Abdel‐Hamid,, M., Hussein,, M. R., Ahmad,, A. F., & Elgezawi,, E. M. (2005). Enhancement of the repair of meniscal wounds in the red‐white zone (middle third) by the injection of bone marrow cells in canine animal model. International Journal of Experimental Pathology, 86(2), 117–123. https://doi.org/10.1111/j.0959-9673.2005.00420.x
Beeres,, S. L., Bengel,, F. M., Bartunek,, J., Atsma,, D. E., Hill,, J. M., Vanderheyden,, M., … Bax,, J. J. (2007). Role of imaging in cardiac stem cell therapy. Journal of the American College of Cardiology, 49(11), 1137–1148. https://doi.org/10.1016/j.jacc.2006.10.072
Behr,, B., Sorkin,, M., Lehnhardt,, M., Renda,, A., Longaker,, M. T., & Quarto,, N. (2012). A comparative analysis of the osteogenic effects of BMP‐2, FGF‐2, and VEGFA in a calvarial defect model. Tissue Engineering. Part A, 18(9–10), 1079–1086. https://doi.org/10.1089/ten.TEA.2011.0537
Bellingan,, G. J., Caldwell,, H., Howie,, S. E., Dransfield,, I., & Haslett,, C. (1996). In vivo fate of the inflammatory macrophage during the resolution of inflammation: Inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. Journal of Immunology, 157(6), 2577–2585.
Bellingan,, G. J., Xu,, P., Cooksley,, H., Cauldwell,, H., Shock,, A., Bottoms,, S., … Laurent,, G. J. (2002). Adhesion molecule‐dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. The Journal of Experimental Medicine, 196(11), 1515–1521.
Boyd,, A. S., Rodrigues,, N. P., Lui,, K. O., Fu,, X., & Xu,, Y. (2012). Concise review: Immune recognition of induced pluripotent stem cells. Stem Cells, 30(5), 797–803. https://doi.org/10.1002/stem.1066
Brooks,, P. M. (2002). Impact of osteoarthritis on individuals and society: How much disability? Social consequences and health economic implications. Current Opinion in Rheumatology, 14(5), 573–577.
Bulte,, J. W. M. (2017). Science to practice: Can MR imaging cell tracking of macrophage infiltration be used as a predictive imaging biomarker for transplanted stem cell rejection? Radiology, 284(2), 307–309. https://doi.org/10.1148/radiol.2017170536
Buza,, J. A., 3rd, & Einhorn,, T. (2016). Bone healing in 2016. Clinical Cases in Mineral and Bone Metabolism, 13(2), 101–105. https://doi.org/10.11138/ccmbm/2016.13.2.101
Cahalan,, M. D. (2011). Imaging transplant rejection: A new view. Nature Medicine, 17(6), 662–663. https://doi.org/10.1038/nm0611-662
Campana,, V., Milano,, G., Pagano,, E., Barba,, M., Cicione,, C., Salonna,, G., … Logroscino,, G. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science. Materials in Medicine, 25(10), 2445–2461. https://doi.org/10.1007/s10856-014-5240-2
Cao,, C., Lawrence,, D. A., Strickland,, D. K., & Zhang,, L. (2005). A specific role of integrin Mac‐1 in accelerated macrophage efflux to the lymphatics. Blood, 106(9), 3234–3241. https://doi.org/10.1182/blood-2005-03-1288
Cao,, Q., Yan,, X., Chen,, K., Huang,, Q., Melancon,, M. P., Lopez,, G., … Li,, C. (2018). Macrophages as a potential tumor‐microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials, 152, 63–76. https://doi.org/10.1016/j.biomaterials.2017.10.036
Celli,, S., Albert,, M. L., & Bousso,, P. (2011). Visualizing the innate and adaptive immune responses underlying allograft rejection by two‐photon microscopy. Nature Medicine, 17(6), 744–749. https://doi.org/10.1038/nm.2376
Chang,, G., Sherman,, O., Madelin,, G., Recht,, M., & Regatte,, R. (2011). MR imaging assessment of articular cartilage repair procedures. Magnetic Resonance Imaging Clinics of North AmericaMagn Reson Imaging, 19(2), 323–337. https://doi.org/10.1016/j.mric.2011.02.002
Charron,, D., Suberbielle‐Boissel,, C., & Al‐Daccak,, R. (2009). Immunogenicity and allogenicity: A challenge of stem cell therapy. Journal of Cardiovascular Translational Research, 2(1), 130–138. https://doi.org/10.1007/s12265-008-9062-9
Chimutengwende‐Gordon,, M., & Khan,, W. S. (2012). Advances in the use of stem cells and tissue engineering applications in bone repair. Current Stem Cell Research %26 Therapy, 7(2), 122–126.
Choi,, Y. S., Potter,, H. G., & Chun,, T. J. (2008). MR imaging of cartilage repair in the knee and ankle. Radiographics, 28(4), 1043–1059. https://doi.org/10.1148/rg.284075111
Christen,, T., Nahrendorf,, M., Wildgruber,, M., Swirski,, F. K., Aikawa,, E., Waterman,, P., … Libby,, P. (2009). Molecular imaging of innate immune cell function in transplant rejection. Circulation, 119(14), 1925–1932. https://doi.org/10.1161/CIRCULATIONAHA.108.796888
Ciapetti,, G., Granchi,, D., & Baldini,, N. (2012). The combined use of mesenchymal stromal cells and scaffolds for bone repair. Current Pharmaceutical Design, 18(13), 1796–1820.
Daldrup‐Link,, H. E., Chan,, C., Lenkov,, O., Taghavigarmestani,, S., Nazekati,, T., Nejadnik,, H., … Gambhir,, S. S. (2017). Detection of stem cell transplant rejection with Ferumoxytol MR imaging: Correlation of MR imaging findings with those at intravital microscopy. Radiology, 284(2), 495–507. https://doi.org/10.1148/radiol.2017161139
Daldrup‐Link,, H. E., & Nejadnik,, H. (2014). MR imaging of stem cell transplants in arthritic joints. Journal of Stem Cell Research and Therapy, 4(2), 165. https://doi.org/10.4172/2157-7633.1000165
Daldrup‐Link,, H. E., Rummeny,, E. J., Ihssen,, B., Kienast,, J., & Link,, T. M. (2002). Iron‐oxide‐enhanced MR imaging of bone marrow in patients with non‐Hodgkin`s lymphoma: Differentiation between tumor infiltration and hypercellular bone marrow. European Radiology, 12(6), 1557–1566. https://doi.org/10.1007/s00330-001-1270-5
Duffy,, M. M., Ritter,, T., Ceredig,, R., & Griffin,, M. D. (2011). Mesenchymal stem cell effects on T‐cell effector pathways. Stem Cell Research %26 Therapy, 2(4), 34. https://doi.org/10.1186/scrt75
Dupont,, K. M., Sharma,, K., Stevens,, H. Y., Boerckel,, J. D., Garcia,, A. J., & Guldberg,, R. E. (2010). Human stem cell delivery for treatment of large segmental bone defects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3305–3310. https://doi.org/10.1073/pnas.0905444107
English,, K., & Wood,, K. J. (2010). Immunogenicity of embryonic stem cell‐derived progenitors after transplantation. Current Opinion in Organ Transplantation, 16(1), 90–95. https://doi.org/10.1097/MOT.0b013e3283424faa
English,, K., & Wood,, K. J. (2013). Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harbor Perspectives in Medicine, 3(5), a015560. https://doi.org/10.1101/cshperspect.a015560
Goodman,, S. B. (2013). Cell‐based therapies for regenerating bone. Minerva Ortopedica e Traumatologica, 64(2), 107–113.
Griffin,, M. D., Ryan,, A. E., Alagesan,, S., Lohan,, P., Treacy,, O., & Ritter,, T. (2013). Anti‐donor immune responses elicited by allogeneic mesenchymal stem cells: What have we learned so far? Immunology and Cell Biology, 91(1), 40–51. https://doi.org/10.1038/icb.2012.67
Grinnemo,, K. H., Mansson,, A., Dellgren,, G., Klingberg,, D., Wardell,, E., Drvota,, V., … Le Blanc,, K. (2004). Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. The Journal of Thoracic and Cardiovascular Surgery, 127(5), 1293–1300. https://doi.org/10.1016/j.jtcvs.2003.07.037
Heidt,, S., Segundo,, D. S., Chadha,, R., & Wood,, K. J. (2010). The impact of Th17 cells on transplant rejection and the induction of tolerance. Current Opinion in Organ Transplantation, 15(4), 456–461. https://doi.org/10.1097/MOT.0b013e32833b9bfb
Henning,, T. D., Gawande,, R., Khurana,, A., Tavri,, S., Mandrussow,, L., Golovko,, D., … Daldrup‐Link,, H. E. (2011). Magnetic resonance imaging of Ferumoxide‐labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Molecular Imaging, 11(3), 197–209. https://doi.org/10.2310/7290.2011.00040
Hitchens,, T. K., Ye,, Q., Eytan,, D. F., Janjic,, J. M., Ahrens,, E. T., & Ho,, C. (2011). 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magnetic Resonance in Medicine, 65(4), 1144–1153. https://doi.org/10.1002/mrm.22702
Hyun,, J., Grova,, M., Nejadnik,, H., Lo,, D., Morrison,, S., Montoro,, D., … Longaker,, M. T. (2013). Enhancing in vivo survival of adipose‐derived stromal cells through Bcl‐2 overexpression using a minicircle vector. Stem Cells Translational Medicine, 2(9), 690–702. https://doi.org/10.5966/sctm.2013-0035
Ikezumi,, Y., Hurst,, L. A., Masaki,, T., Atkins,, R. C., & Nikolic‐Paterson,, D. J. (2003). Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney International, 63(1), 83–95. https://doi.org/10.1046/j.1523-1755.2003.00717.x
Jorgensen,, C., Gordeladze,, J., & Noel,, D. (2004). Tissue engineering through autologous mesenchymal stem cells. Current Opinion in Biotechnology, 15(5), 406–410 10.1016/j.copbio.2004.08.003.
Jorgensen,, C., & Noel,, D. (2011). Mesenchymal stem cells in osteoarticular diseases. Regenerative Medicine, 6(6 Suppl), 44–51. https://doi.org/10.2217/rme.11.80
Julier,, Z., Park,, A. J., Briquez,, P. S., & Martino,, M. M. (2017). Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia, 53, 13–28. https://doi.org/10.1016/j.actbio.2017.01.056
Kanno,, S., Wu,, Y. J., Lee,, P. C., Dodd,, S. J., Williams,, M., Griffith,, B. P., & Ho,, C. (2001). Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation, 104(8), 934–938.
Karabekian,, Z., Posnack,, N. G., & Sarvazyan,, N. (2011). Immunological barriers to stem‐cell based cardiac repair. Stem Cell Reviews, 7(2), 315–325. https://doi.org/10.1007/s12015-010-9202-x
Khurana,, A., Chapelin,, F., Beck,, G., Lenkov,, O. D., Donig,, J., Nejadnik,, H., … Daldrup‐Link,, H. E. (2013). Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology, 269(1), 186–197. https://doi.org/10.1148/radiol.13130858
Khurana,, A., Nejadnik,, H., Chapelin,, F., Lenkov,, O., Gawande,, R., Lee,, S., … Daldrup‐Link,, H. E. (2013). Ferumoxytol: A new, clinically applicable label for stem‐cell tracking in arthritic joints with MRI. Nanomedicine (London, England), 8(12), 1969–1983. https://doi.org/10.2217/nnm.12.198
Khurana,, A., Nejadnik,, H., Gawande,, R., Lin,, G., Lee,, S., Messing,, S., … Daldrup‐Link,, H. E. (2012). Intravenous ferumoxytol allows noninvasive MR imaging monitoring of macrophage migration into stem cell transplants. Radiology, 264(3), 803–811. https://doi.org/10.1148/radiol.12112393
Kim,, D. E., Tsuji,, K., Kim,, Y. R., Mueller,, F. J., Eom,, H. S., Snyder,, E. Y., … Schellingerhout,, D. (2006). Neural stem cell transplant survival in brains of mice: Assessing the effect of immunity and ischemia by using real‐time bioluminescent imaging. Radiology, 241(3), 822–830. https://doi.org/10.1148/radiol.2413050466
Kirschbaum,, K., Sonner,, J. K., Zeller,, M. W., Deumelandt,, K., Bode,, J., Sharma,, R., … Breckwoldt,, M. O. (2016). In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13227–13232. https://doi.org/10.1073/pnas.1609397113
Kofidis,, T., de Bruin,, J. L., Yamane,, T., Tanaka,, M., Lebl,, D. R., Swijnenburg,, R. J., … Robbins,, R. C. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host‐specific differentiation in the heart after ischemic myocardial injury. Circulation, 111(19), 2486–2493. https://doi.org/10.1161/01.CIR.0000165063.09283.A8
Kraitchman,, D. L., Heldman,, A. W., Atalar,, E., Amado,, L. C., Martin,, B. J., Pittenger,, M. F., … Bulte,, J. W. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293. https://doi.org/10.1161/01.CIR.0000070931.62772.4E
Lan,, H. Y., Nikolic‐Paterson,, D. J., & Atkins,, R. C. (1993). Trafficking of inflammatory macrophages from the kidney to draining lymph nodes during experimental glomerulonephritis. Clinical and Experimental Immunology, 92(2), 336–341.
Lee,, K., & Goodman,, S. B. (2009). Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM system: A preliminary report. Journal of Arthroplasty, 24(1), 43–48. https://doi.org/10.1016/j.arth.2008.01.133
Lemaster,, J. E. C. F., Kim,, T., Hariri,, A., & Jokerst,, V. J. (2018). Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells. ACS Applied Nano Matererials, 1(3), 1321–1331. https://doi.org/10.1021/acsanm.8b00063
Levi,, B., Nelson,, E. R., Hyun,, J. S., Glotzbach,, J. P., Li,, S., Nauta,, A., … Longaker,, M. T. (2012). Enhancement of human adipose‐derived stromal cell angiogenesis through knockdown of a BMP‐2 inhibitor. Plastic and Reconstructive Surgery, 129(1), 53–66. https://doi.org/10.1097/PRS.0b013e3182361ff5
Levi,, B., Nelson,, E. R., Li,, S., James,, A. W., Hyun,, J. S., Montoro,, D. T., … Longaker,, M. T. (2011). Dura mater stimulates human adipose‐derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells, 29(8), 1241–1255. https://doi.org/10.1002/stem.670
Li,, K., Chan,, C. T., Nejadnik,, H., Lenkov,, O. D., Wolterman,, C., Paulmurugan,, R., … Daldrup‐Link,, H. E. (2018). Ferumoxytol‐based dual‐modality imaging probe for detection of stem cell transplant rejection. Nanotheranostics, 2(4), 306–319. https://doi.org/10.7150/ntno.26389
Li,, L., Chen,, X., Wang,, W. E., & Zeng,, C. (2016). How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells International, 2016, 9682757. https://doi.org/10.1155/2016/9682757
Li,, S. C., Tachiki,, L. M., Luo,, J., Dethlefs,, B. A., Chen,, Z., & Loudon,, W. G. (2010). A biological global positioning system: Considerations for tracking stem cell behaviors in the whole body. Stem Cell Reviews, 6(2), 317–333. https://doi.org/10.1007/s12015-010-9130-9
Lu,, M., Cohen,, M. H., Rieves,, D., & Pazdur,, R. (2010). FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. American Journal of Hematology, 85(5), 315–319. https://doi.org/10.1002/ajh.21656
Luo,, Y., Shao,, L., Chang,, J., Feng,, W., Liu,, Y. L., Cottler‐Fox,, M. H., … Zhou,, D. (2018). M1 and M2 macrophages differentially regulate hematopoietic stem cell self‐renewal and ex vivo expansion. Blood Advances, 2(8), 859–870. https://doi.org/10.1182/bloodadvances.2018015685
Luong‐Van,, E., Grondahl,, L., Song,, S., Nurcombe,, V., & Cool,, S. (2007). The in vivo assessment of a novel scaffold containing heparan sulfate for tissue engineering with human mesenchymal stem cells. Journal of Molecular Histology, 38(5), 459–468. https://doi.org/10.1007/s10735-007-9129-y
Ma,, N., Cheng,, H., Lu,, M., Liu,, Q., Chen,, X., Yin,, G., … Zhao,, S. (2015). Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long‐term fate of mesenchymal stem cells transplanted into heart. Scientific Reports, 5, 9058. https://doi.org/10.1038/srep09058
Mannon,, R. B. (2012). Macrophages: Contributors to allograft dysfunction, repair, or innocent bystanders? Current Opinion in Organ Transplantation, 17(1), 20–25. https://doi.org/10.1097/MOT.0b013e32834ee5b6
Martinez,, F. O., & Gordon,, S. (2014). The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Report, 6, 13. https://doi.org/10.12703/P6-13
Metz,, S., Lohr,, S., Settles,, M., Beer,, A., Woertler,, K., Rummeny,, E. J., & Daldrup‐Link,, H. E. (2006). Ferumoxtran‐10‐enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non‐Hodgkin lymphomas. European Radiology, 16(3), 598–607. https://doi.org/10.1007/s00330-005-0045-9
Nam,, S. Y., Ricles,, L. M., Suggs,, L. J., & Emelianov,, S. Y. (2012). In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One, 7(5), e37267. https://doi.org/10.1371/journal.pone.0037267
Nedopil,, A., Klenk,, C., Kim,, C., Liu,, S., Wendland,, M., Golovko,, D., … Daldrup‐Link,, H. E. (2010). MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix‐associated stem cell implants for treatment of osteoarthritis. Investigative Radiology, 45(10), 634–640. https://doi.org/10.1097/RLI.0b013e3181ed566c
Negrin,, R. S., & Contag,, C. H. (2006). In vivo imaging using bioluminescence: A tool for probing graft‐versus‐host disease. Nature Reviews. Immunology, 6(6), 484–490. https://doi.org/10.1038/nri1879
Nejadnik,, H., Lenkov,, O., Gassert,, F., Fretwell,, D., Lam,, I., & Daldrup‐Link,, H. E. (2016). Macrophage phagocytosis alters the MRI signal of ferumoxytol‐labeled mesenchymal stromal cells in cartilage defects. Scientific Reports, 6, 25897. https://doi.org/10.1038/srep25897
Nejadnik,, H., Pandit,, P., Lenkov,, O., Lahiji,, A. P., Yerneni,, K., & Daldrup‐Link,, H. E. (2018). Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells. Molecular Imaging and Biology. https://doi.org/10.1007/s11307-018-1276-x
Nejadnik,, H., Taghavi‐Garmestani,, S. M., Madsen,, S. J., Li,, K., Zanganeh,, S., Yang,, P., … Daldrup‐Link,, H. E. (2018). The protein Corona around nanoparticles facilitates stem cell labeling for clinical MR imaging. Radiology, 286(3), 938–947. https://doi.org/10.1148/radiol.2017170130
Nilsson,, B., Korsgren,, O., Lambris,, J. D., & Ekdahl,, K. N. (2010). Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends in Immunology, 31(1), 32–38. https://doi.org/10.1016/j.it.2009.09.005
O`Sullivan,, E. S., Vegas,, A., Anderson,, D. G., & Weir,, G. C. (2011). Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocrine Reviews, 32(6), 827–844. https://doi.org/10.1210/er.2010-0026
Polak,, J. M., & Mantalaris,, S. (2008). Stem cells bioprocessing: An important milestone to move regenerative medicine research into the clinical arena. Pediatric Research, 63(5), 461–466. https://doi.org/10.1203/10.1203/PDR.0b013e31816a8c1c
Poon,, I. K., Lucas,, C. D., Rossi,, A. G., & Ravichandran,, K. S. (2014). Apoptotic cell clearance: Basic biology and therapeutic potential. Nature Reviews. Immunology, 14(3), 166–180. https://doi.org/10.1038/nri3607
Preynat‐Seauve,, O., & Krause,, K. H. (2011). Stem cell sources for regenerative medicine: The immunological point of view. Seminars in Immunopathology, 33(6), 519–524. https://doi.org/10.1007/s00281-011-0271-y
Schroeder,, T. (2008). Imaging stem‐cell‐driven regeneration in mammals. Nature, 453(7193), 345–351. https://doi.org/10.1038/nature07043
Shakhbazau,, A., Mishra,, M., Chu,, T. H., Brideau,, C., Cummins,, K., Tsutsui,, S., … van Minnen,, J. (2015). Fluorescent phosphorus dendrimer as a spectral Nanosensor for macrophage polarization and fate tracking in spinal cord injury. Macromolecular Bioscience, 15(11), 1523–1534. https://doi.org/10.1002/mabi.201500150
Shegarfi,, H., & Reikeras,, O. (2009). Review article: Bone transplantation and immune response. Journal of Orthopaedic Surgery (Hong Kong), 17(2), 206–211. https://doi.org/10.1177/230949900901700218
Sheikh,, A. Y., & Wu,, J. C. (2006). Molecular imaging of cardiac stem cell transplantation. Current Cardiology Reports, 8(2), 147–154.
Sherman,, L. S., Munoz,, J., Patel,, S. A., Dave,, M. A., Paige,, I., & Rameshwar,, P. (2011). Moving from the laboratory bench to patients` bedside: Considerations for effective therapy with stem cells. Clinical and Translational Science, 4(5), 380–386. https://doi.org/10.1111/j.1752-8062.2011.00283.x
Shimizu,, Y., Hanzawa,, H., Zhao,, Y., Fukura,, S., Nishijima,, K. I., Sakamoto,, T., … Kuge,, Y. (2017). Immunoglobulin G (IgG)‐based imaging probe accumulates in M1 macrophage‐infiltrated atherosclerotic plaques independent of IgG target molecule expression. Molecular Imaging and Biology, 19(4), 531–539. https://doi.org/10.1007/s11307-016-1036-8
Simon,, G. H., Raatschen,, H. J., Wendland,, M. F., von Vopelius‐Feldt,, J., Fu,, Y., Chen,, M. H., & Daldrup‐Link,, H. E. (2005). Ultrasmall superparamagnetic iron‐oxide‐enhanced MR imaging of normal bone marrow in rodents: Original research original research. Academic Radiology, 12(9), 1190–1197. https://doi.org/10.1016/j.acra.2005.05.014
Swijnenburg,, R. J., Schrepfer,, S., Cao,, F., Pearl,, J. I., Xie,, X., Connolly,, A. J., … Wu,, J. C. (2008). In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells and Development, 17(6), 1023–1029. https://doi.org/10.1089/scd.2008.0091
Swijnenburg,, R. J., Tanaka,, M., Vogel,, H., Baker,, J., Kofidis,, T., Gunawan,, F., … Robbins,, R. C. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172. https://doi.org/10.1161/CIRCULATIONAHA.104.525824
Swijnenburg,, R. J., van der Bogt,, K. E., Sheikh,, A. Y., Cao,, F., & Wu,, J. C. (2007). Clinical hurdles for the transplantation of cardiomyocytes derived from human embryonic stem cells: Role of molecular imaging. Current Opinion in Biotechnology, 18(1), 38–45. https://doi.org/10.1016/j.copbio.2006.12.003
Theruvath,, A. J., Nejadnik,, H., Muehe,, A. M., Gassert,, F., Lacayo,, N. J., Goodman,, S. B., & Daldrup‐Link,, H. E. (2018). Tracking cell transplants in femoral osteonecrosis with magnetic resonance imaging: A proof of concept study in patients. Clinical Cancer Research, 24(24), 6223–6229. https://doi.org/10.1158/1078-0432.CCR-18-1687
Thompson,, H. L., & Manilay,, J. O. (2011). Embryonic stem cell‐derived hematopoietic stem cells: Challenges in development, differentiation, and immunogenicity. Current Topics in Medicinal Chemistry, 11(13), 1621–1637.
Thorek,, D. L., Ulmert,, D., Diop,, N. F., Lupu,, M. E., Doran,, M. G., Huang,, R., … Grimm,, J. (2014). Non‐invasive mapping of deep‐tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nature Communications, 5, 3097. https://doi.org/10.1038/ncomms4097
Thu,, M. S., Bryant,, L. H., Coppola,, T., Jordan,, E. K., Budde,, M. D., Lewis,, B. K., … Frank,, J. A. (2012). Self‐assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nature Medicine, 18(3), 463–467. https://doi.org/10.1038/nm.2666
Toma,, C., Wagner,, W. R., Bowry,, S., Schwartz,, A., & Villanueva,, F. (2009). Fate of culture‐expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circulation Research, 104(3), 398–402. https://doi.org/10.1161/CIRCRESAHA.108.187724
Trattnig,, S., Winalski,, C. S., Marlovits,, S., Jurvelin,, J. S., Welsch,, G. H., & Potter,, H. G. (2011). Magnetic resonance imaging of cartilage repair: A review. Cartilage, 2(1), 5–26. https://doi.org/10.1177/1947603509360209
van Buul,, G. M., Farrell,, E., Kops,, N., van Tiel,, S. T., Bos,, P. K., Weinans,, H., … Bernsen,, M. R. (2009). Ferumoxides‐protamine sulfate is more effective than ferucarbotran for cell labeling: Implications for clinically applicable cell tracking using MRI. Contrast Media %26 Molecular Imaging, 4(5), 230–236. https://doi.org/10.1002/cmmi.289
van der Bogt,, K. E., Swijnenburg,, R. J., Cao,, F., & Wu,, J. C. (2006). Molecular imaging of human embryonic stem cells: Keeping an eye on differentiation, tumorigenicity and immunogenicity. Cell Cycle, 5(23), 2748–2752.
von Bahr,, L., Batsis,, I., Moll,, G., Hagg,, M., Szakos,, A., Sundberg,, B., … Le Blanc,, K. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long‐term engraftment and no ectopic tissue formation. Stem Cells, 30(7), 1575–1578. https://doi.org/10.1002/stem.1118
Wynn,, T. A., & Vannella,, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44(3), 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
Yang,, X. F. (2007). Immunology of stem cells and cancer stem cells. Cellular %26 Molecular Immunology, 4(3), 161–171.
Zanganeh,, S., Hutter,, G., Spitler,, R., Lenkov,, O., Mahmoudi,, M., Shaw,, A., … Daldrup‐Link,, H. E. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro‐inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), 986–994. https://doi.org/10.1038/nnano.2016.168
Zangi,, L., Margalit,, R., Reich‐Zeliger,, S., Bachar‐Lustig,, E., Beilhack,, A., Negrin,, R., & Reisner,, Y. (2009). Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells, 27(11), 2865–2874. https://doi.org/10.1002/stem.217
Zhang,, C., Yu,, X., Gao,, L., Zhao,, Y., Lai,, J., Lu,, D., … Liu,, Z. (2017). Noninvasive imaging of CD206‐positive M2 macrophages as an early biomarker for post‐chemotherapy tumor relapse and lymph node metastasis. Theranostics, 7(17), 4276–4288. https://doi.org/10.7150/thno.20999
Zhang,, S. J., & Wu,, J. C. (2007). Comparison of imaging techniques for tracking cardiac stem cell therapy. Journal of Nuclear Medicine, 48(12), 1916–1919. https://doi.org/10.2967/jnumed.107.043299
Zhang,, Y., Dodd,, S. J., Hendrich,, K. S., Williams,, M., & Ho,, C. (2000). Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration. Kidney International, 58(3), 1300–1310. https://doi.org/10.1046/j.1523-1755.2000.00286.x
Zhang,, Z. Y., Teoh,, S. H., Hui,, J. H., Fisk,, N. M., Choolani,, M., & Chan,, J. K. (2012). The potential of human fetal mesenchymal stem cells for off‐the‐shelf bone tissue engineering application. Biomaterials, 33(9), 2656–2672. https://doi.org/10.1016/j.biomaterials.2011.12.025
Zhao,, T., Zhang,, Z. N., Rong,, Z., & Xu,, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215. https://doi.org/10.1038/nature10135
Zhou,, R., Acton,, P. D., & Ferrari,, V. A. (2006). Imaging stem cells implanted in infarcted myocardium. Journal of the American College of Cardiology, 48(10), 2094–2106. https://doi.org/10.1016/j.jacc.2006.08.026