Adachi,, K., Yamada,, N., Yoshida,, Y., & Yamamoto,, O. (2013). Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin. Experimental Dermatology, 22, 278–283.
Afifi,, M., Almaghrabi,, O. A., & Kadasa,, N. M. (2015). Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin‐induced diabetic rat testes. BioMed Research International, 2015, 153573.
Japan National Institute of Advanced Industrial Science and Technology (AIST). (2011). Final Reports on Risk Assessments of Three Manufactured Nanomaterials. Retrieved from http://www.aistriss.jp/main/modules/product/nano_rad.html
Asgharian,, B., & Price,, O. T. (2007). Deposition of ultrafine (nano) particles in the human lung. Inhalation Toxicology, 19(13), 1045–1054.
Bai,, Y., Zhang,, Y., Zhang,, J., Mu,, Q., Zhang,, W., Butch,, E. R., … Yan,, B. (2010). Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nature Nanotechnology, 5, 683–689.
Bal,, R., Türk,, G., Tuzcu,, M., Yilmaz,, O., Ozercan,, I., Kuloglu,, T., … Naziroglu,, M. (2011). Protective effects of nanostructures of hydrated C(60) fullerene on reproductive function in streptozotocin‐diabetic male rats. Toxicology, 282, 69–81.
Bergamaschi,, E., Guseva‐Canu,, I., Prina‐Mello,, A., & Magrini,, A. (2017). Biomonitoring. In B. Fadeel,, A. Pietroiusti,, & A. Shvedova, (Eds.), Adverse effects of engineered nanomaterials (2nd ed., pp. 225–260). London, England: Academic Press.
Bergin,, I. L., & Witzmann,, F. A. (2013). Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 3(1–2), 163.
Blum,, J. L., Edwards,, J. R., Prozialeck,, W. C., Xiong,, J. Q., & Zelikoff,, J. T. (2015). Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. Journal of Toxicology and Environmental Health. Part A, 78, 711–724.
Borm,, P. J., Robbins,, D., Haubold,, S., Kuhlbusch,, T., Fissan,, H., Donaldson,, K., … Oberdorster,, E. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.
Brouwer,, D., Liden,, G., Aschbach,, C., Berges,, M., & van Tongeren,, M. (2014). Monitoring and sampling strategy for (manufactured) nano object agglomerates and aggregates (NOAA): Potential added value of the NANODEVICE project. In U. Vogel,, K. Savolainen,, Q. Wu,, M. van Tongeren,, D. Brouwer,, & M. Berges, (Eds.), Handbook of Nanosafety. Measurement, exposure and toxicology (p. 173). London, England: Elsevier.
Brouwer,, D., van Duuren‐Stuurman,, B., Berges,, M., Jankowska,, E., Bard,, D., & Mark,, D. (2009, 2009). From workplace air measurement results towards estimates of exposure? Development of a strategy to assess exposure to manufactured nano‐objects. Journal of Nanoparticle Research, 11, 1867–1881.
British Standard Institute (BSI). (2007). Nanotechnologies part 1. Good practice guide for specifying manufactured nanomaterials. London, England, England.
Campagnolo,, L., & Hougaard,, H. S. (2017). Reproduction and development. In B. Fadeel,, A. Pietroiusti,, & A. Shvedova, (Eds.), Adverse effect of engineered nanomaterials. Exposure, toxicology, and impact on human health (2nd ed., pp. 397–421). London, England: Academic Press.
Castellini,, C., Ruggeri,, S., Mattioli,, S., Bernardini,, G., Macchioni,, L., Moretti,, E., & Collodel,, G. (2014). Long‐term effects of silver nanoparticles on reproductive activity of rabbit buck. Systems Biology in Reproductive Medicine, 60, 143–150.
Castranova,, V., Schulte,, P. A., & Zumwalde,, R. D. (2013). Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Accounts of Chemical Research, 46(3), 642–649.
Catalán,, J., Ilves,, M., Järventaus,, H., Hannukainen,, K. S., Kontturi,, E., Vanhala,, E., … Norppa,, H. (2015). Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environmental and Molecular Mutagenesis, 56(2), 171–182.
Catalán,, J., Järventaus,, H., Vippola,, M., Savolainen,, K., & Norppa,, H. (2012). Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology, 6, 825–836.
Catalán,, J., Siivola,, K.M., Nymark,, P., Lindberg,, H., Suhonen,, S., Järventaus,, H., Koivisto,, A,J., Moreno,, C., Vanhala,, E., Wolff,, H., Kling,, K.I., Jensen,, K.A., Savolainen,, K., Norppa,, H. (2016). In vitro and in vivo genotoxic effects of straight versus tangled multi‐walled carbon nanotubes Nanotoxicology, 10(6), 794–806.
Committee on Human Biomonitoring for Environmental Toxicants, National Research Council. (2006). Human biomonitoring for environmental chemicals. Washington, DC: National Academies Press.
Cunningham,, M. J. (2007). Gene‐cellular interactions of nanomaterials: Genotoxicity to genomics. In N. Monteiro‐Riviere, & L. Tran, (Eds.), Nanotoxicology: Characteristics, dosing and health effects on target organs (pp. 173–196). New York, NY: Taylor %26 Francis/Informa Healthcare.
Dekkers,, S., Oomen,, A. G., Bleeker,, E. A., Vandebriel,, R. J., Micheletti,, C., Cabellos,, J., … Wijnhoven,, S. W. (2016). Towards a nanospecific approach for risk assessment. Regulatory Toxicology and Pharmacology, 80, 46–59.
Ding,, Y., Kuhlbusch,, T. A., Van Tongeren,, M., Jiménez,, A. S., Tuinman,, I., Chen,, R., … Riediker,, M. (2017). Airborne engineered nanomaterials in the workplace‐a review of release and worker exposure during nanomaterial production and handling processes. Journal of Hazardous Materials, 322, 17–28.
Dobrovolskaia,, M. A., & McNeil,, S. E. (2007). Immunological propertiesof engineered nanomaterials. Nature Nanotechnology, 2, 469–478.
Dobrovolskaia,, M. A., Shurin,, M., & Shvedova,, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78–89.
Donaldson,, K., Poland,, C. A., & Schins,, R. P. (2010). Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology, 4, 414–420.
Donaldson,, K., Schinwald,, A., Murphy,, F., Cho,, W. S., Duffin,, R., Tran,, L., & Poland,, C. (2013). The biologically effective dose in inhalation nanotoxicology. Accounts of Chemical Research, 46(3), 723–732.
Erdely,, A., Hulderman,, T., Salmen,, R., Liston,, A., Zeidler‐Erdely,, P. C., Schwegler‐Berry,, D., … Simeonova,, P. P. (2009). Cross‐talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Letters, 9, 36–43.
Erdely,, A., Liston,, A., Salmen‐Muniz,, R., Hulderman,, T., Young,, S. H., Zeidler‐Erdely,, P. C., … Simeonova,, P. P. (2011). Identification of systemic markers from a pulmonary carbon nanotube exposure. Journal of Occupational and Environmental Medicine, 53(6 Suppl), S80–S86.
European Commission (EC). (2011). Official Journal fo the European Union. RECOMMENDATIONS. Commission recommendation of 18 October 2011 on the definition of nanomaterial. L 275/38, Brussels, Belgium.
European Commission (2014). Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work. Guidance for the employers and health and safety practitioners. European Commission. Retrieved from ec.europa.eu/social/BlobServlet?docId=13087
Falagan‐Lotsch,, P., Grzincica,, E. M., & Murphy,, C. J. (2016). One low‐dose exposure of gold nanoparticles induces long‐term changes in human cells. PNAS, 113(47), 13318–13323.
Fatkhutdinova,, L. M., Khaliullin,, T. O., Vasil`yeva,, O. L., Zalyalov,, R. R., Mustafin,, I. G., Kisin,, E. R., … Shvedova,, A. A. (2016). Fibrosis biomarkers in workers exposed to MWCNTs. Toxicology and Applied Pharmacology, 15, 299–231.
Fu,, P. P., Xia,, Q., Hwang,, H. M., Ray,, P. C., & Yu,, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75.
Gatoo,, M. A., Naseem,, S., Arfat,, M. Y., Dar,, A. M., Qasim,, K., & Zubair,, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Research International, 2014, 498420.
Geiser,, M. (2010). Update on macrophage clearance of inhaled micro‐ and nanoparticles. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 23, 207–217.
Geiser,, M., & Kreyling,, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7, 2.
Girtsman,, T. A., Beamer,, C. A., Wu,, N., Buford,, M., & Holian,, A. (2014). IL‐1R signaling is critical for regulation of multiwalled carbon nanotubes‐induced acute lung inflammation in C57Bl/6 mice. Nanotoxicology, 8(1), 17–27.
Gonzalez,, L., Lison,, D., & Kirsch‐Volders,, M. (2008). Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology, 2, 252–273.
Grosse,, Y., Guyton,, K. Z., Lauby‐Secretan,, B., El Ghissassi,, F., Bouvard,, V., Benbrahim‐Tallaa,, L., … Straif,, K. (2014). Carcinogenicity of fluoro‐edenite, silicon carbide fibres and whiskers, and carbon nanotubes. The Lancet Oncology, 15, 1427–1428.
Gulson,, B., McCall,, M., Korsch,, M., Gomez,, L., Casey,, P., Oytam,, Y., … Greenoak,, G. (2010). Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicological Sciences, 118, 140–149.
Gulumian,, M., & Savolainen,, K. (2012). Toxicological issues in developed and developing countries: The difference is in approach and not in content. Human %26 Experimental Toxicology, 31(3), 205–206.
Guseva Canu,, I., Bateson,, T. F., Bouvard,, V., Debia,, M., Dion,, C., Savolainen,, K., & Yu,, I. J. (2016). Human exposure to carbon‐based fibrous nanomaterials: A review. International Journal of Hygiene and Environmental Health, 219(2), 166–175.
Hämeri,, K., Lähde,, T., Hussein,, T., Koivisto,, J., & Savolainen,, K. (2009). Facing the key workplace challenge: Assessing and preventing exposure to nanoparticles at source. Inhalation Toxicology, 21(Suppl 1), 17–24.
Health Council of the Netherlands. (2012). Working with nanoparticles: Exposure registry and health monitoring. The Hague, Netherlands: Health Council of the Netherlands, publication no. 2012/31E. Retrieved from https://www.gezondheidsraad.nl/sites/default/files/summaryEngineerednanoparticles201231E.pdf
Heinrich,, U., Fuhst,, R., Rittinghausen,, S., Creutzenberg,, O., Bellmann,, B., Koch,, W., & Levsen,, K. (1995). Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhalation Toxicology, 7, 533–556.
Hemmink,, G. J. M., Weusten,, B. L., Bredenoord,, A. J., Timmer,, R., & Smout,, A. J. (2009). Aerophagia: Excessive air swallowing demonstrated by esophageal impedance monitoring. Clinical Gastroenterology and Hepatology, 7, 1127–1129.
Horie,, M., Stowe,, M., Tabei,, M., & Kuroda,, E. (2015). Pharyngeal aspiration of metal oxide nanoparticles showed potential of allergy aggravation effect to inhaled ovalbumin. Inhalation Toxicology, 27(3), 181–190.
Hougaard,, K. S., Jackson,, P., Kyjovska,, Z. O., Birkedal,, R. K., De Temmerman,, P. J., Brunelli,, A., … Vogel,, U. (2013). Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reproductive Toxicology, 41, 86–97.
Hussain,, S., Boland,, S., Baeza‐Squiban,, A., Hamel,, R., Thomassen,, L. C., Martens,, J. A., … Marano,, F. (2009). Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 260, 142–149.
Hyytinen,, E.R., Väänänen,, V., Uuksulainen,, S., Stockmann‐Juvala, H. & Oksa,, P. (2014). Guidance on health surveillance for workers in the construction industry. Scaffold SPD12. Innovative strategies, methods and tools for occupational risks management of manufactured nanomaterials (MNMs) in the construction industry. Retrieved from http://scaffold.eu‐vri.eu/filehandler.ashx?file=13718
International Agency for Research on Cancer (IARC).. (2010). Carbon black, titanium dioxide, and talc. vol 93. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France.
Iavicoli,, I., Leso,, V., Manno,, M., & Schulte,, P. A. (2014). Biomarkers of nanomaterial exposure and effect: Current status. Journal of Nanoparticle Research, 16, 2302.
IFA. (2009) Criteria for Assessment of the Effectiveness of ProtectiveMeasures. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung. Retrieved from http://www.dguv.de/ifa/en/fac/nanopartikel/beurteilungsmassstaebe/index.jsp
Ilves,, M., & Alenius,, H. (2016). Modulation of immune system by carbon nanotubes. In C. Chen, & H. Wang, (Eds.), Biomedical applications and toxicology of carbon nanomaterials. Weinheim, Germany: Wiley‐VCH Verlag.
Journeay,, W. S., & Goldman,, R. H. (2014). Occupational handling of nickel nanoparticles: A case report. American Journal of Industrial Medicine, 57(9), 1073–1076.
Juric,, A., Meldrum,, R., & Liberda,, E. N. (2015). Achieving control of occupational exposures to engineered nanomaterials. Journal of Occupational and Environmental Hygiene, 12(8), 501–508.
Kaluza,, S., Balderhaar,, J. K., Orthen,, B., Honnert,, B., Jankowska,, E., Pietrowski,, P., … Zugasti,, A. (2009). Literature review. In J. Kosk‐Bienko, (Ed.), Workplace exposure to nanoparticles (Vol. 2009, pp. 1–89). Spain: European Agency for Safety and Health at Work (EU‐OSHA).
Kane,, A. B., & Hurt,, R. H. (2008). Nanotoxicology: The asbestos analogy revisited. Nature Nanotechnology, 3(7), 378–379.
Kasai,, T., Umeda,, Y., Ohnishi,, M., Mine,, T., Kondo,, H., Takeuchi,, T., … Fukushima,, S. (2016). Lung carcinogenicity of inhaled multi‐walled carbon nanotube in rats. Particle and Fibre Toxicology, 13, 53.
Khanna,, P., Ong,, C., Bay,, B. H., & Baeg,, G. H. (2015). Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials, 5(3), 1163–1180.
Kim,, T. H., Kim,, M., Park,, H. S., Shin,, U. S., Gong,, M. S., & Kim,, H. W. (2012). Size‐dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research, Part A, 100A, 1033–1043.
Kinaret,, P., Ilves,, M., Fortino,, V., Rydman,, E., Karisola,, P., Lähde,, A., … Alenius,, H. (2017). Inhalation and oropharyngeal aspiration exposure to rod‐like carbon nanotubes induce similar airway inflammation and biological responses in mouse lungs. ACS Nano, 11(1), 291–303.
Kobyliak,, N. M., Falalyeyeva,, T. M., Kuryk,, O. G., Beregova,, T. V., Bodnar,, P. M., Zholobak,, N. M., … Spivak,, M. Y. (2015). Antioxidative effects of cerium dioxide nanoparticles ameliorate age‐related male infertility: Optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. The EPMA Journal, 6, 12.
Kong,, L., Tang,, M., Zhang,, T., Wang,, D. Y., Hu,, K., Lu,, W. Q., … Pu,, Y. P. (2014). Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. International Journal of Molecular Sciences, 15, 21253–21269.
Kreyling,, W. G., Semmler‐Behnke,, M., Seitz,, J., Scymczak,, W., Wenk,, A., Mayer,, P., … Oberdörster,, G. (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 21(Suppl 1), 55–60.
Krug,, H. F. (2014). Nanosafety research‐‐are we on the right track? Angewandte Chemie International Edition, 53(46), 12304–12319.
Landsiedel,, R., Kapp,, M. D., Schulz,, M., Wiench,, K., & Oesch,, F. (2009). Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations‐‐many questions, some answers. Mutation Research, 681(2–3), 241–258.
Lee,, J. H., Mun,, J., Park,, J. D., & Yu,, I. J. (2012). A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology, 6, 667–669.
Lee,, J. S., Choi,, Y. C., Shin,, J. H., Lee,, J. H., Lee,, Y., Park,, S. Y., … Yu,, I. J. (2015). Health surveillance study of workers who manufacture multi‐walled carbon nanotubes. Nanotoxicology, 9, 802–811.
Lee,, K. P., Trochimowicz,, H. J., & Reinhardt,, C. F. (1985). Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicology and Applied Pharmacology, 79(2), 179–192.
Lee,, M., Lim,, S., & Kim,, C. (2007). Preparation, characterization and in vitro cytotoxicity of paclitaxel‐loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 28(12), 2137–2146.
Li,, W. Q., Wang,, F., Liu,, Z. M., Wang,, Y. C., Wang,, J., & Sun,, F. (2013). Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small, 9, 1708–1714.
Li,, X., Aldayel,, A. M., & Cui,, Z. (2014). Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. Journal of Controlled Release, 173, 148–157.
Li,, Y., & Boraschi,, D. (2016). Endotoxin contamination: A key element in the interpretation of nanosafety studies. Nanomedicine (London, England), 11(3), 269–287.
Liao,, H. Y., Chung,, Y. T., Lai,, C. H., Lin,, M. H., & Liou,, S. H. (2014). Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers. Industrial Health, 52, 199–215.
Lindberg,, H. K., Falck,, G. C., Singh,, R., Suhonen,, S., Järventaus,, H., Vanhala,, E., … Norppa,, H. (2013). Genotoxicity of short single‐wall and multi‐wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology, 313(1), 24–37.
Lindberg,, H. K., Falck,, G. C., Suhonen,, S., Vippola,, M., Vanhala,, E., Catalán,, J., … Norppa,, H. (2009). Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicology Letters, 186(3), 166–173.
Liou,, S. H., Tsai,, C. S., Pelclova,, D., Schubauer‐Berigan,, M. K., & Schulte,, P. A. (2015). Assessing the first wave of epidemiological studies of nanomaterial workers. Journal of Nanoparticle Research, 17, 413.
Liu,, H. H., Chen,, C. Y., Chen,, G. I., Lee,, L. H., & Chen,, %26 H.L. (2012). Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants. International Archives of Occupational and Environmental Health, 85, 447–453.
Mackevica,, A. (2016). Release of nanomaterials from consumer products and implications for consumer exposure assessment. (Unpublished doctoral dissertation). Technical University of Denmark, Lyngby, Denmark. Retrieved from http://orbit.dtu.dk/en/publications/release‐of‐nanomaterials‐from‐consumer‐products‐and‐implications‐for‐consumer‐exposure‐assessment(22da2505‐1fe1‐4055‐9bd7‐a7ecbd086bf1).html
Maynard,, A. D., Baron,, P. A., Foley,, M., Shvedova,, A. A., Kisin,, E. R., & Castranova,, V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single‐walled carbon nanotube material. Journal of Toxicology and Environmental Health. Part A, 67(1), 87–107.
Mercer,, R. R., Scabilloni,, J. F., Hubbs,, A. F., Battelli,, L. A., McKinney,, W., Friend,, S., … Porter,, D. W. (2013). Distribution and fibrotic response following inhalation exposure to multi‐walled carbon nanotubes. Particle and Fibre Toxicology, 10, 33.
Mercer,, R. R., Scabilloni,, J. F., Hubbs,, A. F., Wang,, L., Battelli,, L. A., McKinney,, W., … Porter,, D. W. (2013). Extrapulmonary transport of MWCNT following inhalation exposure. Particle and Fibre Toxicology, 10, 38.
Methner,, M., Hodson,, L., Dames,, A., & Geraci,, C. (2010). Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—Part B: Results from 12 field studies. Journal of Occupational and Environmental Hygiene, 7(3), 163–176.
Methner,, M., Hodson,, L., & Geraci,, C. (2010). Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials‐‐part a. Journal of Occupational and Environmental Hygiene, 7(3), 127–132.
Mihalache,, R., Verbeek,, J., Graczyk,, H., Murashov,, V., & Van Broekhuizen,, P. (2017). Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology, 11, 7–19.
Miller,, M. R., Shaw,, C. A., & Langrish,, J. P. (2012). From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiology, 8, 577–602.
Monopoli,, M. P., Aberg,, C., Salvati,, A., & Dawson,, K. (2012). A biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 7(12), 779–786.
Monteiro‐Riviere,, N., & Larese‐Filon,, F. (2017). Effects of engineered nanomaterials on skin. In B. Fadeel,, A. Pietroiusti,, & A. Shvedova, (Eds.), Adverse effects of engineered nanomaterials (2nd ed., pp. 357–380). London, UK: Academic Press.
Morawska,, L., McGarry,, P., Morris,, H., Knibbs,, L., Bostrom,, T., & Capasso,, A. (2012). Measurements of particle emissions from nanotechnology processes, with assessment of measuring techniques and workplace controls. Safe Work Australia Report.
Moridian,, M., Khorsandi,, L., & Talebi,, A. R. (2015). Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue. Bratislavské Lekárske Listy, 116, 321–325.
Muller,, J., Decordier,, I., Hoet,, P. H., Lombaert,, N., Thomassen,, L., Huaux,, F., … Kirsch‐Volders,, M. (2008). Clastogenic and aneugenic effects of multi‐wall carbon nanotubes in epithelial cells. Carcinogenesis, 29, 427–433.
Muller,, J., Delos,, M., Panin,, N., Rabolli,, V., Huaux,, F., & Lison,, D. (2009). Absence of carcinogenic response to multiwall carbon nanotubes in a 2‐year bioassay in the peritoneal cavity of the rat. Toxicological Sciences, 110(2), 442–448.
Napierska,, D., Rabolli,, V., Thomassenm,, L. C., Dinsdale,, D., Princen,, C., Gonzalez,, L., … Hoet,, P. H. (2012). Oxidative stress induced by pure and iron‐doped amorphous silica nanoparticles in subtoxic conditions. Chemical Research in Toxicology, 25, 828–837.
National Institute of Occupational Safety and Health (NIOSH). (2013). Current strategies for engineering controls in nanomaterial production and downstream handling processes. Publication No. 2014–102. Cincinnati, USA.
Navya,, P. N., & Daima,, H. K. (2016). Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 3(1), 1.
Nel,, A., Xia,, T., Mädler,, L., & Li,, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.
Nel,, A. E., Madler,, L., Velegol,, D., Xia,, T., Hoek,, E. M., Somasundaran,, P., … Thompson,, M. (2009). Understanding biophysicochemical interactions at the nano‐bio interface. Nature Materials, 8(7), 543–557.
Nguyen,, T. H., Lin,, M., & Mustapha,, A. (2015). Toxicity of graphene oxide on intestinal bacteria and Caco‐2 cells. Journal of Food Protection, 78, 996–1002.
Nielsen,, G. D., & Øvrebø,, S. (2008). Background, approaches and recent trends for setting health‐based occupational exposure limits: A minireview. Regulatory Toxicology and Pharmacology, 51(3), 253–269.
Niikura,, K., Matsunaga,, T., Suzuki,, T., Kobayashi,, S., Yamaguchi,, H., Orba,, Y., … Sawa,, H. (2013). Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7, 3926–3938.
Nymark,, P., Jensen,, K. A., Suhonen,, S., Kembouche,, Y., Vippola,, M., Kleinjans,, J., … Briedé,, J. J. (2014). Free radical scavenging and formation by multi‐walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Particle and Fibre Toxicology, 11, 4.
Ou,, L., Song,, B., Liang,, H., Liu,, J., Feng,, X., Deng,, B., … Shao,, L. (2016). Toxicity of graphene‐family nanoparticles: A general review of the origins and mechanisms. Particle and Fibre Toxicology, 13(1), 57.
Palomäki,, J., Välimäki,, E., Sund,, J., Vippola,, M., Clausen,, P. A., Jensen,, K. A., … Alenius,, H. (2011). Long, needle‐like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano, 5(9), 6861–6870.
Pelclova,, D., Barosova,, H., Kukutschova,, J., Zdimal,, V., Navratil,, T., Fenclova,, Z., … Zakharov,, S. (2015). Microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: A cross‐sectional study. Journal of Breath Research, 9, 036008.
Pelclova,, D., Zdimal,, V., Kacer,, P., Komarc,, M., Fenclova,, Z., Vlckova,, S., … Bello,, D. (2017). Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Reviews on Environmental Health, 32(1–2), 193–200.
Peters,, A., Rückerl,, R., & Cyrys,, J. (2011). Lessons from air pollution epidemiology for studies of engineered nanomaterials. Journal of Occupational and Environmental Medicine, 53(6 Suppl), S8–S13.
Peters,, T. M., Elzey,, S., Johnson,, R., Park,, H., Grassian,, V. H., Maher,, T., & O`Shaughnessy,, P. (2009). Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. Journal of Occupational and Environmental Hygiene, 6(2), 73–81.
Pietroiusti,, A. (2012). Health implications of engineered nanomaterials. Nanoscale, 4, 1231–1247.
Pietroiusti,, A., Campagnolo,, L., & Fadeel,, B. (2013). Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small, 9(9–10), 1557–1572.
Pietroiusti,, A., & Magrini,, A. (2014). Engineered nanoparticles at the workplace: Current knowledge about workers’ risk. Occupational Medicine, 64, 319–330.
Pietroiusti,, A., Magrini,, A., & Campagnolo,, L. (2016). New frontiers in nanotoxicology: Gut microbiota/microbiome‐mediated effects of engineered nanomaterials. Toxicology and Applied Pharmacology, 299, 90–95.
Pietroiusti,, A., Massimiani,, M., Fenoglio,, I., Colonna,, M., Valentini,, F., Palleschi,, G., … Campagnolo,, L. (2011). Low doses of pristine and oxidized single‐wall carbon nanotubes affect mammalian embryonic development. ACS Nano, 5, 4624–4633.
Poland,, C. A., Duffin,, R., Kinloch,, I., Maynard,, A., Wallace,, W. A., Seaton,, A., … Donaldson,, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos‐like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423–428.
Pope,, C.A. 3rd, & Kanner,, R.E. (1993). Acute effects of PM10 pollution on pulmonary function of smokers with mild to moderate chronic obstructive pulmonary disease. The American Review of Respiratory Disease, 147(6 Pt 1), 1336–40.
Présumé,, M., Simon‐Deckers,, A., Tomkiewicz‐Raulet,, C., Le Grand,, B., Tran Van Nhieu,, J., Beaune,, G., … Andujar,, P. (2016). Exposure to metal oxide nanoparticles administered at induces pulmonary effects in mice. Nanotoxicology, 10(10), 1535–1544.
Robertson,, S., Thomson,, A. L., Carter,, R., Stott,, H. R., Shaw,, C. A., Hadoke,, P. W., … Gray,, G. A. (2014). Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and β1 adrenoreceptors. Particle and Fibre Toxicology, 11, 12.
Roco,, M. C. (2011). The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, 13, 427–445.
Rossi,, E. M., Pylkkänen,, L., Koivisto,, A. J., Nykäsenoja,, H., Wolff,, H., Savolainen,, K., & Alenius,, H. (2010). Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Particle and Fibre Toxicology, 7, 35.
Rushton,, E. K., Jiang,, J., Leonard,, S. S., Eberly,, S., Castranova,, V., Biswas,, P., … Oberdörster,, G. (2010). Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biologicalresponse metrics. Journal of Toxicology and Environmental Health. Part A, 73, 445–461.
Ryman‐Rasmussen,, J. P., Cesta,, M. F., Brody,, A. R., Shipley‐Phillips,, J. K., Everitt,, J. I., Tewksbury,, E. W., … Bonner,, J. C. (2009). Inhaled carbon nanotubes reach the subpleural tissue in mice. Nature Nanotechnology, 4(11), 747–751.
Ryman‐Rasmussen,, J. P., Tewksbury,, E. W., Moss,, O. R., Cesta,, M. F., Wong,, B. A., & Bonner,, J. C. (2009). Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. American Journal of Respiratory Cell and Molecular Biology, 40(3), 349–358.
Ryu,, H. J., Seong,, N. W., So,, B. J., Seo,, H. S., Kim,, J. H., Hong,, J. S., … Son,, S. W. (2014). Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. International Journal of Nanomedicine, 9(Suppl 2), 127–136.
Saber,, A. T., Lamson,, J. S., Jacobsen,, N. R., Ravn‐Haren,, G., Hougaard,, K. S., Nyendi,, A. N., … Vogel,, U. (2013). Particle‐induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE, 8(7), e69020.
Sakamoto,, Y., Nakae,, D., Fukumori,, N., Tayama,, K., Maekawa,, A., Imai,, K., … Ogata,, A. (2009). Induction of mesothelioma by a single intrascrotal administration of multi‐wall carbon nanotube in intact male Fischer 344 rats. The Journal of Toxicological Sciences, 34, 65–76.
Sargent,, L. M., Hubbs,, A. F., Young,, S. H., Kashon,, M. L., Dinu,, C. Z., Salisbury,, J. L., … Reynolds,, S. H. (2012). Single‐walled carbon nanotube‐induced mitotic disruption. Mutation Research, 745, 28–37.
Sargent,, L. M., Porter,, D. W., Staska,, L. M., Hubbs,, A. F., Lowry,, D. T., Battelli,, L., … Reynolds,, S. H. (2014). Promotion of lung adenocarcinoma following inhalation exposure to multi‐walled carbon nanotubes. Particle and Fibre Toxicology, 11, 3.
Sarlo,, K., Blackburn,, K. L., Clark,, E. D., Grothaus,, J., Chaney,, J., Neu,, S., … Kuhn,, M. (2009). Tissue distribution of 20, 100 and 1000 nm fluorescent polystyrene latex nanospheres following acutesystemic or acute and repeat airway exposure in the rat. Toxicology, 263, 117–126.
Savolainen,, K., & Alenius,, H. (2013). Disseminating widely. Nature Nanotechnology, 8(2), 72.
Savolainen,, K., Alenius,, H., Norppa,, H., Pylkkänen,, L., Tuomi,, T., & Kasper,, G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology, 269, 92–104.
Schinwald,, A., Murphy,, F. A., Prina‐Mellon,, A., Poland,, C. A., Byrne,, F., Movia,, D., … Donaldson,, K. (2012). The threshold length for‐fiber‐induce acute pleural inflammation: Shedding light on the early events in asbestos‐induced mesothelioma. Toxicological Sciences, 128(2), 461–470.
Schmid,, G. (2010). Front matter, in nanoparticles (2nd ed.). Weinheim, Germany: Wiley‐VCH Verlag.
Schulte,, P. A., Iavicoli,, I., Rantanen,, J. H., Dahmann,, D., Iavicoli,, S., Pipke,, R., … Mantovani,, E. (2016). Assessing the protection of the nanomaterial workforce. Nanotoxicology, 10, 1013–1019.
Schulte,, P. A., Schubauer‐Berigan,, M. K., Mayweather,, C., Geraci,, C. L., Zumwalde,, R., & McKernan,, J. L. (2009). Issues in the development of epidemiologic studies of workers exposed to engineered nanoparticles. Journal of Occupational and Environmental Medicine, 51, 323–335.
Seipenbusch,, M., Binder,, A., & Kasper,, G. (2008). Temporal evolution of nanoparticle aerosols in workplace exposure. The Annals of Occupational Hygiene, 52(8), 707–716.
Seipenbusch,, M., Yu,, M., Aschbach,, C., Rating,, U., Kuhlbusch,, T., & Lidén,, G. (2014). From source to emission, transport dynamics and dose assessment for workplace aerosol exposure. In U. Vogel,, K. Savolainen,, Q. Wu,, M. van Tongeren,, D. Brouwer,, & M. Berges, (Eds.), Handbook of nanosafety. Measurement, exposure and toxicology (p. 135). London, England: Elsevier.
Shvedova,, A. A., Fabisiak,, J. P., Kisin,, E. R., Murray,, A. R., Roberts,, J. R., Tyurina,, Y. Y., … Kagan,, V. E. (2008). Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. American Journal of Respiratory Cell and Molecular Biology, 38, 579–590.
Shvedova,, A. A., Kisin,, E. R., Mercer,, R., Murray,, A. R., Johnson,, V. J., Potapovich,, A. I., … Baron,, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single‐walled carbon nanotubes in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289(5), L698–L708.
Shvedova,, A.A., Kisin,, E.R., Murray,, A.R., Gorelik,, O., Arepalli,, S., Castranova,, V., Young,, S.H., Gao,F., Tyurina,, Y.Y., Oury,, T.D., Kagan, VE. (2007). Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single‐walled carbon nanotubes in C57BL/6 mice. Toxicology and Applied Pharmacology 221:339–348.
Shvedova,, A. A., Yanamala,, N., Kisin,, E. R., Khailullin,, T. O., Birch,, M. E., & Fatkhutdinova,, L. M. (2016). Integrated analysis of dysregulated ncRNA and mRNA expression profiles in humans exposed to carbon nanotubes. PLoS ONE, 11(3), e0150628.
Smith,, M. J., Brown,, J. M., Zamboni,, W. C., & Walker,, N. J. (2014). From immunotoxicity to nanotherapy: The effects of nanomaterials on the immune system. Toxicological Sciences, 138(2), 249–255.
Srdjenovi,, B., Milic‐Torres,, V., Grujic,, N., Stankov,, K., Djordjevic,, A., & Vasovic,, V. (2010). Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin. Toxicology Mechanisms and Methods, 20, 298–305.
Stapleton,, P. A. (2016). Gestational nanomaterial exposures: Microvascular implications during pregnancy, fetal development and adulthood. The Journal of Physiology, 594, 2161–2173.
Stapleton,, P. A., Minarchick,, V. C., Yi,, J., Engels,, K., McBride,, C. R., & Nurkiewicz,, T. R. (2013). Maternal engineered nanomaterial exposure and fetal microvascular function: Does the barker hypothesis apply? American Journal of Obstetrics and Gynecology, 209, 227.e1–227.11.
Stapleton,, P. A., Nichols,, C. E., Yi,, J., McBride,, C. R., Minarchick,, V. C., Shepherd,, D. L., … Nurkiewicz,, T. R. (2015). Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology, 9(8), 941–951.
Stern,, S. T., Adiseshaiah,, P. P., & Crist,, R. M. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and Fibre Toxicology, 9, 20.
Stone,, V., Johnston,, H. J., Balharry,, D., Gernand,, J. M., & Gulumian,, M. (2016). Approaches to develop alternative testing strategies to inform human health risk assessment of nanomaterials. Risk Analysis, 36(8), 1538–1550.
Takagi,, A., Hirose,, A., Futakuchi,, M., Tsuda,, H., & Kanno,, J. (2012). Dose‐dependent mesothelioma induction by intraperitoneal administration of multi‐wall carbon nanotubes in p53 heterozygous mice. Cancer Science, 103(8), 1440–1444.
Takagi,, A., Hirose,, A., Nishimura,, T., Fukumori,, N., Ogata,, A., Ohashi,, N., … Kanno,, J. (2008). Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi‐wall carbon nanotube. The Journal of Toxicological Sciences, 33(1), 105–116.
Tassinari,, R., Cubadda,, F., Moracci,, G., Aureli,, F., D`Amato,, M., Valeri,, M., … Maranghi,, F. (2014). Oral, short‐term exposure to titanium dioxide nanoparticles in Sprague‐Dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology, 8, 654–662.
Tavanti,, F., Pedone,, A., & Menziani,, M. C. (2015). Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. Journal of Physical Chemistry, 119, 22172–22180.
Tetley,, T. D. (2007). Health effects of nanomaterials. Biochemical Society Transactions, 35(Pt 3), 527–531.
The Danish Environment Protection Agency. (2015). Exposure assessment of nanomaterials in consumer products. Environmental Project No 1636, 2015. 1–134. Retrieved from http://www2.mst.dk/Udgiv/publications/2015/01/978‐87‐93283‐57‐2.pdf
The Royal Society. (2004). Nanoscience and nanotechnologies: opportunities and uncertainties (pp. 1–116). Plymouth, England: Latimer Trend.
Tsai,, C. J., Huang,, C. Y., Chen,, S. C., Ho,, C. E., Huang,, C. H., Chen,, C. W., … Ellenbecker,, M. J. (2011). Exposure assessment of nano‐sized and respirable particles at different workplaces. Journal of Nanoparticle Research, 13(9), 4161–4172.
Valsami‐Jones,, E., & Lynch,, I. (2015). NANOSAFETY. How safe are nanomaterials? Science, 350(6259), 388–389.
van Broekhuizen,, P., & Reijnders,, L. (2011). Building blocks for a precautionary approach to the use of nanomaterials:Positions taken by trade unions and environmental NGOs in the European nanotechnologies debate. Risk Analysis, 31(10), 1646–1657.
Van Broekhuizen,, P., van Veelen,, W., Streekstra,, W. H., Schulte,, P., & Reijnders,, L. (2012). Exposure limits for nanoparticles: Report of an international workshop on nano reference values. The Annals of Occupational Hygiene, 56(5), 515–524.
Van Duuren‐Stuurman,, B., Pelzer,, J., Moehlmann,, C., Berges,, M., Bard,, D., Wake,, D., … Brouwer,, D. (2010). A structured observational method to assess dermal exposure to manufactured nanoparticles DREAM as an initial assessment tool. International Journal of Occupational and Environmental Health, 16(4), 399–405.
Vance,, M.E., Kuiken,, T., Vejerano,, E.P., McGinnis,, S.P., Hochella,, M.F. Jr, Rejeski,, D., & Hull,, M.S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6,1769–1780.
Verma,, A., & Stellacci,, F. (2010). Effect of surface properties on nanoparticle‐cell interactions. Small, 6(1), 12–21.
Wang,, J., Zhou,, G., Chen,, C., Yu,, H., Wang,, T., Ma,, Y., … Chai,, Z. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168(2), 176–185.
Warheit,, D. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization. Toxicological Sciences, 101(2), 183–185.
Warheit,, D. B., Hoke,, R. A., Finlay,, C., Donner,, E. M., Reed,, K. L., & Sayes,, C. M. (2007). Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 171(3), 99–110.
Witasp,, E., Shvedova,, A. A., Kagan,, V. E., & Fadeel,, B. (2009). Single‐walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhalation Toxicology, 21(Suppl. 1), 131–136.
Wu,, J., Liu,, W., Xue,, C., Zhou,, S., Lan,, F., & Bi,, L. (2009). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology Letters, 191, 1–8.
Wu,, W. T., Liao,, H. Y., Chung,, Y. T., Li,, W. F., Tsou,, T. C., Li,, L. A., … Liou,, S. H. (2014). Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. International Journal of Molecular Sciences, 15(1), 878–894.
Xu,, Y., Barregard,, L., Nielsen,, J., Gudmundsson,, A., Wierzbicka,, A., Axmon,, A., Jönsson,, B.A., Kåredal ,M., Albin,, M. (2013). Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study. Particle and Fibre Toxicology, 10, 60.
Xu,, Y., Wang,, N., Yu,, Y., Li,, Y., Li,, Y. B., Yu,, Y. B., … Sun,, Z. W. (2014). Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice. PLoS ONE, 9, e101572.
Yang,, Y., Mao,, P., Wang,, Z.‐P., & Zhang,, J.‐H. (2012). Distribution of nanoparticle number concentrations at a nano‐TiO2 plant. Aerosol and Air Quality Research, 12(5), 934–940.
Yoshida,, S., Hiyoshi,, K., Ichinose,, T., Takano,, H., Oshio,, S., Sugawara,, I., … Shibamoto,, T. (2009). Effect of nanoparticles on the male reproductive system of mice. International Journal of Andrology, 32, 337–342.