American Association for Cancer Research Annual Meeting. (2018). Intratumoral toll‐like receptor 9 (TLR9) agonist, CMP‐001, in combination with pembrolizumab can reverse resistance to PD‐1 inhibition in a phase Ib trial in subjects with advanced melanoma. Retrieved from http://www.abstractsonline.com/pp8/#!/4562/presentation/11133
Arevalo,, M. T., Wong,, T. M., & Ross,, T. M. (2016). Expression and purification of virus‐like particles for vaccination. Journal of Visualized Experiments, 112, e54041. https://doi.org/10.3791/54041
Attarwala,, H. (2010). Role of antibodies in cancer targeting. Journal of Natural Science, Biology and Medicine, 1(1), 53–56. https://doi.org/10.4103/0976-9668.71675
Bachmann,, M. F., & Jennings,, G. T. (2010). Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nature Reviews. Immunology, 10(11), 787–796. https://doi.org/10.1038/nri2868
Bachmann,, M. F., & Jennings,, G. T. (2011). Therapeutic vaccines for chronic diseases: Successes and technical challenges. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1579), 2815–2822. https://doi.org/10.1098/rstb.2011.0103
Bachmann,, M. F., Oxenius,, A., Pircher,, H., Hengartner,, H., Ashton‐Richardt,, P. A., Tonegawa,, S., & Zinkernagel,, R. M. (1995). TAP1‐independent loading of class I molecules by exogenous viral proteins. European Journal of Immunology, 25(6), 1739–1743. https://doi.org/10.1002/eji.1830250637
Bachmann,, M. F., Rohrer,, U. H., Kundig,, T. M., Burki,, K., Hengartner,, H., & Zinkernagel,, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science, 262(5138), 1448–1451.
Bachmann,, M. F., & Zinkernagel,, R. M. (1997). Neutralizing antiviral B cell responses. Annual Review of Immunology, 15, 235–270. https://doi.org/10.1146/annurev.immunol.15.1.235
Barrington,, R., Zhang,, M., Fischer,, M., & Carroll,, M. C. (2001). The role of complement in inflammation and adaptive immunity. Immunological Reviews, 180, 5–15.
Beeh,, K. M., Kanniess,, F., Wagner,, F., Schilder,, C., Naudts,, I., Hammann‐Haenni,, A., … Renner,, W. A. (2013). The novel TLR‐9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. Journal of Allergy and Clinical Immunology, 131(3), 866–874. https://doi.org/10.1016/j.jaci.2012.12.1561
Bell,, D., Young,, J. W., & Banchereau,, J. (1999). Dendritic cells. Advances in Immunology, 72, 255–324.
Bessa,, J., & Bachmann,, M. F. (2010). T cell‐dependent and ‐independent IgA responses: Role of TLR signalling. Immunological Investigations, 39(4–5), 407–428. https://doi.org/10.3109/08820131003663357
Bolli,, E., O`Rourke,, J. P., Conti,, L., Lanzardo,, S., Rolih,, V., Christen,, J. M., … Cavallo,, F. (2018). A virus‐like‐particle immunotherapy targeting epitope‐specific anti‐xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo. Oncoimmunology, 7(3), e1408746. https://doi.org/10.1080/2162402X.2017.1408746
Braun,, M., Jandus,, C., Maurer,, P., Hammann‐Haenni,, A., Schwarz,, K., Bachmann,, M. F., … Romero,, P. (2012). Virus‐like particles induce robust human T‐helper cell responses. European Journal of Immunology, 42(2), 330–340. https://doi.org/10.1002/eji.201142064
Brinkman,, M., Walter,, J., Grein,, S., Thies,, M. J., Schulz,, T. W., Herrmann,, M., … Hess,, J. (2005). Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1‐coat protein carrying self or non‐self CD8 T cell epitopes against murine melanoma. Cancer Immunology, Immunotherapy, 54(6), 611–622. https://doi.org/10.1007/s00262-004-0655-0
Brune,, K. D., Leneghan,, D. B., Brian,, I. J., Ishizuka,, A. S., Bachmann,, M. F., Draper,, S. J., … Howarth,, M. (2016). Plug‐and‐display: Decoration of virus‐like particles via isopeptide bonds for modular immunization. Scientific Reports, 6, 19234. https://doi.org/10.1038/srep19234
Caitlin Lemke,, A. S., Krieg,, A., & Weiner,, G. (2016). Combination cancer immunotherapy using checkpoint blockade and intratumoral virus‐like particles containing CpG ODN. Cancer Research, 76(14), 1417. https://doi.org/10.1158/1538-7445.AM2016-1417
Carter,, R. H., & Myers,, R. (2008). Germinal center structure and function: Lessons from CD19. Seminars in Immunology, 20(1), 43–48. https://doi.org/10.1016/j.smim.2007.12.007
Chackerian,, B., Lowy,, D. R., & Schiller,, J. T. (2001). Conjugation of a self‐antigen to papillomavirus‐like particles allows for efficient induction of protective autoantibodies. Journal of Clinical Investigation, 108(3), 415–423. https://doi.org/10.1172/JCI11849
Cheng,, Z., Hu,, J., King,, J., Jay,, G., & Campbell,, T. C. (1997). Inhibition of hepatocellular carcinoma development in hepatitis B virus transfected mice by low dietary casein. Hepatology, 26(5), 1351–1354. https://doi.org/10.1002/hep.510260538
Chroboczek,, J., Szurgot,, I., & Szolajska,, E. (2014). Virus‐like particles as vaccine. Acta Biochimica Polonica, 61(3), 531–539.
Chu,, C. M. (2000). Natural history of chronic hepatitis B virus infection in adults with emphasis on the occurrence of cirrhosis and hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, (Suppl. 15), E25–E30.
Cook,, P. C., Jones,, L. H., Jenkins,, S. J., Wynn,, T. A., Allen,, J. E., & MacDonald,, A. S. (2012). Alternatively activated dendritic cells regulate CD4+ T‐cell polarization in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9977–9982. https://doi.org/10.1073/pnas.1121231109
Cubas,, R., Zhang,, S., Kwon,, S., Sevick‐Muraca,, E. M., Li,, M., Chen,, C., & Yao,, Q. (2009). Virus‐like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. Journal of Immunotherapy, 32(2), 118–128. https://doi.org/10.1097/CJI.0b013e31818f13c4
Cubas,, R., Zhang,, S., Li,, M., Chen,, C., & Yao,, Q. (2011). Chimeric Trop2 virus‐like particles: A potential immunotherapeutic approach against pancreatic cancer. Journal of Immunotherapy, 34(3), 251–263. https://doi.org/10.1097/CJI.0b013e318209ee72
Da Silva,, D. M., Schiller,, J. T., Kast,, W. M. (2003). Heterologous boosting increases immunogenicity of chimeric papillomavirus virus‐like particle vaccines. Vaccine. 21(23), 3219–3227. https://doi.org/10.1016/S0264-410X(03)00237-8
Dash,, M., Federica,, C., Ottenbrite,, R. M., & Chiellini,, E. (2011). A versatile semi‐synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014.
Deml,, L., Schirmbeck,, R., Reimann,, J., Wolf,, H., & Wagner,, R. (1997). Recombinant human immunodeficiency Pr55gag virus‐like particles presenting chimeric envelope glycoproteins induce cytotoxic T‐cells and neutralizing antibodies. Virology, 235(1), 26–39. https://doi.org/10.1006/viro.1997.8668
Ding,, F. X., Wang,, F., Lu,, Y. M., Li,, K., Wang,, K. H., He,, X. W., & Sun,, S. H. (2009). Multiepitope peptide‐loaded virus‐like particles as a vaccine against hepatitis B virus‐related hepatocellular carcinoma. Hepatology, 49(5), 1492–1502. https://doi.org/10.1002/hep.22816
Donaldson,, B., Al‐Barwani,, F., Pelham,, S. J., Young,, K., Ward,, V. K., & Young,, S. L. (2017). Multi‐target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. Journal for Immunotherapy of Cancer, 5(1), 69. https://doi.org/10.1186/s40425-017-0270-1
Facciabene,, A., Motz,, G. T., & Coukos,, G. (2012). T‐regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Research, 72(9), 2162–2171. https://doi.org/10.1158/0008-5472.CAN-11-3687
Feldmann,, M., & Easten,, A. (1971). The relationship between antigenic structure and the requirement for thymus‐derived cells in the immune response. Journal of Experimental Medicine, 134(1), 103–119.
Garcea,, R. L., & Gissmann,, L. (2004). Virus‐like particles as vaccines and vessels for the delivery of small molecules. Current Opinion in Biotechnology, 15(6), 513–517. https://doi.org/10.1016/j.copbio.2004.10.002
Gatto,, D., Pfister,, T., Jegerlehner,, A., Martin,, S. W., Kopf,, M., & Bachmann,, M. F. (2005). Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp‐1 and XBP‐1. Journal of Experimental Medicine, 201(6), 993–1005. https://doi.org/10.1084/jem.20042239
Goldinger,, S. M., Dummer,, R., Baumgaertner,, P., Mihic‐Probst,, D., Schwarz,, K., Hammann‐Haenni,, A., … Speiser,, D. E. (2012). Nano‐particle vaccination combined with TLR‐7 and ‐9 ligands triggers memory and effector CD8(+) T‐cell responses in melanoma patients. European Journal of Immunology, 42(11), 3049–3061. https://doi.org/10.1002/eji.201142361
Gomes,, A. C., Flace,, A., Saudan,, P., Zabel,, F., Cabral‐Miranda,, G., Turabi,, A. E., … Bachmann,, M. F. (2017). Adjusted particle size eliminates the need of linkage of antigen and adjuvants for appropriated T cell responses in virus‐like particle‐based vaccines. Frontiers in Immunology, 8, 226. https://doi.org/10.3389/fimmu.2017.00226
Gomes,, A. C., Mohsen,, M., & Bachmann,, M. F. (2017). Harnessing nanoparticles for immunomodulation and vaccines. Vaccines (Basel), 5(1). https://doi.org/10.3390/vaccines5010006
Gomes,, A. C., Roesti,, E. S., El‐Turabi,, A., Bachmann,, M. F. (2019). Type of RNA Packed in VLPs Impacts IgG Class Switching—Implications for an Influenza Vaccine Design. Vaccines, 7(2), 47. https://doi.org/10.3390/vaccines7020047
Goodnow,, C. C. (1996). Balancing immunity and tolerance: Deleting and tuning lymphocyte repertoires. Proceedings of the National Academy of Sciences of the United States of America, 93(6), 2264–2271.
Hadrup,, S., Donia,, M., & Thor Straten,, P. (2013). Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenvironment, 6(2), 123–133. https://doi.org/10.1007/s12307-012-0127-6
Jaffee,, E. M., Hruban,, R. H., Biedrzycki,, B., Laheru,, D., Schepers,, K., Sauter,, P. R., … Yeo,, C. J. (2001). Novel allogeneic granulocyte‐macrophage colony‐stimulating factor‐secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation. Journal of Clinical Oncology, 19(1), 145–156. https://doi.org/10.1200/JCO.2001.19.1.145
Jager,, E., Chen,, Y. T., Drijfhout,, J. W., Karbach,, J., Ringhoffer,, M., Jager,, D., … Knuth,, A. (1998). Simultaneous humoral and cellular immune response against cancer‐testis antigen NY‐ESO‐1: Definition of human histocompatibility leukocyte antigen (HLA)‐A2‐binding peptide epitopes. Journal of Experimental Medicine, 187(2), 265–270.
Jegerlehner,, A., Maurer,, P., Bessa,, J., Hinton,, H. J., Kopf,, M., & Bachmann,, M. F. (2007). TLR9 signaling in B cells determines class switch recombination to IgG2a. Journal of Immunology, 178(4), 2415–2420.
Jegerlehner,, A., Storni,, T., Lipowsky,, G., Schmid,, M., Pumpens,, P., & Bachmann,, M. F. (2002). Regulation of IgG antibody responses by epitope density and CD21‐mediated costimulation. European Journal of Immunology, 32(11), 3305–3314. https://doi.org/10.1002/1521-4141(200211)32:11%3C3305::AID-IMMU3305%3E3.0.CO;2-J
Jegerlehner,, A., Tissot,, A., Lechner,, F., Sebbel,, P., Erdmann,, I., Kündig,, T., … Bachmann,, M.F. (2002). A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses, Vaccine, 20(25‐26), 3104–3112. https://doi.org/10.1016/S0264-410X(02)00266-9
Jemon,, K., Young,, V., Wilson,, M., McKee,, S., Ward,, V., Baird,, M., … Hibma,, M. (2013). An enhanced heterologous virus‐like particle for human papillomavirus type 16 tumour immunotherapy. PLoS One, 8(6), e66866. https://doi.org/10.1371/journal.pone.0066866
Kaczmarczyk,, S. J., Sitaraman,, K., Young,, H. A., Hughes,, S. H., & Chatterjee,, D. K. (2011). Protein delivery using engineered virus‐like particles. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 16998–17003. https://doi.org/10.1073/pnas.1101874108
Kaufmann,, A. M., Nieland,, J. D., Jochmus,, I., Baur,, S., Friese,, K., Gabelsberger,, J., … Schneider,, A. (2007). Vaccination trial with HPV16 L1E7 chimeric virus‐like particles in women suffering from high grade cervical intraepithelial neoplasia (CIN 2/3). International Journal of Cancer, 121(12), 2794–2800. https://doi.org/10.1002/ijc.23022
Kawano,, M., Matsui,, M., & Handa,, H. (2018). Technologies that generate and modify virus‐like particles for medical diagnostic and therapy purposes. In Grumezescu, A, ed. Design and development of new nanocarriers (pp. 555–594). Norwich, NY: Willian Andrew, Applied Science Publishers.
Kazaks,, A., Balmaks,, R., Voronkova,, T., Ose,, V., & Pumpens,, P. (2008). Melanoma vaccine candidates from chimeric hepatitis B core virus‐like particles carrying a tumor‐associated MAGE‐3 epitope. Biotechnology Journal, 3(11), 1429–1436. https://doi.org/10.1002/biot.200800160
Keller,, S. A., Bauer,, M., Manolova,, V., Muntwiler,, S., Saudan,, P., & Bachmann,, M. F. (2010). Cutting edge: Limited specialization of dendritic cell subsets for MHC class II‐associated presentation of viral particles. Journal of Immunology, 184(1), 26–29. https://doi.org/10.4049/jimmunol.0901540
Kim,, C. M., Koike,, K., Saito,, I., Miyamura,, T., & Jay,, G. (1991). HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature, 351(6324), 317–320. https://doi.org/10.1038/351317a0
Klimek,, L., Kundig,, T., Kramer,, M. F., Guethoff,, S., Jensen‐Jarolim,, E., Schmidt‐Weber,, C. B., … Bachmann,, M. (2018). Virus‐like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International, 27(8), 245–255. https://doi.org/10.1007/s40629-018-0074-y
Klimek,, L., Willers,, J., Hammann‐Haenni,, A., Pfaar,, O., Stocker,, H., Mueller,, P., … Bachmann,, M. F. (2011). Assessment of clinical efficacy of CYT003‐QbG10 in patients with allergic rhinoconjunctivitis: A phase IIb study. Clinical and Experimental Allergy, 41(9), 1305–1312. https://doi.org/10.1111/j.1365-2222.2011.03783.x
Knutson,, K. L., & Disis,, M. L. (2005). Tumor antigen‐specific T helper cells in cancer immunity and immunotherapy. Cancer Immunology, Immunotherapy, 54(8), 721–728. https://doi.org/10.1007/s00262-004-0653-2
Kopf,, M., Abel,, B., Gallimore,, A., Carroll,, M., & Bachmann,, M. F. (2002). Complement component C3 promotes T‐cell priming and lung migration to control acute influenza virus infection. Nature Medicine, 8(4), 373–378. https://doi.org/10.1038/nm0402-373
Laheru,, D., & Jaffee,, E. M. (2005). Immunotherapy for pancreatic cancer—Science driving clinical progress. Nature Reviews. Cancer, 5(6), 459–467. https://doi.org/10.1038/nrc1630
Lewerenz,, J., Hewett,, S. J., Huang,, Y., Lambros,, M., Gout,, P. W., Kalivas,, P. W., … Maher,, P. (2013). The cystine/glutamate antiporter system x(c)(−) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxidants %26 Redox Signaling, 18(5), 522–555. https://doi.org/10.1089/ars.2011.4391
Li,, M., Bharadwaj,, U., Zhang,, R., Zhang,, S., Mu,, H., Fisher,, W. E., … Yao,, Q. (2008). Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Molecular Cancer Therapeutics, 7(2), 286–296. https://doi.org/10.1158/1535-7163.MCT-07-0483
Link,, A., Zabel,, F., Schnetzler,, Y., Titz,, A., Brombacher,, F., & Bachmann,, M. F. (2012). Innate Immunity Mediates Follicular Transport of Particulate but Not Soluble Protein Antigen. The Journal of Immunology, 188(8), 3724–3733. https://doi.org/10.4049/jimmunol.1103312
Lizotte,, P. H., Wen,, A. M., Sheen,, M. R., Fields,, J., Rojanasopondist,, P., Steinmetz,, N. F., & Fiering,, S. (2016). In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 11(3), 295–303. https://doi.org/10.1038/nnano.2015.292
Manolova,, V., Flace,, A., Bauer,, M., Schwarz,, K., Saudan,, P., & Bachmann,, M. F. (2008). Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 38(5), 1404–1413. https://doi.org/10.1002/eji.200737984
Martin Caballero,, J., Garzon,, A., Gonzalez‐Cintado,, L., Kowalczyk,, W., Jimenez Torres,, I., Calderita,, G., … von Kobbe,, C. (2012). Chimeric infectious bursal disease virus‐like particles as potent vaccines for eradication of established HPV‐16 E7‐dependent tumors. PLoS One, 7, 12–e52976. https://doi.org/10.1371/journal.pone.0052976
Martins,, G., & Calame,, K. (2008). Regulation and functions of Blimp‐1 in T and B lymphocytes. Annual Review of Immunology, 26, 133–169. https://doi.org/10.1146/annurev.immunol.26.021607.090241
Mitri,, Z., Constantine,, T., & O`Regan,, R. (2012). The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemotherapy Research and Practice, 2012, 743193. https://doi.org/10.1155/2012/743193
Mohsen,, M. O., Gomes,, A. C., Cabral‐Miranda,, G., Krueger,, C. C., Leoratti,, F. M., Stein,, J. V., & Bachmann,, M. F. (2017). Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. Journal of Controlled Release, 251, 92–100. https://doi.org/10.1016/j.jconrel.2017.02.031
Mohsen,, M. O., Gomes,, A. C., Vogel,, M., & Bachmann,, M. F. (2018). Interaction of viral capsid‐derived virus‐like particles (VLPs) with the innate immune system. Vaccines (Basel), 6(3). https://doi.org/10.3390/vaccines6030037
Mohsen,, M. O., Heath,, M. D., Cabral‐Miranda,, G., Lipp,, C., Zeltins,, A., Sande,, M., … Bachmann,, M. F. (2019). Vaccination with nanoparticles combined with micro‐adjuvants protects against cancer. Journal for Immunotherapy of Cancer, 7(1), 114. https://doi.org/10.1186/s40425-019-0587-z
Mohsen,, M. O., Vogel,, M., Riether,, C., Muller,, J., Salatino,, S., Ternette,, N., … Bachmann,, M. F. (2019). Targeting mutated plus germline epitopes confers pre‐clinical efficacy of an instantly formulated cancer nano‐vaccine. Frontiers in Immunology, 10(1015). https://doi.org/10.3389/fimmu.2019.01015
Mohsen,, M. O., Zha,, L., Cabral‐Miranda,, G., & Bachmann,, M. F. (2017). Major findings and recent advances in virus‐like particle (VLP)‐based vaccines. Seminars in Immunology, 34, 123–132. https://doi.org/10.1016/j.smim.2017.08.014
Monzavi‐Karbassi,, B., Pashov,, A., & Kieber‐Emmons,, T. (2013). Tumor‐associated glycans and immune surveillance. Vaccines (Basel), 1(2), 174–203. https://doi.org/10.3390/vaccines1020174
Moron,, V. G., Rueda,, P., Sedlik,, C., & Leclerc,, C. (2003). In vivo, dendritic cells can cross‐present virus‐like particles using an endosome‐to‐cytosol pathway. Journal of Immunology, 171(5), 2242–2250.
Ochsenbein,, A. F., Fehr,, T., Lutz,, C., Suter,, M., Brombacher,, F., Hengartner,, H., & Zinkernagel,, R. M. (1999). Control of early viral and bacterial distribution and disease by natural antibodies. Science, 286(5447), 2156–2159.
Ottaviano,, M., De Placido,, S., & Ascierto,, P. A. (2019). Recent success and limitations of immune checkpoint inhibitors for cancer: A lesson from melanoma. Virchows Archiv, 474, 421–432. https://doi.org/10.1007/s00428-019-02538-4
Palladini,, A., Thrane,, S., Janitzek,, C. M., Pihl,, J., Clemmensen,, S. B., de Jongh,, W. A., … Sander,, A. F. (2018). Virus‐like particle display of HER2 induces potent anti‐cancer responses. Oncoimmunology, 7(3), e1408749. https://doi.org/10.1080/2162402X.2017.1408749
Pashine,, A., Valiante,, N. M., & Ulmer,, J. B. (2005). Targeting the innate immune response with improved vaccine adjuvants. Nature Medicine, 11(Suppl. 4), S63–S68. https://doi.org/10.1038/nm1210
Platzer,, B., Stout,, M., & Fiebiger,, E. (2014). Antigen cross‐presentation of immune complexes. Frontiers in Immunology, 5, 140. https://doi.org/10.3389/fimmu.2014.00140
Pomwised,, R., Intamaso,, U., Teintze,, M., Young,, M., & Pincus,, S. H. (2016). Coupling peptide antigens to virus‐like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines (Basel), 4(2). https://doi.org/10.3390/vaccines4020015
Pumpens,, P. (2016). Viral nanotechnology. Philadelphia, PA: Taylor and Francis.
Pumpens,, P., Ulrich,, R., Sasnauskas,, K., Kazaks,, A., Ose,, V., & Grens,, E. (2009). Construction of novel vaccines on the basis of the virus‐like particles: Hepatitis B virus proteins as vaccine carriers. In Khudyakov, YE, ed. Medicinal protein engineering (pp. 205–248). Boca Raton, Fl: CRC Press.
Pushko,, P., Pumpens,, P., & Grens,, E. (2013). Development of virus‐like particle technology from small highly symmetric to large complex virus‐like particle structures. Intervirology, 56(3), 141–165. https://doi.org/10.1159/000346773
Roldao,, A., Mellado,, M. C., Castilho,, L. R., Carrondo,, M. J., & Alves,, P. M. (2010). Virus‐like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176. https://doi.org/10.1586/erv.10.115
Rueda,, P., Martinez‐Torrecuadrada,, J. L., Sarraseca,, J., Sedlik,, C., del Barrio,, M., Hurtado,, A., … Casal,, J. I. (1999). Engineering parvovirus‐like particles for the induction of B‐cell, CD4(+) and CTL responses. Vaccine, 18(3–4), 325–332.
Ruedl,, C., Schwarz,, K., Jegerlehner,, A., Storni,, T., Manolova,, V., & Bachmann,, M. F. (2005). Virus‐like particles as carriers for T‐cell epitopes: Limited inhibition of T‐cell priming by carrier‐specific antibodies. Journal of Virology, 79(2), 717–724. https://doi.org/10.1128/JVI.79.2.717-724.2005
Ruedl,, C., Storni,, T., Lechner,, F., Bachi,, T., & Bachmann,, M. F. (2002). Cross‐presentation of virus‐like particles by skin‐derived CD8(−) dendritic cells: A dispensable role for TAP. European Journal of Immunology, 32(3), 818–825. https://doi.org/10.1002/1521-4141(200203)32:3%3C818::AID-IMMU818%3E3.0.CO;2-U
Rump,, A., Morikawa,, Y., Tanaka,, M., Minami,, S., Umesaki,, N., Takeuchi,, M., & Miyajima,, A. (2004). Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. Journal of Biological Chemistry, 279(10), 9190–9198. https://doi.org/10.1074/jbc.M312372200
Rynda‐Apple,, A., Patterson,, D. P., & Douglas,, T. (2014). Virus‐like particles as antigenic nanomaterials for inducing protective immune responses in the lung. Nanomedicine, 9(12), 1857–1868. https://doi.org/10.2217/nnm.14.107
Sander,, A. F., & Lollini,, P. L. (2018). Virus‐like antigen display for cancer vaccine development, what is the potential? Expert Review of Vaccines, 17(4), 285–288. https://doi.org/10.1080/14760584.2018.1455505
Santi,, L., Huang,, Z., & Mason,, H. (2006). Virus‐like particles production in green plants. Methods, 40(1), 66–76. https://doi.org/10.1016/j.ymeth.2006.05.020
Saya,, G. Y. H. (2014). The novel anti‐tumor therapy targeting the “functional” cancer stem cell markers. Journal of Clinical %26 Experimental Pharmacology, 4, 147.
Schiller,, J. T., & Lowy,, D. R. (2015). Raising expectations for subunit vaccine. Journal of Infectious Diseases, 211(9), 1373–1375. https://doi.org/10.1093/infdis/jiu648
Schwarz,, K., Meijerink,, E., Speiser,, D. E., Tissot,, A. C., Cielens,, I., Renhof,, R., … Bachmann,, M. F. (2005). Efficient homologous prime‐boost strategies for T cell vaccination based on virus‐like particles. European Journal of Immunology, 35(3), 816–821. https://doi.org/10.1002/eji.200425755
Seidel,, J. A., Otsuka,, A., & Kabashima,, K. (2018). Anti‐PD‐1 and anti‐CTLA‐4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 8, 86. https://doi.org/10.3389/fonc.2018.00086
Shiyu Dai,, H. W., & Deng,, F. (2018). Advances and challenges in enveloped virus‐like particle (VLP)‐based vaccines. Journal of Immunological Sciences, 2(2), 36–41. https://doi.org/10.29245/2578-3009/2018/2.1118
Sioud,, M. (2006). Innate sensing of self and non‐self RNAs by toll‐like receptors. Trends in Molecular Medicine, 12(4), 167–176. https://doi.org/10.1016/j.molmed.2006.02.004
Snijdewint,, F. G., von Mensdorff‐Pouilly,, S., Karuntu‐Wanamarta,, A. H., Verstraeten,, A. A., Livingston,, P. O., Hilgers,, J., & Kenemans,, P. (2001). Antibody‐dependent cell‐mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. International Journal of Cancer, 93(1), 97–106.
Speiser,, D. E., Schwarz,, K., Baumgaertner,, P., Manolova,, V., Devevre,, E., Sterry,, W., … Bachmann,, M. F. (2010). Memory and effector CD8 T‐cell responses after nanoparticle vaccination of melanoma patients. Journal of Immunotherapy, 33(8), 848–858. https://doi.org/10.1097/CJI.0b013e3181f1d614
Spohn,, G., Guler,, R., Johansen,, P., Keller,, I., Jacobs,, M., Beck,, M., … Bachmann,, M. F. (2007). A virus‐like particle‐based vaccine selectively targeting soluble TNF‐alpha protects from arthritis without inducing reactivation of latent tuberculosis. Journal of Immunology, 178(11), 7450–7457.
Storni,, T., & Bachmann,, M. F. (2004). Loading of MHC class I and II presentation pathways by exogenous antigens: A quantitative in vivo comparison. Journal of Immunology, 172(10), 6129–6135.
Storni,, T., Ruedl,, C., Schwarz,, K., Schwendener,, R. A., Renner,, W. A., & Bachmann,, M. F. (2004). Nonmethylated CG motifs packaged into virus‐like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. Journal of Immunology, 172(3), 1777–1785.
Sungsuwan,, S., Wu,, X., & Huang,, X. (2017). Evaluation of virus‐like particle‐based tumor‐associated carbohydrate immunogen in a mouse tumor model. Methods in Enzymology, 597, 359–376. https://doi.org/10.1016/bs.mie.2017.06.030
Swain,, S. L. (1995). T‐cell subsets. Who does the polarizing? Current Biology, 5(8), 849–851.
Tanaka,, A., & Sakaguchi,, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109–118. https://doi.org/10.1038/cr.2016.151
Tegerstedt,, K., Lindencrona,, J. A., Curcio,, C., Andreasson,, K., Tullus,, C., Forni,, G., … Ramqvist,, T. (2005). A single vaccination with polyomavirus VP1/VP2Her2 virus‐like particles prevents outgrowth of HER‐2/neu‐expressing tumors. Cancer Research, 65(13), 5953–5957. https://doi.org/10.1158/0008-5472.CAN-05-0335
Topalian,, S. L., Taube,, J. M., Anders,, R. A., & Pardoll,, D. M. (2016). Mechanism‐driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nature Reviews. Cancer, 16(5), 275–287. https://doi.org/10.1038/nrc.2016.36
van der Bruggen,, P., Traversari,, C., Chomez,, P., Lurquin,, C., De Plaen,, E., Van den Eynde,, B., … Boon,, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254(5038), 1643–1647.
Wang,, W., Erbe,, A. K., Hank,, J. A., Morris,, Z. S., & Sondel,, P. M. (2015). NK cell‐mediated antibody‐dependent cellular cytotoxicity in cancer immunotherapy. Frontiers in Immunology, 6, 368. https://doi.org/10.3389/fimmu.2015.00368
Wang,, Y., Ma,, Y., Fang,, Y., Wu,, S., Liu,, L., Fu,, D., & Shen,, X. (2012). Regulatory T cell: A protection for tumour cells. Journal of Cellular and Molecular Medicine, 16(3), 425–436. https://doi.org/10.1111/j.1582-4934.2011.01437.x
Weiner,, L. M., Surana,, R., & Wang,, S. (2010). Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nature Reviews. Immunology, 10(5), 317–327. https://doi.org/10.1038/nri2744
Yin,, Z., & Huang,, X. (2012). Recent development in carbohydrate based anti‐cancer vaccines. Journal of Carbohydrate Chemistry, 31(3), 143–186. https://doi.org/10.1080/07328303.2012.659364
Zeltins,, A., West,, J., Zabel,, F., El Turabi,, A., Balke,, I., Haas,, S., … Bachmann,, M. F. (2017). Incorporation of tetanus‐epitope into virus‐like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer`s and cat allergy. NPJ Vaccines, 2, 30. https://doi.org/10.1038/s41541-017-0030-8
Zhang,, H. G., Chen,, H. S., Peng,, J. R., Shang,, X. Y., Zhang,, J., Xing,, Q., … Chen,, W. F. (2007). Specific CD8(+ )T cell responses to HLA‐A2 restricted MAGE‐A3 p271‐279 peptide in hepatocellular carcinoma patients without vaccination. Cancer Immunology, Immunotherapy, 56(12), 1945–1954. https://doi.org/10.1007/s00262-007-0338-8
Zhang,, S., Yong,, L. K., Li,, D., Cubas,, R., Chen,, C., & Yao,, Q. (2013). Mesothelin virus‐like particle immunization controls pancreatic cancer growth through CD8+ T cell induction and reduction in the frequency of CD4+ foxp3+ ICOS‐ regulatory T cells. PLoS One, 8(7), e68303. https://doi.org/10.1371/journal.pone.0068303
Zhang,, Y., Song,, S., Liu,, C., Wang,, Y., Xian,, X., He,, Y., … Sun,, S. (2007). Generation of chimeric HBc proteins with epitopes in E. coli: Formation of virus‐like particles and a potent inducer of antigen‐specific cytotoxic immune response and anti‐tumor effect in vivo. Cellular Immunology, 247(1), 18–27. https://doi.org/10.1016/j.cellimm.2007.07.003