, 74(3), 036101. https://doi.org/10.1088/0034-4885/74/3/036101
Brandt,, O., & Hoheisel,, J. D. (2004). Peptide nucleic acids on microarrays and other biosensors. Trends in Biotechnology, 22(12), 617–622. https://doi.org/10.1016/j.tibtech.2004.10.003
Buch,, M., & Rishpon,, J. (2008). An electrochemical immunosensor for C‐reactive protein based on multi‐walled carbon nanotube‐modified electrodes. Electroanalysis, 20(23), 2592–2594. https://doi.org/10.1002/elan.200804358
Bugli,, F., Manzara,, S., Torelli,, R., Graffeo,, R., Santangelo,, R., Cattani,, P., & Fadda,, G. (2004). Human monoclonal antibody fragment specific for glycoprotein G in herpes simplex virus type 2 with applications for serotype‐specific diagnosis. Journal of Clinical Microbiology, 42(3), 1250–1253. https://doi.org/10.1128/JCM.42.3.1250-1253.2004
Bunimovich,, Y. L., Shin,, Y. S., Yeo,, W. S., Amori,, M., Kwong,, G., & Heath,, J. R. (2006). Quantitative real‐time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. Journal of the American Chemical Society, 128(50), 16323–16331. https://doi.org/10.1021/ja065923u
Cagliani,, A., Kosaka,, P., Tamayo,, J., & Davis,, Z. J. (2012). Monitoring the hydration of DNA self‐assembled monolayers using an extensional nanomechanical resonator. Lab on a Chip, 12(11), 2069–2073. https://doi.org/10.1039/C2LC40047B
Caliendo,, A. M., Gilbert,, D. N., Ginocchio,, C. C., Hanson,, K. E., May,, L., Quinn,, T. C., … for the Infectious Diseases Society of America (IDSA) (2013). Better tests, better care: Improved diagnostics for infectious diseases. Clinical Infectious Diseases, 57(Suppl 3), S139–S170. https://doi.org/10.1093/cid/cit578
Chang,, L., Li,, J., & Wang,, L. (2016). Immuno‐PCR: An ultrasensitive immunoassay for biomolecular detection. Analytica Chimica Acta, 910, 12–24. https://doi.org/10.1016/j.aca.2015.12.039
Chen,, C. T., Chen,, W. J., Liu,, C. Z., Chang,, L. Y., & Chen,, Y. C. (2009). Glutathione‐bound gold nanoclusters for selective‐binding and detection of glutathione S‐transferase‐fusion proteins from cell lysates. Chemical Communications (Cambridge), 48, 7515–7517. https://doi.org/10.1039/b916919a
Chen,, G. Y., Roy,, I., Yang,, C. H., & Prasad,, P. N. (2016). Nanochemistry and nanomedicine for nanoparticle‐based diagnostics and therapy. Chemical Reviews, 116(5), 2826–2885. https://doi.org/10.1021/acs.chemrev.5b00148
Chen,, L., Wang,, X., Lu,, W., Wu,, X., & Li,, J. (2016). Molecular imprinting: Perspectives and applications. Chemical Society Reviews, 45(8), 2137–2211. https://doi.org/10.1039/c6cs00061d
Chen,, L.‐Y., Wang,, C.‐W., Yuan,, Z., & Chang,, H.‐T. (2015). Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Analytical Chemistry, 87(1), 216–229. https://doi.org/10.1021/ac503636j
Chen,, W. Y., Chen,, H. C., Yang,, Y. S., Huang,, C. J., Chan,, H. W. H., & Hu,, W. P. (2013). Improved DNA detection by utilizing electrically neutral DNA probe in field‐effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosensors %26 Bioelectronics, 41, 795–801. https://doi.org/10.1016/j.bios.2012.10.010
Chen,, Y., & Lu,, Z. (2007). Dye sensitized luminescent europium nanoparticles and its time‐resolved fluorometric assay for DNA. Analytica Chimica Acta, 587(2), 180–186. https://doi.org/10.1016/j.aca.2007.01.059
Cheng,, M. S., Lau,, S. H., Chow,, V. T., & Toh,, C. S. (2011). Membrane‐based electrochemical nanobiosensor for Escherichia coli detection and analysis of cells viability. Environmental Science %26 Technology, 45(15), 6453–6459. https://doi.org/10.1021/es200884a
Choi,, D., Choi,, Y., Hong,, S., Kang,, T., & Lee,, L. P. (2010). Self‐organized hexagonal‐nanopore SERS array. Small, 6(16), 1741–1744. https://doi.org/10.1002/smll.200901937
Chua,, J. H., Chee,, R. E., Agarwal,, A., Wong,, S. M., & Zhang,, G. J. (2009). Label‐free electrical detection of cardiac biomarker with complementary metal‐oxide semiconductor‐compatible silicon nanowire sensor arrays. Analytical Chemistry, 81(15), 6266–6271. https://doi.org/10.1021/ac901157x
Chunduri,, L. A. A., Kurdekar,, A., Haleyurgirisetty,, M. K., Bulagonda,, E. P., Kamisetti,, V., & Hewlett,, I. K. (2017). Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of HIV infection. Scientific Reports, 7(1), 7149. https://doi.org/10.1038/s41598-017-07299-1
Conejero‐Goldberg,, C., Wang,, E., Yi,, C., Goldberg,, T. E., Jones‐Brando,, L., Marincola,, F. M., … Torrey,, E. F. (2005). Infectious pathogen detection arrays: Viral detection in cell lines and postmortem brain tissue. BioTechniques, 39(5), 741–751. https://doi.org/10.2144/000112016
Convertino,, A., Mussi,, V., & Maiolo,, L. (2016). Disordered array of Au covered silicon nanowires for SERS biosensing combined with electrochemical detection. Scientific Reports, 6, 25099. https://doi.org/10.1038/srep25099
Cui,, Y., Wei,, Q., Park,, H., & Lieber,, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293(5533), 1289–1292. https://doi.org/10.1126/science.1062711
Cumbo,, A., Lorber,, B., Corvini,, P. F., Meier,, W., & Shahgaldian,, P. (2013). A synthetic nanomaterial for virus recognition produced by surface imprinting. Nature Communications, 4, 1503. https://doi.org/10.1038/ncomms2529
Dabbousi,, B. O., RodriguezViejo,, J., Mikulec,, F. V., Heine,, J. R., Mattoussi,, H., Ober,, R., … Bawendi,, M. G. (1997). (CdSe)ZnS core‐shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry. B, 101(46), 9463–9475. https://doi.org/10.1021/jp971091y
Dai,, Z. H., & Ju,, H. X. (2012). Bioanalysis based on nanoporous materials. Trends in Analytical Chemistry, 39, 149–162. https://doi.org/10.1016/j.trac.2012.05.008
Das,, M., Sumana,, G., Nagarajan,, R., & Malhotra,, B. D. (2010). Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection. Applied Physics Letters, 96(13), 133703. https://doi.org/10.1063/1.3293447
Dastagir,, T., Forzani,, E. S., Zhang,, R., Amlani,, I., Nagahara,, L. A., Tsui,, R., & Tao,, N. (2007). Electrical detection of hepatitis C virus RNA on single wall carbon nanotube‐field effect transistors. Analyst, 132(8), 738–740. https://doi.org/10.1039/B707025J
Davis,, Z. J., Abadal,, G., Helbo,, B., Hansen,, O., Campabadal,, F., Pérez‐Murano,, F., … Boisen,, A. (2003). Monolithic integration of mass sensing nano‐cantilevers with CMOS circuitry. Sensors and Actuators A: Physical, 105(3), 311–319. https://doi.org/10.1016/S0924-4247(03)00208-5
de Greeff,, A., van Alphen,, L., & Smith,, H. E. (2000). Selection of recombinant antibodies specific for pathogenic Streptococcus suis by subtractive phage display. Infection and Immunity, 68(7), 3949–3955. https://doi.org/10.1128/Iai.68.7.3949-3955.2000
de Smet,, L. C. P. M., Ullien,, D., Mescher,, M., & Sudholter,, E. J. R. (2011). Organic surface modification of silicon nanowire‐based sensor devices. Nanowires – Implementations and Applications, Chapter 13, 267–288. https://doi.org/10.5772/1025
Demidov,, V. V., & Frank‐Kamenetskii,, M. D. (2004). Two sides of the coin: Affinity and specificity of nucleic acid interactions. Trends in Biochemical Sciences, 29(2), 62–71. https://doi.org/10.1016/j.tibs.2003.12.007
Deng,, X. K., Nesbit,, L. A., & Morrow,, J. K. J. (2003). Recombinant single‐chain variable fragment antibodies directed against Clostridium difficile toxin B produced by use of an optimized phage display system. Clinical and Diagnostic Laboratory Immunology, 10(4), 587–595. https://doi.org/10.1128/CDLI.10.4.587-595.2003
Derfus,, A. M., Chan,, W. C. W., & Bhatia,, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4(1), 11–18. https://doi.org/10.1021/nl0347334
Derveaux,, S., Vandesompele,, J., & Hellemans,, J. (2010). How to do successful gene expression analysis using real‐time PCR. Methods, 50(4), 227–230. https://doi.org/10.1016/j.ymeth.2009.11.001
Desogus,, A., Burioni,, R., Ingianni,, A., Bugli,, F., Pompei,, R., & Fadda,, G. (2003). Production and characterization of a human recombinant monoclonal fab fragment specific for Influenza A viruses. Clinical and Diagnostic Laboratory Immunology, 10(4), 680–685. https://doi.org/10.1128/CDLI.10.4.680-685.2003
Dong,, H., Du,, S. R., Zheng,, X. Y., Lyu,, G. M., Sun,, L. D., Li,, L. D., … Yan,, C. H. (2015). Lanthanide nanoparticles: From design toward bioimaging and therapy. Chemical Reviews, 115(19), 10725–10815. https://doi.org/10.1021/acs.chemrev.5b00091
Dronov,, R., Jane,, A., Shapter,, J. G., Hodges,, A., & Voelcker,, N. H. (2011). Nanoporous alumina‐based interferometric transducers ennobled. Nanoscale, 3(8), 3109–3114. https://doi.org/10.1039/c0nr00897d
Edberg,, S. C. (1985). Principles of nucleic acid hybridization and comparison with monoclonal antibody technology for the diagnosis of infectious diseases. The Yale Journal of Biology and Medicine, 58(5), 425–442.
Emanuel,, P. A., Dang,, J., Gebhardt,, J. S., Aldrich,, J., Garber,, E. A. E., Kulaga,, H., … Dion‐Schultz,, A. (2000). Recombinant antibodies: A new reagent for biological agent detection. Biosensors and Bioelectronics, 14(10–11), 751–759. https://doi.org/10.1016/S0956-5663(99)00058-5
Fang,, B., Jiao,, S., Li,, M., Qu,, Y., & Jiang,, X. (2008). Label‐free electrochemical detection of DNA using ferrocene‐containing cationic polythiophene and PNA probes on nanogold modified electrodes. Biosensors and Bioelectronics, 23(7), 1175–1179. https://doi.org/10.1016/j.bios.2007.10.022
Feng,, X. L., He,, R. R., Yang,, P. D., & Roukes,, M. L. (2007). Very high frequency silicon nanowire electromechanical resonators. Nano Letters, 7(7), 1953–1959. https://doi.org/10.1021/nl0706695
Feng,, Y., Zhang,, Y., Ying,, C., Wang,, D., & Du,, C. (2015). Nanopore‐based fourth‐generation DNA sequencing technology. Genomics, Proteomics %26 Bioinformatics, 13(1), 4–16. https://doi.org/10.1016/j.gpb.2015.01.009
Ferapontova,, E. E., Olsen,, E. M., & Gothelf,, K. V. (2008). An RNA aptamer‐based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society, 130(13), 4256–4258. https://doi.org/10.1021/ja711326b
Firouzi,, A., Kumar,, D., Bull,, L. M., Besier,, T., Sieger,, P., Huo,, Q., … Chmelka,, B. F. (1995). Cooperative organization of inorganic‐surfactant and biomimetic assemblies. Science, 267(5201), 1138–1143. https://doi.org/10.1126/science.7855591
Foudeh,, A. M., Fatanat Didar,, T., Veres,, T., & Tabrizian,, M. (2012). Microfluidic designs and techniques using lab‐on‐a‐chip devices for pathogen detection for point‐of‐care diagnostics. Lab on a Chip, 12(18), 3249–3266. https://doi.org/10.1039/C2LC40630F
Frank,, S. A. (2002). Immunology and evolution of infectious disease. Princeton, NJ: Princeton University Press.
Frens,, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Sciences, 241, 20–22.
Fritz,, J., Baller,, M. K., Lang,, H. P., Rothuizen,, H., Vettiger,, P., Meyer,, E., … Gimzewski,, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science, 288(5464), 316–318. https://doi.org/10.1126/science.288.5464.316
Gajewicz,, A., Rasulev,, B., Dinadayalane,, T. C., Urbaszek,, P., Puzyn,, T., Leszczynska,, D., & Leszczynski,, J. (2012). Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews, 64(15), 1663–1693. https://doi.org/10.1016/j.addr.2012.05.014
Gao,, A. R., Lu,, N., Wang,, Y. C., Dai,, P. F., Li,, T., Gao,, X. L., … Fan,, C. H. (2012). Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Letters, 12(10), 5262–5268. https://doi.org/10.1021/nl302476h
Gardner,, S. N., Jaing,, C. J., McLoughlin,, K. S., & Slezak,, T. R. (2010). A microbial detection array (MDA) for viral and bacterial detection. BMC Genomics, 11, 668–668. https://doi.org/10.1186/1471-2164-11-668
Goldman,, E. R., Clapp,, A. R., Anderson,, G. P., Uyeda,, H. T., Mauro,, J. M., Medintz,, I. L., & Mattoussi,, H. (2004). Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry, 76(3), 684–688. https://doi.org/10.1021/ac035083r
Gu,, D., & Schuth,, F. (2014). Synthesis of non‐siliceous mesoporous oxides. Chemical Society Reviews, 43(1), 313–344. https://doi.org/10.1039/c3cs60155b
Gu,, X., He,, H., Wang,, C.‐Z., Gao,, Y., Zhang,, H., Hong,, J., … Yuan,, C.‐S. (2015). Synthesis of surface nano‐molecularly imprinted polymers for sensitive baicalin detection from biological samples. RSC Advances, 5(52), 41377–41384. https://doi.org/10.1039/C5RA04424C
Guillon,, S., Saya,, D., Mazenq,, L., Nicu,, L., Perisanu,, S., & Vincent,, P. (2011, February 20). Fabrication and characterization of 100‐nm wide silicon nanocantilevers using top‐down approach. Paper presented at the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.
Guillon,, S., Saya,, D., Mazenq,, L., Perisanu,, S., Vincent,, P., Lazarus,, A., … Nicu,, L. (2011). Effect of non‐ideal clamping shape on the resonance frequencies of silicon nanocantilevers. Nanotechnology, 22(24), 245501. https://doi.org/10.1088/0957-4484/22/24/245501
Gültekin,, A., Ersöz,, A., Hür,, D., Sarıözlü,, N. Y., Denizli,, A., & Say,, R. (2009). Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Applied Surface Science, 256(1), 142–148. https://doi.org/10.1016/j.apsusc.2009.07.097
Guo,, L., Xu,, Y., Ferhan,, A. R., Chen,, G., & Kim,, D. H. (2013). Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. Journal of the American Chemical Society, 135(33), 12338–12345. https://doi.org/10.1021/ja405371g
Hagan,, A. K., & Zuchner,, T. (2011). Lanthanide‐based time‐resolved luminescence immunoassays. Analytical and Bioanalytical Chemistry, 400(9), 2847–2864. https://doi.org/10.1007/s00216-011-5047-7
Hahm,, J., & Lieber,, C. M. (2004). Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 4(1), 51–54. https://doi.org/10.1021/nl034853b
Han,, M., Gao,, X., Su,, J. Z., & Nie,, S. (2001). Quantum‐dot‐tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 19(7), 631–635. https://doi.org/10.1038/90228
Han,, X. M., Wang,, H., Ou,, X. M., & Zhang,, X. H. (2012). Highly sensitive, reproducible, and stable SERS sensors based on well‐controlled silver nanoparticle‐decorated silicon nanowire building blocks. Journal of Materials Chemistry, 22(28), 14127–14132. https://doi.org/10.1039/c2jm31443f
Hansen,, K. M., Ji,, H. F., Wu,, G. H., Datar,, R., Cote,, R., Majumdar,, A., & Thundat,, T. (2001). Cantilever‐based optical deflection assay for discrimination of DNA single‐nucleotide mismatches. Analytical Chemistry, 73(7), 1567–1571. https://doi.org/10.1021/ac0012748
Haque,, F., Li,, J., Wu,, H. C., Liang,, X. J., & Guo,, P. (2013). Solid‐state and biological nanopore for real‐time sensing of single chemical and sequencing of DNA. Nano Today, 8(1), 56–74. https://doi.org/10.1016/j.nantod.2012.12.008
Harma,, H., Soukka,, T., Lonnberg,, S., Paukkunen,, J., Tarkkinen,, P., & Lovgren,, T. (2000). Zeptomole detection sensitivity of prostate‐specific antigen in a rapid microtitre plate assay using time‐resolved fluorescence. Luminescence, 15(6), 351–355. https://doi.org/10.1002/1522-7243(200011/12)15:6%3C351::Aid-Bio624%3E3.0.Co;2-3
He,, Y., Su,, S., Xu,, T., Zhong,, Y., Zapien,, J. A., Li,, J., … Lee,, S.‐T. (2011). Silicon nanowires‐based highly‐efficient SERS‐active platform for ultrasensitive DNA detection. Nano Today, 6(2), 122–130. https://doi.org/10.1016/j.nantod.2011.02.004
Hodak,, J. H., Henglein,, A., & Hartland,, G. V. (2000). Photophysics of nanometer sized metal particles: Electron−phonon coupling and coherent excitation of breathing vibrational modes. The Journal of Physical Chemistry B, 104(43), 9954–9965. https://doi.org/10.1021/jp002256x
Huang,, C.‐W., Huang,, Y.‐J., Yen,, P.‐W., Tsai,, H.‐H., Liao,, H.‐H., Juang,, Y.‐Z., … Lin,, C.‐T. (2013). A CMOS wireless biomolecular sensing system‐on‐chip based on polysilicon nanowire technology. Lab on a Chip, 13(22), 4451–4459. https://doi.org/10.1039/C3LC50798J
Huang,, X. M. H., Caldwell,, R., Huang,, L. M., Jun,, S. C., Huang,, M. Y., Sfeir,, M. Y., … Hone,, J. (2005). Controlled placement of individual carbon nanotubes. Nano Letters, 5(7), 1515–1518. https://doi.org/10.1021/nl050886a
Hwang,, K. S., Lee,, S. M., Kim,, S. K., Lee,, J. H., & Kim,, T. S. (2009). Micro‐ and nanocantilever devices and systems for biomolecule detection. Annual Review of Analytical Chemistry, 2, 77–98. https://doi.org/10.1146/annurev-anchem-060908-155232
Iijima,, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. https://doi.org/10.1038/354056a0
Iijima,, S., & Ichihashi,, T. (1993). Single‐shell carbon nanotubes of 1‐nm diameter. Nature, 363(6430), 603–605. https://doi.org/10.1038/363603a0
Iqbal,, S. M., Akin,, D., & Bashir,, R. (2007). Solid‐state nanopore channels with DNA selectivity. Nature Nanotechnology, 2(4), 243–248. https://doi.org/10.1038/nnano.2007.78
Ishikawa,, F. N., Stauffer,, B., Caron,, D. A., & Zhou,, C. W. (2009). Rapid and label‐free cell detection by metal‐cluster‐decorated carbon nanotube biosensors. Biosensors %26 Bioelectronics, 24(10), 2967–2972. https://doi.org/10.1016/j.bios.2009.03.001
Jacobs,, C. B., Peairs,, M. J., & Venton,, B. J. (2010). Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662(2), 105–127. https://doi.org/10.1016/j.aca.2010.01.009
Jain,, S., Chattopadhyay,, S., Jackeray,, R., Abid,, C. K. V. Z., Kohli,, G. S., & Singh,, H. (2012). Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced‐ELISA. Biosensors %26 Bioelectronics, 31(1), 37–43. https://doi.org/10.1016/j.bios.2011.09.031
Johnson,, C. (2017). DNA‐functionalized carbon nanotube chemical sensor. Retrieved from http://nanophys.seas.upenn.edu/research.html
Kao,, L. T.‐H., Shankar,, L., Kang,, T. G., Zhang,, G., Tay,, G. K. I., Rafei,, S. R. M., & Lee,, C. W. H. (2011). Multiplexed detection and differentiation of the DNA strains for influenza a (H1N1 2009) using a silicon‐based microfluidic system. Biosensors and Bioelectronics, 26(5), 2006–2011. https://doi.org/10.1016/j.bios.2010.08.076
Karthik,, A., Margulis,, K., Ren,, K., Zare,, R. N., & Leung,, L. W. (2015). Rapid and selective detection of viruses using virus‐imprinted polymer films. Nanoscale, 7(45), 18998–19003. https://doi.org/10.1039/C5NR06114H
Kato,, D., & Oishi,, M. (2014). Ultrasensitive detection of DNA and RNA based on enzyme‐free click chemical ligation chain reaction on dispersed gold nanoparticles. ACS Nano, 8(10), 9988–9997. https://doi.org/10.1021/nn503150w
Katz,, E., & Willner,, I. (2004). Biomolecule‐functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem, 5(8), 1085–1104. https://doi.org/10.1002/cphc.200400193
Ke,, R., Zorzet,, A., Göransson,, J., Lindegren,, G., Sharifi‐Mood,, B., Chinikar,, S., … Nilsson,, M. (2011). Colorimetric nucleic acid testing assay for RNA virus detection based on circle‐to‐circle amplification of padlock probes. Journal of Clinical Microbiology, 49(12), 4279–4285. https://doi.org/10.1128/JCM.00713-11
Kim,, J., Biondi,, M. J., Feld,, J. J., & Chan,, W. C. (2016). Clinical validation of quantum dot barcode diagnostic technology. ACS Nano, 10(4), 4742–4753. https://doi.org/10.1021/acsnano.6b01254
Klostranec,, J. M., Xiang,, Q., Farcas,, G. A., Lee,, J. A., Rhee,, A., Lafferty,, E. I., … Chan,, W. C. W. (2007). Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high‐throughput infectious disease diagnostics. Nano Letters, 7(9), 2812–2818. https://doi.org/10.1021/nl071415m
Kohler,, G., & Milstein,, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–497. https://doi.org/10.1038/256495a0
Koziol,, K., Boskovic,, B. O., & Yahya,, N. (2010). Synthesis of carbon nanostructures by CVD method. Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, 5, 23–49. https://doi.org/10.1007/8611_2010_12
Kresge,, C. T., Leonowicz,, M. E., Roth,, W. J., Vartuli,, J. C., & Beck,, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid‐crystal template mechanism. Nature, 359(6397), 710–712. https://doi.org/10.1038/359710a0
Kuhn,, H., Demidov,, V. V., Coull,, J. M., Fiandaca,, M. J., Gildea,, B. D., & Frank‐Kamenetskii,, M. D. (2002). Hybridization of DNA and PNA molecular beacons to single‐stranded and double‐stranded DNA targets. Journal of the American Chemical Society, 124(6), 1097–1103. https://doi.org/10.1021/ja0041324
Kumeria,, T., Santos,, A., Rahman,, M. M., Ferre‐Borrull,, J., Marsal,, L. F., & Losic,, D. (2014). Advanced structural engineering of nanoporous photonic structures: Tailoring nanopore architecture to enhance sensing properties. Acs Photonics, 1(12), 1298–1306. https://doi.org/10.1021/ph500316u
Kurneria,, T., Kurkuri,, M. D., Diener,, K. R., Parkinson,, L., & Losic,, D. (2012). Label‐free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosensors %26 Bioelectronics, 35(1), 167–173. https://doi.org/10.1016/j.bios.2012.02.038
Kwon,, D. H., An,, H. H., Kim,, H. S., Lee,, J. H., Suh,, S. H., Kim,, Y. H., & Yoon,, C. S. (2011). Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Applied Surface Science, 257(10), 4650–4654. https://doi.org/10.1016/j.apsusc.2010.12.109
Kwon,, H.‐S., Han,, K.‐C., Hwang,, K. S., Lee,, J. H., Kim,, T. S., Yoon,, D. S., & Yang,, E. G. (2007). Development of a peptide inhibitor‐based cantilever sensor assay for cyclic adenosine monophosphate‐dependent protein kinase. Analytica Chimica Acta, 585(2), 344–349. https://doi.org/10.1016/j.aca.2006.12.037
Lee,, J., Shen,, W. J., Payer,, K., Burg,, T. P., & Manalis,, S. R. (2010). Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Letters, 10(7), 2537–2542. https://doi.org/10.1021/nl101107u
Lee,, J. H., Hwang,, K. S., Park,, J., Yoon,, K. H., Yoon,, D. S., & Kim,, T. S. (2005). Immunoassay of prostate‐specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosensors and Bioelectronics, 20(10), 2157–2162. https://doi.org/10.1016/j.bios.2004.09.024
Lee,, J. H., Kim,, T. S., & Yoon,, K. H. (2004). Effect of mass and stress on resonant frequency shift of functionalized Pb(Zr0.52Ti0.48)O‐3 thin film microcantilever for the detection of C‐reactive protein. Applied Physics Letters, 84(16), 3187–3189. https://doi.org/10.1063/1.1712028
Li,, S. J., Li,, J., Wang,, K., Wang,, C., Xu,, J. J., Chen,, H. Y., … Huo,, Q. (2010). A Nanochannel array‐based electrochemical device for quantitative label‐free DNA analysis. ACS Nano, 4(11), 6417–6424. https://doi.org/10.1021/nn101050r
Li,, Z., Chen,, Y., Li,, X., Kamins,, T. I., Nauka,, K., & Williams,, R. S. (2004). Sequence‐specific label‐free DNA sensors based on silicon nanowires. Nano Letters, 4(2), 245–247. https://doi.org/10.1021/nl034958e
Lipman,, N. S., Jackson,, L. R., Trudel,, L. J., & Weis‐Garcia,, F. (2005). Monoclonal versus polyclonal antibodies: Distinguishing characteristics, applications, and information resources. ILAR Journal, 46(3), 258–268. https://doi.org/10.1093/ilar.46.3.258
Liu,, J., Zhao,, J., Petrochenko,, P., Zheng,, J., & Hewlett,, I. (2016). Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol‐gel functionalized polycarbonate‐polydimethylsiloxane hybrid microchip. Biosensors and Bioelectronics, 86, 150–155. https://doi.org/10.1016/j.bios.2016.06.044
Liu,, Z., Sun,, X., Nakayama‐Ratchford,, N., & Dai,, H. (2007). Supramolecular chemistry on water‐soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1(1), 50–56. https://doi.org/10.1021/nn700040t
Lu,, L., Burkey,, G., Halaciuga,, I., & Goia,, D. V. (2013). Core–shell gold/silver nanoparticles: Synthesis and optical properties. Journal of Colloid and Interface Science, 392, 90–95. https://doi.org/10.1016/j.jcis.2012.09.057
Lutwyche,, M. I., Despont,, M., Drechsler,, U., Dürig,, U., Häberle,, W., Rothuizen,, H., … Vettiger,, P. (2000). Highly parallel data storage system based on scanning probe arrays. Applied Physics Letters, 77(20), 3299–3301. https://doi.org/10.1063/1.1326486
Mao,, X., Du,, T. E., Meng,, L., & Song,, T. (2015). Novel gold nanoparticle trimer reporter probe combined with dry‐reagent cotton thread immunoassay device for rapid human ferritin test. Analytica Chimica Acta, 889, 172–178. https://doi.org/10.1016/j.aca.2015.06.031
Marmur,, J., & Doty,, P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology, 5, 109–118. https://doi.org/10.1016/S0022-2836(62)80066-7
Mateo‐Marti,, E., Briones,, C., Pradier,, C. M., & Martin‐Gago,, J. A. (2007). A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosensors %26 Bioelectronics, 22(9–10), 1926–1932. https://doi.org/10.1016/j.bios.2006.08.012
Matthews,, H. R. (1997). DNA structure prerequisite information.
McKendry,, R., Zhang,, J. Y., Arntz,, Y., Strunz,, T., Hegner,, M., Lang,, H. P., … Gerber,, C. (2002). Multiple label‐free biodetection and quantitative DNA‐binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9783–9788. https://doi.org/10.1073/pnas.152330199
Menger,, M., Yarman,, A., Erdőssy,, J., Yildiz,, H., Gyurcsányi,, R., & Scheller,, F. (2016). MIPs and aptamers for recognition of proteins in biomimetic sensing. Biosensors, 6(3), 35. https://doi.org/10.3390/bios6030035
Metaferia,, B., Wei,, J. S., Song,, Y. K., Evangelista,, J., Aschenbach,, K., Johansson,, P., … Khan,, J. (2013). Development of peptide nucleic acid probes for detection of the HER2 oncogene. PLoS ONE, 8(4), e58870. https://doi.org/10.1371/journal.pone.0058870
Mitsushio,, M., Miyashita,, K., & Higo,, M. (2006). Sensor properties and surface characterization of the metal‐deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors and Actuators A: Physical, 125(2), 296–303. https://doi.org/10.1016/j.sna.2005.08.019
Miyata,, K., Christie,, R. J., & Kataoka,, K. (2011). Polymeric micelles for nano‐scale drug delivery. Reactive and Functional Polymers, 71(3), 227–234. https://doi.org/10.1016/j.reactfunctpolym.2010.10.009
Mohammad,, S. N. (2014). Understanding quantum confinement in nanowires: Basics, applications and possible laws. Journal of Physics: Condensed Matter, 26(42), 423202. https://doi.org/10.1088/0953-8984/26/42/423202
Mu,, L., Chang,, Y., Sawtelle,, S. D., Wipf,, M., Duan,, X., & Reed,, M. A. (2015). Silicon nanowire field‐effect transistors; a versatile class of potentiometric nanobiosensors. IEEE Access, 3, 287–302. https://doi.org/10.1109/ACCESS.2015.2422842
Mullis,, K., Faloona,, F., Scharf,, S., Saiki,, R., Horn,, G., & Erlich,, H. (1986). Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51(Pt 1), 263–273.
Nagahara,, L. A., Amlani,, I., Lewenstein,, J., & Tsui,, R. K. (2002). Directed placement of suspended carbon nanotubes for nanometer‐scale assembly. Applied Physics Letters, 80(20), 3826–3828. https://doi.org/10.1063/1.1481237
Nair,, P. R., & Alam,, M. A. (2007). Design considerations of silicon nanowire biosensors. IEEE Transactions on Electron Devices, 54(12), 3400–3408. https://doi.org/10.1109/Ted.2007.909059
Nam,, J.‐M., Thaxton,, C. S., & Mirkin,, C. A. (2003). Nanoparticle‐based bio‐bar codes for the ultrasensitive detection of proteins. Science, 301(5641), 1884–1886. https://doi.org/10.1126/science.1088755
Nguyen,, H. H., Park,, J., Kang,, S., & Kim,, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Basel, Switzerland), 15(5), 10481–10510. https://doi.org/10.3390/s150510481
Nicu,, L., & Leichle,, T. (2008). Biosensors and tools for surface functionalization from the macro‐to the nanoscale: The way forward. Journal of Applied Physics, 104(11), 111101. https://doi.org/10.1063/1.2973147
Nielsen,, P. E., & Egholm,, M. (1999). An introduction to peptide nucleic acid. Current Issues in Molecular Biology, 1(1–2), 89–104.
Niquet,, Y. M., Lherbier,, A., Quang,, N. H., Fernandez‐Serra,, M. V., Blase,, X., & Delerue,, C. (2006). Electronic structure of semiconductor nanowires. Physical Review B, 73(16), 165319‐13. https://doi.org/10.1103/PhysRevB.73.165319
Noor,, M. O., & Krull,, U. J. (2014). Camera‐based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper‐based platform using immobilized quantum dots as donors. Analytical Chemistry, 86(20), 10331–10339. https://doi.org/10.1021/ac502677n
Notomi,, T., Okayama,, H., Masubuchi,, H., Yonekawa,, T., Watanabe,, K., Amino,, N., & Hase,, T. (2000). Loop‐mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63, 663.
Nugent,, J. M., Santhanam,, K. S. V., Rubio,, A., & Ajayan,, P. M. (2001). Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Letters, 1(2), 87–91. https://doi.org/10.1021/nl005521z
Oberdörster,, G., Maynard,, A., Donaldson,, K., Castranova,, V., Fitzpatrick,, J., Ausman,, K., … Yang,, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2, 8–8. https://doi.org/10.1186/1743-8977-2-8
O`Connor,, L., & Glynn,, B. (2010). Recent advances in the development of nucleic acid diagnostics. Expert Review of Medical Devices, 7(4), 529–539. https://doi.org/10.1586/erd.10.22
Oliveira,, N., Souza,, E., Ferreira,, D., Zanforlin,, D., Bezerra,, W., Borba,, M. A., … Lima,, J. (2015). A sensitive and selective label‐free electrochemical DNA biosensor for the detection of specific dengue virus serotype 3 sequences. Sensors, 15(7), 15562–15577. https://doi.org/10.3390/s150715562
Ozkan,, D., Kara,, P., Kerman,, K., Meric,, B., Erdem,, A., Jelen,, F., … Ozsoz,, M. (2002). DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry, 58(1), 119–126. https://doi.org/10.1016/S1567-5394(02)00131-7
Palacios,, G., Quan,, P.‐L., Jabado,, O. J., Conlan,, S., Hirschberg,, D. L., Liu,, Y., … Lipkin,, W. I. (2007). Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerging Infectious Diseases, 13(1), 73–81. https://doi.org/10.3201/eid1301.060837
Pan,, S. L., & Rothberg,, L. J. (2003). Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates. Nano Letters, 3(6), 811–814. https://doi.org/10.1021/nl034055l
Peeling,, R. W., Smith,, P. G., & Bossuyt,, P. M. M. (2010). A guide for diagnostic evaluations. Nature Reviews Microbiology, 6, S2–S6. https://doi.org/10.1038/nrmicro1522
Peng,, Z., Hu,, H., Utama,, M. I. B., Wong,, L. M., Ghosh,, K., Chen,, R., … Xiong,, Q. (2010). Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: A case study on Raman scattering and mapping. Nano Letters, 10(10), 3940–3947. https://doi.org/10.1021/nl101704p
Piepenburg,, O., Williams,, C. H., Stemple,, D. L., & Armes,, N. A. (2006). DNA detection using recombination proteins. PLoS Biology, 4(7), e204. https://doi.org/10.1371/journal.pbio.0040204
Poma,, A., Turner,, A. P. F., & Piletsky,, S. A. (2010). Advances in the manufacture of MIP nanoparticles. Trends in Biotechnology, 28(12), 629–637. https://doi.org/10.1016/j.tibtech.2010.08.006
Purohit,, R., Purohit,, K., Rana,, S., Rana,, R. S., & Patel,, V. (2014). Carbon nanotubes and their growth methods. Procedia Materials Science, 6, 716–728. https://doi.org/10.1016/j.mspro.2014.07.088
Qiu,, X., & Hildebrandt,, N. (2015). Rapid and multiplexed MicroRNA diagnostic assay using quantum dot‐based Förster resonance energy transfer. ACS Nano, 9(8), 8449–8457. https://doi.org/10.1021/acsnano.5b03364
Quan,, P.‐L., Palacios,, G., Jabado,, O. J., Conlan,, S., Hirschberg,, D. L., Pozo,, F., … Lipkin,, W. I. (2007). Detection of respiratory viruses and subtype identification of influenza a viruses by GreeneChipResp oligonucleotide microarray. Journal of Clinical Microbiology, 45(8), 2359–2364. https://doi.org/10.1128/JCM.00737-07
Rai,, V., Deng,, J. J., & Toh,, C. S. (2012). Electrochemical nanoporous alumina membrane‐based label‐free DNA biosensor for the detection of Legionella sp. Talanta, 98, 112–117. https://doi.org/10.1016/j.talanta.2012.06.055
Rai,, V., Hapuarachchi,, H. C., Ng,, L. C., Soh,, S. H., Leo,, Y. S., & Toh,, C. S. (2012). Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane‐based biosensor. PLoS ONE, 7(8), e42346. https://doi.org/10.1371/journal.pone.0042346
Ramos,, D., Arroyo‐Hernandez,, M., Gil‐Santos,, E., Tong,, H. D., Van Rijn,, C., Calleja,, M., & Tamayo,, J. (2009). Arrays of dual nanomechanical resonators for selective biological detection. Analytical Chemistry, 81(6), 2274–2279. https://doi.org/10.1021/ac8024152
Reth,, M. (2013). Matching cellular dimensions with molecular sizes. Nature Immunology, 14(8), 765–767. https://doi.org/10.1038/ni.2621
Richman,, E. K., & Hutchison,, J. E. (2009). The nanomaterial characterization bottleneck. ACS Nano, 3(9), 2441–2446. https://doi.org/10.1021/nn901112p
Riskin,, M., Tel‐Vered,, R., Frasconi,, M., Yavo,, N., & Willner,, I. (2010). Stereoselective and chiroselective Surface Plasmon Resonance (SPR) analysis of amino acids by molecularly imprinted Au‐nanoparticle composites. Chemistry, 16(24), 7114–7120. https://doi.org/10.1002/chem.200903215
Saldarelli,, P., Keller,, H., Dell`Orco,, M., Schots,, A., Elicio,, V., & Minafra,, A. (2005). Isolation of recombinant antibodies (scFvs) to grapevine virus B. Journal of Virological Methods, 124(1–2), 191–195. https://doi.org/10.1016/j.jviromet.2004.11.021
Schauperl,, M., & Lewis,, D. W. (2015). Probing the structural and binding mechanism heterogeneity of molecularly imprinted polymers. The Journal of Physical Chemistry. B, 119(2), 563–571. https://doi.org/10.1021/jp506157x
Schildkraut,, C. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers, 3(2), 195–208. https://doi.org/10.1002/bip.360030207
Scorrano,, S., Mergola,, L., Del Sole,, R., & Vasapollo,, G. (2011). Synthesis of molecularly imprinted polymers for amino acid derivatives by using different functional monomers. International Journal of Molecular Sciences, 12(3), 1735–1743. https://doi.org/10.3390/ijms12031735
Scott,, B. J., Wirnsberger,, G., & Stucky,, G. D. (2001). Mesoporous and mesostructured materials for optical applications. Chemistry of Materials, 13(10), 3140–3150. https://doi.org/10.1021/cm0110730
Senapati,, S., Slouka,, Z., Shah,, S. S., Behura,, S. K., Shi,, Z. G., Stack,, M. S., … Chang,, H. C. (2014). An ion‐exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosensors %26 Bioelectronics, 60, 92–100. https://doi.org/10.1016/j.bios.2014.04.008
Shen,, M.‐Y., Li,, B.‐R., & Li,, Y.‐K. (2014). Silicon nanowire field‐effect‐transistor based biosensors: From sensitive to ultra‐sensitive. Biosensors and Bioelectronics, 60, 101–111. https://doi.org/10.1016/j.bios.2014.03.057
Shen,, Q., You,, S. K., Park,, S. G., Jiang,, H., Guo,, D. D., Chen,, B. A., & Wang,, X. M. (2008). Electrochemical biosensing for cancer cells based on TiO2/CNT nanocomposites modified electrodes. Electroanalysis, 20(23), 2526–2530. https://doi.org/10.1002/elan.200804351
Shi,, Y. F., Wan,, Y., & Zhao,, D. Y. (2011). Ordered mesoporous non‐oxide materials. Chemical Society Reviews, 40(7), 3854–3878. https://doi.org/10.1039/c0cs00186d
Souza,, E., Nascimento,, G., Santana,, N., Ferreira,, D., Lima,, M., Natividade,, E., … Lima‐Filho,, J. (2011). Label‐free electrochemical detection of the specific oligonucleotide sequence of dengue virus type 1 on pencil graphite electrodes. Sensors (Basel, Switzerland), 11(6), 5616–5629. https://doi.org/10.3390/s110605616
Sreeprasad,, T. S., & Pradeep,, T. (2013). Noble metal nanoparticles. In Springer handbook of nanomaterials (pp. 303–388). Berlin, Germany: Springer.
Steichen,, M., Decrem,, Y., Godfroid,, E., & Buess‐Herman,, C. (2007). Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosensors %26 Bioelectronics, 22(9–10), 2237–2243. https://doi.org/10.1016/j.bios.2006.10.041
Stern,, E., Klemic,, J. F., Routenberg,, D. A., Wyrembak,, P. N., Turner‐Evans,, D. B., Hamilton,, A. D., … Reed,, M. A. (2007). Label‐free immunodetection with CMOS‐compatible semiconducting nanowires. Nature, 445(7127), 519–522. https://doi.org/10.1038/nature05498
Stern,, E., Vacic,, A., Rajan,, N. K., Criscione,, J. M., Park,, J., Ilic,, B. R., … Fahmy,, T. M. (2010). Label‐free biomarker detection from whole blood. Nature Nanotechnology, 5(2), 138–142. https://doi.org/10.1038/Nnano.2009.353
Su,, S., Wei,, X. P., Guo,, Y. Y., Zhong,, Y. L., Su,, Y. Y., Huang,, Q., … He,, Y. (2013). A silicon nanowire‐based electrochemical sensor with high sensitivity and electrocatalytic activity. Particle %26 Particle Systems Characterization, 30(4), 326–331. https://doi.org/10.1002/ppsc.201200076
Su,, X., Teh,, H. F., Lieu,, X., & Gao,, Z. (2007). Enzyme‐based colorimetric detection of nucleic acids using peptide nucleic acid‐immobilized microwell plates. Analytical Chemistry, 79(18), 7192–7197. https://doi.org/10.1021/ac0709403
Tam,, P. D., Van Hieu,, N., Chien,, N. D., Le,, A.‐T., & Anh Tuan,, M. (2009). DNA sensor development based on multi‐wall carbon nanotubes for label‐free influenza virus (type A) detection. Journal of Immunological Methods, 350(1–2), 118–124. https://doi.org/10.1016/j.jim.2009.08.002
Tamayo,, J., Kosaka,, P. M., Ruz,, J. J., San Paulo,, A., & Calleja,, M. (2013). Biosensors based on nanomechanical systems. Chemical Society Reviews, 42(3), 1287–1311. https://doi.org/10.1039/c2cs35293a
Tan,, F., Leung,, P. H. M., Liu,, Z. B., Zhang,, Y., Xiao,, L. D., Ye,, W. W., … Yang,, M. (2011). A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody‐immobilized nanoporous membrane. Sensors and Actuators B: Chemical, 159(1), 328–335. https://doi.org/10.1016/j.snb.2011.06.074
Tang,, S., Moayeri,, M., Chen,, Z., Harma,, H., Zhao,, J., Hu,, H., … Hewlett,, I. K. (2009). Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. Clinical and Vaccine Immunology, 16(3), 408–413. https://doi.org/10.1128/CVI.00412-08
Tang,, S., Zhao,, J., Wang,, A., Viswanath,, R., Harma,, H., Little,, R. F., … Hewlett,, I. K. (2010). Characterization of immune responses to capsid protein p24 of human immunodeficiency virus type 1 and implications for detection. Clinical and Vaccine Immunology, 17(8), 1244–1251. https://doi.org/10.1128/CVI.00066-10
Tiemann,, M. (2008). Repeated templating. Chemistry of Materials, 20(3), 961–971. https://doi.org/10.1021/cm702050s
Tonga,, G. Y., Saha,, K., & Rotello,, V. M. (2014). Interfacing nanoparticles and biology: New strategies for biomedicine. Advanced Materials, 26(3), 359–370. https://doi.org/10.1002/adma.201303001
Turkevich,, J., Stevenson,, P. C., & Hillier,, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11(0), 55–75. https://doi.org/10.1039/DF9511100055
Tyagi,, P., Postetter,, D., Saragnese,, D. L., Randall,, C. L., Mirski,, M. A., & Gracias,, D. H. (2009). Patternable nanowire sensors for electrochemical recording of dopamine. Analytical Chemistry, 81(24), 9979–9984. https://doi.org/10.1021/ac901744s
Uno,, T., Tabata,, H., & Kawai,, T. (2007). Peptide‐nucleic acid‐modified ion‐sensitive field‐effect transistor‐based biosensor for direct detection of DNA hybridization. Analytical Chemistry, 79(1), 52–59. https://doi.org/10.1021/ac060273y
Vasapollo,, G., Sole,, R. D., Mergola,, L., Lazzoi,, M. R., Scardino,, A., Scorrano,, S., & Mele,, G. (2011). Molecularly imprinted polymers: Present and future prospective. International Journal of Molecular Sciences, 12(9), 5908–5945. https://doi.org/10.3390/ijms12095908
Vashist,, S. K., Zheng,, D., Al‐Rubeaan,, K., Luong,, J. H. T., & Sheu,, F.‐S. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29(2), 169–188. https://doi.org/10.1016/j.biotechadv.2010.10.002
Vasudevan,, D., Gaddam,, R. R., Trinchi,, A., & Cole,, I. (2015). Core–shell quantum dots: Properties and applications. Journal of Alloys and Compounds, 636, 395–404. https://doi.org/10.1016/j.jallcom.2015.02.102
Veigas,, B., Jacob,, J. M., Costa,, M. N., Santos,, D. S., Viveiros,, M., Inacio,, J., … Baptista,, P. V. (2012). Gold on paper‐paper platform for Au‐nanoprobe TB detection. Lab on a Chip, 12(22), 4802–4808. https://doi.org/10.1039/c2lc40739f
Vincent,, M., Xu,, Y., & Kong,, H. (2004). Helicase‐dependent isothermal DNA amplification. EMBO Reports, 5(8), 795–800. https://doi.org/10.1038/sj.embor.7400200
Vincenzo,, A., Roberto,, P., Marco,, F., Onofrio,, M. M., & Maria Antonia,, I. (2017). Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics: Condensed Matter, 29(20), 203002. https://doi.org/10.1088/1361-648X/aa60f3
Vo‐Dinh,, T., & Cullum,, B. (2000). Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius` Journal of Analytical Chemistry, 366(6), 540–551. https://doi.org/10.1007/s002160051549
Vu,, X. T., GhoshMoulick,, R., Eschermann,, J. F., Stockmann,, R., Offenhausser,, A., & Ingebrandt,, S. (2010). Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensors and Actuators B: Chemical, 144(2), 354–360. https://doi.org/10.1016/j.snb.2008.11.048
Wagner,, R. S., & Ellis,, W. C. (1964). Vapor‐liquid‐solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial + large crystals Si E). Applied Physics Letters, 4(5), 89–90. https://doi.org/10.1063/1.1753975
Walker,, G. T., Fraiser,, M. S., Schram,, J. L., Little,, M. C., Nadeau,, J. G., & Malinowski,, D. P. (1992). Strand displacement amplification‐‐an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 20(7), 1691–1696.
Wan,, Y., & Zhao,, D. Y. (2007). On the controllable soft‐templating approach to mesoporous silicates. Chemical Reviews, 107(7), 2821–2860. https://doi.org/10.1021/cr068020s
Wang,, D., Coscoy,, L., Zylberberg,, M., Avila,, P. C., Boushey,, H. A., Ganem,, D., & DeRisi,, J. L. (2002). Microarray‐based detection and genotyping of viral pathogens. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15687–15692. https://doi.org/10.1073/pnas.242579699
Wang,, F., Tan,, W. B., Zhang,, Y., Fan,, X. P., & Wang,, M. Q. (2006). Luminescent nanomaterials for biological labelling. Nanotechnology, 17(1), R1–R13. https://doi.org/10.1088/0957-4484/17/1/R01
Wang,, J., Palecek,, E., Nielsen,, P. E., Rivas,, G., Cai,, X. H., Shiraishi,, H., … Farias,, P. A. M. (1996). Peptide nucleic acid probes for sequence‐specific DNA biosensors. Journal of the American Chemical Society, 118(33), 7667–7670. https://doi.org/10.1021/ja9608050
Wang,, J., Song,, D., Wang,, L., Zhang,, H., Zhang,, H., & Sun,, Y. (2011). Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sensors and Actuators B: Chemical, 157(2), 547–553. https://doi.org/10.1016/j.snb.2011.05.020
Wang,, X., & Smirnov,, S. (2009). Label‐free DNA sensor based on surface charge modulated ionic conductance. ACS Nano, 3(4), 1004–1010. https://doi.org/10.1021/nn900113x
Wittwer,, C. T., Reed,, G. H., Gundry,, C. N., Vandersteen,, J. G., & Pryor,, R. J. (2003). High‐resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry, 49(6), 853–860. https://doi.org/10.1373/49.6.853
Woo,, S.‐W., Dokko,, K., Sasajima,, K., Takei,, T., & Kanamura,, K. (2006). Three‐dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. Chemical Communications, (39), 4099–4101. https://doi.org/10.1039/B607196A
Wu,, S., Wu,, H., Liu,, Y. Y., & Ju,, H. X. (2008). Conductive and highly catalytic nanocage for assembly and improving function of enzyme. Chemistry of Materials, 20(4), 1397–1403. https://doi.org/10.1021/cm702906c
Wu,, Y., Cui,, Y., Huynh,, L., Barrelet,, C. J., Bell,, D. C., & Lieber,, C. M. (2004). Controlled growth and structures of molecular‐scale silicon nanowires. Nano Letters, 4(3), 433–436. https://doi.org/10.1021/nl035162i
Xiang,, C., Kung,, S. C., Taggart,, D. K., Yang,, F., Thompson,, M. A., Guell,, A. G., … Penner,, R. M. (2008). Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics. ACS Nano, 2(9), 1939–1949. https://doi.org/10.1021/nn800394k
Xifre‐Perez,, E., Ferre‐Borull,, J., Pallares,, J., & Marsal Lluis,, F. (2015). Mesoporous alumina as a biomaterial for biomedical applications. Mesoporous Biomaterials, 2(1), 13. https://doi.org/10.1515/mesbi-2015-0004
Xu,, H., Sha,, M. Y., Wong,, E. Y., Uphoff,, J., Xu,, Y., Treadway,, J. A., … Mahoney,, W. (2003). Multiplexed SNP genotyping using the Qbead™ system: A quantum dot‐encoded microsphere‐based assay. Nucleic Acids Research, 31(8), e43–e43, 443. https://doi.org/10.1093/nar/gng043
Xu,, S. (2012). Electromechanical biosensors for pathogen detection. Microchimica Acta, 178(3), 245–260. https://doi.org/10.1007/s00604-012-0831-4
Xu,, T.‐T., Huang,, J.‐A., He,, L.‐F., He,, Y., Su,, S., & Lee,, S.‐T. (2011). Ordered silicon nanocones arrays for label‐free DNA quantitative analysis by surface‐enhanced Raman spectroscopy. Applied Physics Letters, 99(15), 153116. https://doi.org/10.1063/1.3650937
Yalow,, R. S., & Berson,, S. A. (1959). Assay of plasma insulin in human subjects by immunological methods. Nature, 184(4699), 1648–1649. https://doi.org/10.1038/1841648b0
Yan,, H. Y., & Row,, K. H. (2006). Characteristic and synthetic approach of molecularly imprinted polymer. International Journal of Molecular Sciences, 7(5–6), 155–178. https://doi.org/10.3390/i7050155
Yang,, H. F., & Zhao,, D. Y. (2005). Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 15(12), 1217–1231. https://doi.org/10.1039/b414402c
Yang,, K., Wang,, H., Zou,, K., & Zhang,, X. H. (2006). Gold nanoparticle modified silicon nanowires as biosensors. Nanotechnology, 17(11), S276–S279. https://doi.org/10.1088/0957-4484/17/11/S08
Yaron,, S., & Matthews,, K. R. (2002). A reverse transcriptase‐polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: Investigation of specific target genes. Journal of Applied Microbiology, 92(4), 633–640. https://doi.org/10.1046/j.1365-2672.2002.01563.x
Ye,, W. W., Shi,, J. Y., Chan,, C. Y., Zhang,, Y., & Yang,, M. (2014). A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification. Sensors and Actuators B: Chemical, 193, 877–882. https://doi.org/10.1016/j.snb.2013.09.115
Yoo,, S. M., & Lee,, S. Y. (2016). Optical biosensors for the detection of pathogenic microorganisms. Trends in Biotechnology, 34(1), 7–25. https://doi.org/10.1016/j.tibtech.2015.09.012
Yuan,, G. D., Zhang,, W. J., Jie,, J. S., Fan,, X., Zapien,, J. A., Leung,, Y. H., … Lee,, S. T. (2008). Zinc oxide nanowires: No laughing matter. NPG Asia Materials, doi:10.1038/asiamat.2008.145. https://www.nature.com/articles/am2008145
Yudasaka,, M., Yamada,, R., Sensui,, N., Wilkins,, T., Ichihashi,, T., & Iijima,, S. (1999). Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single‐wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. The Journal of Physical Chemistry B, 103(30), 6224–6229. https://doi.org/10.1021/jp9908451
Yue,, M., Stachowiak,, J. C., Lin,, H., Datar,, R., Cote,, R., & Majumdar,, A. (2008). Label‐free protein recognition two‐dimensional array using nanomechanical sensors. Nano Letters, 8(2), 520–524. https://doi.org/10.1021/nl072740c
Zhang,, G. J., Huang,, M. J., Ang,, J. J., Liu,, E. T., & Desai,, K. V. (2011). Self‐assembled monolayer‐assisted silicon nanowire biosensor for detection of protein‐DNA interactions in nuclear extracts from breast cancer cell. Biosensors %26 Bioelectronics, 26(7), 3233–3239. https://doi.org/10.1016/j.bios.2010.12.032
Zhang,, G. J., Luo,, Z. H. H., Huang,, M. J., Ang,, J. J., Kang,, T. G., & Ji,, H. M. (2011). An integrated chip for rapid, sensitive, and multiplexed detection of cardiac biomarkers from fingerprick blood. Biosensors %26 Bioelectronics, 28(1), 459–463. https://doi.org/10.1016/j.bios.2011.07.007
Zhang,, G.‐J., Luo,, Z. H. H., Huang,, M. J., Tay,, G. K. I., & Lim,, E.‐J. A. (2010). Morpholino‐functionalized silicon nanowire biosensor for sequence‐specific label‐free detection of DNA. Biosensors and Bioelectronics, 25(11), 2447–2453. https://doi.org/10.1016/j.bios.2010.04.001
Zhang,, G. J., & Ning,, Y. (2012). Silicon nanowire biosensor and its applications in disease diagnostics: A review. Analytica Chimica Acta, 749, 1–15. https://doi.org/10.1016/j.aca.2012.08.035
Zhang,, G. J., Zhang,, L., Huang,, M. J., Luo,, Z. H. H., Tay,, G. K. I., Lim,, E. J. A., … Chen,, Y. (2010). Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B: Chemical, 146(1), 138–144. https://doi.org/10.1016/j.snb.2010.02.021
Zhang,, H., Xu,, T., Li,, C.‐W., & Yang,, M. (2010). A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels. Biosensors and Bioelectronics, 25(11), 2402–2407. https://doi.org/10.1016/j.bios.2010.02.032
Zhang,, J., Lang,, H. P., Huber,, F., Bietsch,, A., Grange,, W., Certa,, U., … Gerber,, C. (2006). Rapid and label‐free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnology, 1(3), 214–220. https://doi.org/10.1038/nnano.2006.134
Zhang,, M. L., Peng,, K. Q., Fan,, X., Jie,, J. S., Zhang,, R. Q., Lee,, S. T., & Wong,, N. B. (2008). Preparation of large‐area uniform silicon nanowires arrays through metal‐assisted chemical etching. Journal of Physical Chemistry C, 112(12), 4444–4450. https://doi.org/10.1021/jp077053o
Zhang,, X.‐Q., Xu,, X., Bertrand,, N., Pridgen,, E., Swami,, A., & Farokhzad,, O. C. (2012). Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 64(13), 1363–1384. https://doi.org/10.1016/j.addr.2012.08.005
Zhao,, C., Hoppe,, T., Setty,, M. K. H. G., Murray,, D., Chun,, T.‐W., Hewlett,, I., & Appella,, D. H. (2014). Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids. Nature Communications, 5, 5079. https://doi.org/10.1038/ncomms6079
Zhao,, J. Q., Ragupathy,, V., Liu,, J. K., Wang,, X., Vemula,, S. V., El Mubarak,, H. S., … Hewlett,, I. (2015). Nanomicroarray and multiplex next‐generation sequencing for simultaneous identification and characterization of influenza viruses. Emerging Infectious Diseases, 21(3), 400–408. https://doi.org/10.3201/eid2103.141169
Zhao,, Y. L., & Stoddart,, J. F. (2009). Noncovalent functionalization of single‐walled carbon nanotubes. Accounts of Chemical Research, 42(8), 1161–1171. https://doi.org/10.1021/ar900056z
Zheng,, J., Zhou,, C., Yu,, M., & Liu,, J. (2012). Different sized luminescent gold nanoparticles. Nanoscale, 4(14), 4073–4083. https://doi.org/10.1039/c2nr31192e
Zheng,, L. X., O`Connell,, M. J., Doorn,, S. K., Liao,, X. Z., Zhao,, Y. H., Akhadov,, E. A., … Zhu,, Y. T. (2004). Ultralong single‐wall carbon nanotubes. Nature Materials, 3(10), 673–676. https://doi.org/10.1038/nmat1216
Zhou,, J., Ralston,, J., Sedev,, R., & Beattie,, D. A. (2009). Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 331(2), 251–262. https://doi.org/10.1016/j.jcis.2008.12.002
Zhou,, T., Zhang,, K., Kamra,, T., Bulow,, L., & Ye,, L. (2015). Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. Journal of Materials Chemistry B, 3(7), 1254–1260. https://doi.org/10.1039/C4TB01605J
Zhou,, W., Gao,, X., Liu,, D., & Chen,, X. (2015). Gold nanoparticles for in vitro diagnostics. Chemical Reviews, 115(19), 10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100