Aljabali,, A. A., Shukla,, S., Lomonossoff,, G. P., Steinmetz,, N. F., & Evans,, D. J. (2013). CPMV‐DOX delivers. Molecular Pharmaceutics, 10(1), 3–10. https://doi.org/10.1021/mp3002057
Allen,, M., Bulte,, J. W. M., Liepold,, L., Basu,, G., Zywicke,, H. A., Frank,, J. A., … Douglas,, T. (2005). Paramagnetic viral nanoparticles as potential high‐relaxivity magnetic resonance contrast agents. Magnetic Resonance in Medicine, 54(4), 807–812. https://doi.org/10.1002/mrm.20614
Animal and Plant Health Inspection Service. (2008). Noncompliance history. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/SA_Compliance_And_Inspections/CT_Compliance_history
Aziz,, M. A., Singh,, S., Anand Kumar,, P., & Bhatnagar,, R. (2002). Expression of protective antigen in transgenic plants: A step towards edible vaccine against anthrax. Biochemical and Biophysical Research Communications, 299(3), 345–351.
Bancroft,, J. B., Wagner,, G. W., & Bracker,, C. E. (1968). The self‐assembly of a nucleic‐acid free pseudo‐top component for a small spherical virus. Virology, 36(1), 146–149.
Barnhill,, H. N., Reuther,, R., Ferguson,, P. L., Dreher,, T., & Wang,, Q. (2007). Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjugate Chemistry, 18(3), 852–859. https://doi.org/10.1021/bc060391s
Beatty,, P. H., & Lewis,, J. D. (2019). Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2019.04.005
Benioff,, D., & Weiss,, D. B.. (2011). “It is known”: Irri, handmaiden to Daenerys Targaryen. Game of Thrones (Season 1).
Biemelt,, S., Sonnewald,, U., Galmbacher,, P., Willmitzer,, L., & Muller,, M. (2003). Production of human papillomavirus type 16 virus‐like particles in transgenic plants. Journal of Virology, 77(17), 9211–9220.
Brillault,, L., Jutras,, P. V., Dashti,, N., Thuenemann,, E. C., Morgan,, G., Lomonossoff,, G. P., … Sainsbury,, F. (2017). Engineering recombinant virus‐like nanoparticles from plants for cellular delivery. ACS Nano, 11(4), 3476–3484. https://doi.org/10.1021/acsnano.6b07747
Bruckman,, M. A., Czapar,, A. E., VanMeter,, A., Randolph,, L. N., & Steinmetz,, N. F. (2016). Tobacco mosaic virus‐based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 231, 103–113. https://doi.org/10.1016/j.jconrel.2016.02.045
Bruckman,, M. A., Hern,, S., Jiang,, K., Flask,, C. A., Yu,, X., & Steinmetz,, N. F. (2013). Tobacco mosaic virus rods and spheres as supramolecular high‐relaxivity MRI contrast agents. Journal of Materials Chemistry B, 1(10), 1482–1490. https://doi.org/10.1039/C3TB00461A
Bruckman,, M. A., Jiang,, K., Simpson,, E. J., Randolph,, L. N., Luyt,, L. G., Yu,, X., & Steinmetz,, N. F. (2014). Dual‐modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM‐1 targeted tobacco mosaic virus. Nano Letters, 14(3), 1551–1558. https://doi.org/10.1021/nl404816m
Bruckman,, M. A., & Steinmetz,, N. F. (2014). Chemical modification of the inner and outer surfaces of tobacco mosaic virus (TMV). Methods in Molecular Biology, 1108, 173–185. https://doi.org/10.1007/978-1-62703-751-8_13
Bruening,, G. (1969). The inheritance of top component formation in cowpea mosaic virus. Virology, 37(4), 577–584.
Buck,, C. B., Pastrana,, D. V., Lowy,, D. R., & Schiller,, J. T. (2005). Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods in Molecular Medicine, 119, 445–462. https://doi.org/10.1385/1-59259-982-6:445
Buyel,, J. F. (2015). Process development strategies in plant molecular farming. Current Pharmaceutical Biotechnology, 16(11), 966–982.
Buyel,, J. F., Hubbuch,, J., & Fischer,, R. (2016). Comparison of tobacco host cell protein removal methods by blanching intact plants or by heat treatment of extracts. Journal of Visualized Experiments, (114), e54343. https://doi.org/10.3791/54343
Buyel,, J. F., Twyman,, R. M., & Fischer,, R. (2015). Extraction and downstream processing of plant‐derived recombinant proteins. Biotechnology Advances, 33(6, Pt. 1), 902–913. https://doi.org/10.1016/j.biotechadv.2015.04.010
Catrice,, E. V., & Sainsbury,, F. (2015). Assembly and purification of polyomavirus‐like particles from plants. Molecular Biotechnology, 57(10), 904–913. https://doi.org/10.1007/s12033-015-9879-9
Cerqueira,, C., Pang,, Y. Y., Day,, P. M., Thompson,, C. D., Buck,, C. B., Lowy,, D. R., & Schiller,, J. T. (2016). A cell‐free assembly system for generating infectious human papillomavirus 16 capsids implicates a size discrimination mechanism for preferential viral genome packaging. Journal of Virology, 90(2), 1096–1107. https://doi.org/10.1128/JVI.02497-15
Cerqueira,, C., Thompson,, C. D., Day,, P. M., Pang,, Y. S., Lowy,, D. R., & Schiller,, J. T. (2017). Efficient production of papillomavirus gene delivery vectors in defined in vitro reactions. Molecular Therapy. Methods %26 Clinical Development, 5, 165–179. https://doi.org/10.1016/j.omtm.2017.04.005
Chabeda,, A., van Zyl,, A. R., Rybicki,, E. P., & Hitzeroth,, I. I. (2019). Substitution of human papillomavirus type 16 L2 neutralising epitopes into L1 surface loops: The effect on virus‐like particle assembly and immunogenicity. Frontiers in Plant Science, 10, 779. https://doi.org/10.3389/fpls.2019.00779
Cho,, C. F., Shukla,, S., Simpson,, E. J., Steinmetz,, N. F., Luyt,, L. G., & Lewis,, J. D. (2014). Molecular targeted viral nanoparticles as tools for imaging cancer. Methods in Molecular Biology, 1108, 211–230. https://doi.org/10.1007/978-1-62703-751-8_16
Choi,, N. W., Estes,, M. K., & Langridge,, W. H. (2005). Synthesis and assembly of a cholera toxin B subunit‐rotavirus VP7 fusion protein in transgenic potato. Molecular Biotechnology, 31(3), 193–202. https://doi.org/10.1385/MB:31:3:193
Comellas‐Aragones,, M., Sikkema,, F. D., Delaittre,, G., Terry,, A. E., King,, S. M., Visser,, D., … Feiters,, M. C. (2011). Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies. Soft Matter, 7(24), 11380–11391. https://doi.org/10.1039/c1sm06123b
Copeland,, K. M., Elliot,, A. J., & Daniels,, R. S. (2005). Functional chimeras of human immunodeficiency virus type 1 Gp120 and influenza A virus (H3) hemagglutinin. Journal of Virology, 79(10), 6459–6471. https://doi.org/10.1128/JVI.79.10.6459-6471.2005
Cuenca,, S., Mansilla,, C., Aguado,, M., Yuste‐Calvo,, C., Sanchez,, F., Sanchez‐Montero,, J. M., & Ponz,, F. (2016). Nanonets derived from turnip mosaic virus as scaffolds for increased enzymatic activity of immobilized Candida Antarctica lipase B. Frontiers in Plant Science, 7, 464. https://doi.org/10.3389/fpls.2016.00464
Czyz,, M., Dembczynski,, R., Marecik,, R., Wojas‐Turek,, J., Milczarek,, M., Pajtasz‐Piasecka,, E., … Pniewski,, T. (2014). Freeze‐drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. BioMed Research International, 2014, 1–10. https://doi.org/10.1155/2014/485689
D`Aoust,, M. A., Landry,, N., Lavoie,, P. O., Arai,, M., Asahara,, N., Mutepfa,, D. L., … Rybicki,, E. P. (2013). USA Patent No. US Patent & Trademark Office. Retieved from http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26u=%2Fnetahtml%2FPTO%2Fsearch-adv.html%26r=2%26p=1%26f=G%26l=50%26d=PG01%26S1=((rotavirus+AND+vaccine)+AND+rybicki.IN.)%26OS=rotavirus+and+vaccine+and+in/rybicki%26RS=((rotavirus+AND+vaccine)+AND+IN/rybicki)
D`Aoust,, M. A., Couture,, M. M., Charland,, N., Trepanier,, S., Landry,, N., Ors,, F., & Vezina,, L. P. (2010). The production of hemagglutinin‐based virus‐like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnology Journal, 8(5), 607–619. https://doi.org/10.1111/j.1467-7652.2009.00496.x
D`Aoust,, M. A., Couture,, M. M., Lavoie,, P. O., & Vezina,, L. P. (2014). E. P. Organization. http://worldwide.espacenet.com/publicationDetails/biblio?CC=KR%26NR=20140002685A%26KC=A%26FT=D%26ND=3%26date=20140108%26DB=EPODOC%26locale=en_EP
D`Aoust,, M. A., Lavoie,, P. O., Couture,, M. M., Trepanier,, S., Guay,, J. M., Dargis,, M., … Vezina,, L. P. (2008). Influenza virus‐like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnology Journal, 6(9), 930–940. https://doi.org/10.1111/j.1467-7652.2008.00384.x
Day,, P. M., Weisberg,, A. S., Thompson,, C. D., Hughes,, M. M., Pang,, Y. Y., Lowy,, D. R., & Schiller,, J. T. (2019). Human papillomavirus type 16 (HPV16) capsids mediate nuclear entry during infection. Journal of Virology, 93(15), e00454‐19. https://doi.org/10.1128/JVI.00454-19
De Figueiredo Pinto Gomes Pera,, F. (2017). Design and production of a candidate universal influenza A vaccine in Nicotiana benthamiana plants. (Master of science dissertation). University of Cape Town, Cape Town. Retrieved from https://open.uct.ac.za/handle/11427/27063
Dennis,, S. J., O`Kennedy,, M. M., Rutkowska,, D., Tsekoa,, T., Lourens,, C. W., Hitzeroth,, I. I., … Rybicki,, E. P. (2018). Safety and immunogenicity of plant‐produced African horse sickness virus‐like particles in horses. Veterinary Research, 49(1), 105. https://doi.org/10.1186/s13567-018-0600-4
Diamos,, A. G., & Mason,, H. S. (2018). High‐level expression and enrichment of norovirus virus‐like particles in plants using modified geminiviral vectors. Protein Expression and Purification, 151, 86–92. https://doi.org/10.1016/j.pep.2018.06.011
Dong,, J. L., Liang,, B. G., Jin,, Y. S., Zhang,, W. J., & Wang,, T. (2005). Oral immunization with pBsVP6‐transgenic alfalfa protects mice against rotavirus infection. Virology, 339(2), 153–163. https://doi.org/10.1016/j.virol.2005.06.004
Dus Santos,, M. J., Carrillo,, C., Ardila,, F., Rios,, R. D., Franzone,, P., Piccone,, M. E., … Borca,, M. V. (2005). Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine, 23(15), 1838–1843. https://doi.org/10.1016/j.vaccine.2004.11.014
Duvenage,, L., Hitzeroth,, I. I., Meyers,, A. E., & Rybicki,, E. P. (2013). Expression in tobacco and purification of beak and feather disease virus capsid protein fused to elastin‐like polypeptides. Journal of Virological Methods, 191(1), 55–62. https://doi.org/10.1016/j.jviromet.2013.03.028
Eiben,, S., Koch,, C., Altintoprak,, K., Southan,, A., Tovar,, G., Laschat,, S., … Wege,, C. (2018). Plant virus‐based materials for biomedical applications: Trends and prospects. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2018.08.011
Fox,, J. M., Wang,, G. J., Speir,, J. A., Olson,, N. H., Johnson,, J. E., Baker,, T. S., & Young,, M. J. (1998). Comparison of the native CCMV virion with in vitro assembled CCMW virions by cryoelectron microscopy and image reconstruction. Virology, 244(1), 212–218. https://doi.org/10.1006/viro.1998.9107
Fraiberk,, M., Hajkova,, M., Krulova,, M., Kojzarova,, M., Drda Moravkova,, A., Psikal,, I., & Forstova,, J. (2017). Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS One, 12(9), e0184870. https://doi.org/10.1371/journal.pone.0184870
Gallie,, D. R., Sleat,, D. E., & Watts,, J. W. (1987). In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV‐like particles. Science, 236(4805), 1122–1124.
Ganguly,, R., Wen,, A. M., Myer,, A. B., Czech,, T., Sahu,, S., Steinmetz,, N. F., & Raman,, P. (2016). Anti‐atherogenic effect of trivalent chromium‐loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 8(12), 6542–6554. https://doi.org/10.1039/c6nr00398b
Gellert,, A., Salanki,, K., Tombacz,, K., Tuboly,, T., & Balazs,, E. (2012). A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines. PLoS One, 7(12), e52688. https://doi.org/10.1371/journal.pone.0052688
Gonzalez,, D. D., Mozgovoj,, M. V., Bellido,, D., Rodriguez,, D. V., Fernandez,, F. M., Wigdorovitz,, A., … Dus Santos,, M. J. (2010). Evaluation of a bovine rotavirus VP6 vaccine efficacy in the calf model of infection and disease. Veterinary Immunology and Immunopathology, 137(1–2), 155–160. https://doi.org/10.1016/j.vetimm.2010.04.015
Gonzalez‐Gamboa,, I., Manrique,, P., Sanchez,, F., & Ponz,, F. (2017). Plant‐made potyvirus‐like particles used for log‐increasing antibody sensing capacity. Journal of Biotechnology, 254, 17–24. https://doi.org/10.1016/j.jbiotec.2017.06.014
Gordon,, S. N., Kines,, R. C., Kutsyna,, G., Ma,, Z. M., Hryniewicz,, A., Roberts,, J. N., … Franchini,, G. (2012). Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. Journal of Immunology, 188(2), 714–723. https://doi.org/10.4049/jimmunol.1101404
Graham,, B. S., Kines,, R. C., Corbett,, K. S., Nicewonger,, J., Johnson,, T. R., Chen,, M., … Buck,, C. B. (2010). Mucosal delivery of human papillomavirus pseudovirus‐encapsidated plasmids improves the potency of DNA vaccination. Mucosal Immunology, 3(5), 475–486. https://doi.org/10.1038/mi.2010.31
Greco,, R., Michel,, M., Guetard,, D., Cervantes‐Gonzalez,, M., Pelucchi,, N., Wain‐Hobson,, S., … Sala,, M. (2007). Production of recombinant HIV‐1/HBV virus‐like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant‐based vaccine. Vaccine, 25(49), 8228–8240. https://doi.org/10.1016/j.vaccine.2007.09.061
Gunter,, C. J., Regnard,, G. L., Rybicki,, E. P., & Hitzeroth,, I. I. (2019). Immunogenicity of plant‐produced porcine circovirus‐like particles in mice. Plant Biotechnology Journal, 17, 1751–1759. https://doi.org/10.1111/pbi.13097
Guo,, L., Lu,, X., Kang,, S. M., Chen,, C., Compans,, R. W., & Yao,, Q. (2003). Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus‐like particles. Virology, 313(2), 502–513.
Hitzeroth,, I. I., Chabeda,, A., Whitehead,, M. P., Graf,, M., & Rybicki,, E. P. (2018). Optimizing a human papillomavirus type 16 L1‐based Chimaeric gene for expression in plants. Frontiers in Bioengineering and Biotechnology, 6, 101. https://doi.org/10.3389/fbioe.2018.00101
Hojeij,, R., Domingos‐Pereira,, S., Nkosi,, M., Gharbi,, D., Derre,, L., Schiller,, J. T., … Nardelli‐Haefliger,, D. (2016). Immunogenic human papillomavirus pseudovirus‐mediated suicide‐gene therapy for bladder cancer. International Journal of Molecular Sciences, 17(7), 1125. https://doi.org/10.3390/ijms17071125
Hovlid,, M. L., Steinmetz,, N. F., Laufer,, B., Lau,, J. L., Kuzelka,, J., Wang,, Q., … Finn,, M. G. (2012). Guiding plant virus particles to integrin‐displaying cells. Nanoscale, 4(12), 3698–3705. https://doi.org/10.1039/c2nr30571b
Hu,, H., Masarapu,, H., Gu,, Y., Zhang,, Y., Yu,, X., & Steinmetz,, N. F. (2019). Physalis mottle virus‐like nanoparticles for targeted cancer imaging. ACS Applied Materials %26 Interfaces, 11, 18213–18223. https://doi.org/10.1021/acsami.9b03956
Huang,, Y., Liang,, W., Wang,, Y., Zhou,, Z., Pan,, A., Yang,, X., … Zhang,, D. (2005). Immunogenicity of the epitope of the foot‐and‐mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunology, 18(4), 668–677.
Huang,, Z., Santi,, L., LePore,, K., Kilbourne,, J., Arntzen,, C. J., & Mason,, H. S. (2006). Rapid, high‐level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine, 24(14), 2506–2513. https://doi.org/10.1016/j.vaccine.2005.12.024
Huber,, B., Schellenbacher,, C., Shafti‐Keramat,, S., Jindra,, C., Christensen,, N., & Kirnbauer,, R. (2017). Chimeric L2‐based virus‐like particle (VLP) vaccines targeting cutaneous human papillomaviruses (HPV). PLoS One, 12(1), e0169533. https://doi.org/10.1371/journal.pone.0169533
International Committee on Taxonomy of Viruses. (2019). Subfamily: Comovirinae. Retrieved from https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/picornavirales/w/secoviridae/582/subfamily-comovirinae
Jutras,, P. V., D`Aoust,, M. A., Couture,, M. M., Vezina,, L. P., Goulet,, M. C., Michaud,, D., & Sainsbury,, F. (2015). Modulating secretory pathway pH by proton channel co‐expression can increase recombinant protein stability in plants. Biotechnology Journal, 10(9), 1478–1486. https://doi.org/10.1002/biot.201500056
Jutras,, P. V., Goulet,, M. C., Lavoie,, P. O., D`Aoust,, M. A., Sainsbury,, F., & Michaud,, D. (2018). Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH‐dependent. Plant Biotechnology Journal, 16(11), 1928–1938. https://doi.org/10.1111/pbi.12928
Kaper,, J. M. (1960). Preparation and characterization of artificial top component from turnip yellow mosaic virus. Journal of Molecular Biology, 2, 425–433.
Kaper,, J. M. (1964). Alkaline degradation of turnip yellow mosaic virus. I. The controlled formation of empty protein shells. Biochemistry, 3, 486–493.
Kaur,, G., Valarmathi,, M. T., Potts,, J. D., & Wang,, Q. (2008). The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials, 29(30), 4074–4081. https://doi.org/10.1016/j.biomaterials.2008.06.029
Kemnade,, J. O., Seethammagari,, M., Collinson‐Pautz,, M., Kaur,, H., Spencer,, D. M., & McCormick,, A. A. (2014). Tobacco mosaic virus efficiently targets DC uptake, activation and antigen‐specific T cell responses in vivo. Vaccine, 32(33), 4228–4233. https://doi.org/10.1016/j.vaccine.2014.04.051
Kernan,, D. L., Wen,, A. M., Pitek,, A. S., & Steinmetz,, N. F. (2017). Featured article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Experimental Biology and Medicine (Maywood, N.J.), 242(14), 1405–1411. https://doi.org/10.1177/1535370217719222
Kesik‐Brodacka,, M., Lipiec,, A., Kozak Ljunggren,, M., Jedlina,, L., Miedzinska,, K., Mikolajczak,, M., … Wedrychowicz,, H. (2017). Immune response of rats vaccinated orally with various plant‐expressed recombinant cysteine proteinase constructs when challenged with Fasciola hepatica metacercariae. PLoS Neglected Tropical Diseases, 11(3), e0005451. https://doi.org/10.1371/journal.pntd.0005451
Kessans,, S. A., Linhart,, M. D., Meador,, L. R., Kilbourne,, J., Hogue,, B. G., Fromme,, P., … Mor,, T. S. (2016). Immunological characterization of plant‐based HIV‐1 Gag/Dgp41 virus‐like particles. PLoS One, 11(3), e0151842. https://doi.org/10.1371/journal.pone.0151842
Kim,, Y., Kim,, J., Kang,, K., & Lyoo,, Y. S. (2002). Characterization of the recombinant proteins of porcine circovirus type 2 field isolate expressed in the baculovirus system. Journal of Veterinary Science, 3(1), 19–23.
Kines,, R. C., Cerio,, R. J., Roberts,, J. N., Thompson,, C. D., de Los Pinos,, E., Lowy,, D. R., & Schiller,, J. T. (2016). Human papillomavirus capsids preferentially bind and infect tumor cells. International Journal of Cancer, 138(4), 901–911. https://doi.org/10.1002/ijc.29823
Kines,, R. C., Zarnitsyn,, V., Johnson,, T. R., Pang,, Y. Y., Corbett,, K. S., Nicewonger,, J. D., … Graham,, B. S. (2015). Vaccination with human papillomavirus pseudovirus‐encapsidated plasmids targeted to skin using microneedles. PLoS One, 10(3), e0120797. https://doi.org/10.1371/journal.pone.0120797
Lamprecht,, R. L., Kennedy,, P., Huddy,, S. M., Bethke,, S., Hendrikse,, M., Hitzeroth,, I. I., & Rybicki,, E. P. (2016). Production of human papillomavirus pseudovirions in plants and their use in pseudovirion‐based neutralisation assays in mammalian cells. Scientific Reports, 6, 20431. https://doi.org/10.1038/srep20431
Lavelle,, L., Michel,, J. P., & Gingery,, M. (2007). The disassembly, reassembly and stability of CCMV protein capsids. Journal of Virological Methods, 146(1–2), 311–316. https://doi.org/10.1016/j.jviromet.2007.07.020
Lee,, K. L., Carpenter,, B. L., Wen,, A. M., Ghiladi,, R. A., & Steinmetz,, N. F. (2016). High aspect ratio nanotubes formed by tobacco mosaic virus for delivery of photodynamic agents targeting melanoma. ACS Biomaterials Science %26 Engineering, 2(5), 838–844. https://doi.org/10.1021/acsbiomaterials.6b00061
Lee,, R. W., Strommer,, J., Hodgins,, D., Shewen,, P. E., Niu,, Y., & Lo,, R. Y. (2001). Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infection and Immunity, 69(9), 5786–5793.
Li,, J. T., Fei,, L., Mou,, Z. R., Wei,, J., Tang,, Y., He,, H. Y., … Wu,, Y. Z. (2006). Immunogenicity of a plant‐derived edible rotavirus subunit vaccine transformed over fifty generations. Virology, 356(1–2), 171–178. https://doi.org/10.1016/j.virol.2006.07.045
Li,, X., Meng,, X., Wang,, S., Li,, Z., Yang,, L., Tu,, L., … Wang,, L. (2018). Virus‐like particles of recombinant PCV2b carrying FMDV‐VP1 epitopes induce both anti‐PCV and anti‐FMDV antibody responses. Applied Microbiology and Biotechnology, 102(24), 10541–10550. https://doi.org/10.1007/s00253-018-9361-2
Li,, Y., Guan,, L., Liu,, X., Liu,, W., Yang,, J., Zhang,, X., … Li,, X. (2018). Oral immunization with rotavirus VP7‐CTB fusion expressed in transgenic Arabidopsis thaliana induces antigen‐specific IgA and IgG and passive protection in mice. Experimental and Therapeutic Medicine, 15(6), 4866–4874. https://doi.org/10.3892/etm.2018.6003
Lieknina,, I., Kalnins,, G., Akopjana,, I., Bogans,, J., Sisovs,, M., Jansons,, J., … Tars,, K. (2019). Production and characterization of novel ssRNA bacteriophage virus‐like particles from metagenomic sequencing data. Journal of Nanobiotechnology, 17(1), 61. https://doi.org/10.1186/s12951-019-0497-8
Lindsay,, B. J., Bonar,, M. M., Costas‐Cancelas,, I. N., Hunt,, K., Makarkov,, A. I., Chierzi,, S., … Rouiller,, I. (2018). Morphological characterization of a plant‐made virus‐like particle vaccine bearing influenza virus hemagglutinins by electron microscopy. Vaccine, 36(16), 2147–2154. https://doi.org/10.1016/j.vaccine.2018.02.106
Lizotte,, P. H., Wen,, A. M., Sheen,, M. R., Fields,, J., Rojanasopondist,, P., Steinmetz,, N. F., & Fiering,, S. (2016). In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 11(3), 295–303. https://doi.org/10.1038/nnano.2015.292
Love,, A. J., Chapman,, S. N., Matic,, S., Noris,, E., Lomonossoff,, G. P., & Taliansky,, M. (2012). In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta, 236, 1305–1313. https://doi.org/10.1007/s00425-012-1692-0
Loza‐Rubio,, E., Rojas,, E., Gomez,, L., Olivera,, M. T., & Gomez‐Lim,, M. A. (2008). Development of an edible rabies vaccine in maize using the Vnukovo strain. Developmental Biology (Basel), 131, 477–482.
Lyttleton,, J. W., & Matthews,, R. E. (1958). Release of nucleic acid from turnip yellow mosaic virus under mild conditions. Virology, 6(2), 460–471.
Maclean,, J., Koekemoer,, M., Olivier,, A. J., Stewart,, D., Hitzeroth,, I. I., Rademacher,, T., … Rybicki,, E. P. (2007). Optimization of human papillomavirus type 16 (HPV‐16) L1 expression in plants: Comparison of the suitability of different HPV‐16 L1 gene variants and different cell‐compartment localization. Journal of General Virology, 88(Pt. 5), 1460–1469. https://doi.org/10.1099/vir.0.82718-0
Makarkov,, A. I., Chierzi,, S., Pillet,, S., Murai,, K. K., Landry,, N., & Ward,, B. J. (2017). Plant‐made virus‐like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine, 35(35, Pt. B), 4629–4636. https://doi.org/10.1016/j.vaccine.2017.07.012
Malm,, M., Diessner,, A., Tamminen,, K., Liebscher,, M., Vesikari,, T., & Blazevic,, V. (2019). Rotavirus VP6 as an adjuvant for bivalent norovirus vaccine produced in Nicotiana benthamiana. Pharmaceutics, 11(5), 229. https://doi.org/10.3390/pharmaceutics11050229
Mamedov,, T., & Yusibov,, V. (2013). In vivo deglycosylation of recombinant proteins in plants by co‐expression with bacterial PNGase F. Bioengineered, 4(5), 338–342. https://doi.org/10.4161/bioe.23449
Markham,, R., & Smith,, K. M. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39(3–4), 330–342.
Marsian,, J., Fox,, H., Bahar,, M. W., Kotecha,, A., Fry,, E. E., Stuart,, D. I., … Lomonossoff,, G. P. (2017). Plant‐made polio type 3 stabilized VLPs—A candidate synthetic polio vaccine. Nature Communications, 8(1), 245. https://doi.org/10.1038/s41467-017-00090-w
Martelli,, P., Ferrari,, L., Morganti,, M., De Angelis,, E., Bonilauri,, P., Guazzetti,, S., … Borghetti,, P. (2011). One dose of a porcine circovirus 2 subunit vaccine induces humoral and cell‐mediated immunity and protects against porcine circovirus‐associated disease under field conditions. Veterinary Microbiology, 149(3–4), 339–351. https://doi.org/10.1016/j.vetmic.2010.12.008
Marth,, K., Breyer,, I., Focke‐Tejkl,, M., Blatt,, K., Shamji,, M. H., Layhadi,, J., … Valenta,, R. (2013). A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS‐fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype. Journal of Immunology, 190(7), 3068–3078. https://doi.org/10.4049/jimmunol.1202441
Masarapu,, H., Patel,, B. K., Chariou,, P. L., Hu,, H., Gulati,, N. M., Carpenter,, B. L., … Steinmetz,, N. F. (2017). Physalis mottle virus‐like particles as nanocarriers for imaging reagents and drugs. Biomacromolecules, 18(12), 4141–4153. https://doi.org/10.1021/acs.biomac.7b01196
Mason,, H. S., Lam,, D. M., & Arntzen,, C. J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 89(24), 11745–11749.
Mbewana,, S., Meyers,, A. E., & Rybicki,, E. P. (2019). Chimaeric Rift Valley fever virus‐like particle vaccine candidate production in Nicotiana benthamiana. Biotechnology Journal, 14(4), e1800238. https://doi.org/10.1002/biot.201800238
McCormick,, A. A., Corbo,, T. A., Wykoff‐Clary,, S., Nguyen,, L. V., Smith,, M. L., Palmer,, K. E., & Pogue,, G. P. (2006). TMV‐peptide fusion vaccines induce cell‐mediated immune responses and tumor protection in two murine models. Vaccine, 24(40–41), 6414–6423. https://doi.org/10.1016/j.vaccine.2006.06.003
McCormick,, A. A., Corbo,, T. A., Wykoff‐Clary,, S., Palmer,, K. E., & Pogue,, G. P. (2006). Chemical conjugate TMV‐peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjugate Chemistry, 17(5), 1330–1338. https://doi.org/10.1021/bc060124m
McCormick,, A. A., & Palmer,, K. E. (2008). Genetically engineered tobacco mosaic virus as nanoparticle vaccines. Expert Review of Vaccines, 7(1), 33–41. https://doi.org/10.1586/14760584.7.1.33
Mechtcheriakova,, I. A., Eldarov,, M. A., Nicholson,, L., Shanks,, M., Skryabin,, K. G., & Lomonossoff,, G. P. (2006). The use of viral vectors to produce hepatitis B virus core particles in plants. Journal of Virological Methods, 131(1), 10–15. https://doi.org/10.1016/j.jviromet.2005.06.020
Metavarayuth,, K., Nguyen,, H. G., & Wang,, Q. (2018). Fabrication of plant virus‐based thin films to modulate the osteogenic differentiation of mesenchymal stem cells. Methods in Molecular Biology, 1776, 609–627. https://doi.org/10.1007/978-1-4939-7808-3_39
Mo,, X., Li,, X., Yin,, B., Deng,, J., Tian,, K., & Yuan,, A. (2019). Structural roles of PCV2 capsid protein N‐terminus in PCV2 particle assembly and identification of PCV2 type‐specific neutralizing epitope. PLoS Pathogens, 15(3), e1007562. https://doi.org/10.1371/journal.ppat.1007562
Montero‐Morales,, L., & Steinkellner,, H. (2018). Advanced plant‐based glycan engineering. Frontiers in Bioengineering and Biotechnology, 6, 81. https://doi.org/10.3389/fbioe.2018.00081
Murray,, A. A., Wang,, C., Fiering,, S., & Steinmetz,, N. F. (2018). In situ vaccination with cowpea vs tobacco mosaic virus against melanoma. Molecular Pharmaceutics, 15(9), 3700–3716. https://doi.org/10.1021/acs.molpharmaceut.8b00316
Narayanan,, K. B., & Han,, S. S. (2017). Helical plant viral nanoparticles‐bioinspired synthesis of nanomaterials and nanostructures. Bioinspiration %26 Biomimetics, 12(3), 031001. https://doi.org/10.1088/1748-3190/aa6bfd
Narayanan,, K. B., & Han,, S. S. (2018). Recombinant helical plant virus‐based nanoparticles for vaccination and immunotherapy. Virus Genes, 54(5), 623–637. https://doi.org/10.1007/s11262-018-1583-y
Ochoa,, W. F., Chatterji,, A., Lin,, T. W., & Johnson,, J. E. (2006). Generation and structural analysis of reactive empty particles derived from an icosahedral virus. Chemistry %26 Biology, 13(7), 771–778. https://doi.org/10.1016/j.chembiol.2006.05.014
Pan,, L., Zhang,, Y., Wang,, Y., Wang,, B., Wang,, W., Fang,, Y., … Xie,, Q. (2008). Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1‐2A, and protease, 3C, from foot‐and‐mouth disease virus elicit a protective response in Guinea pigs. Veterinary Immunology and Immunopathology, 121(1–2), 83–90. https://doi.org/10.1016/j.vetimm.2007.08.010
Pastrana,, D. V., Buck,, C. B., Pang,, Y. Y., Thompson,, C. D., Castle,, P. E., FitzGerald,, P. C., … Schiller,, J. T. (2004). Reactivity of human sera in a sensitive, high‐throughput pseudovirus‐based papillomavirus neutralization assay for HPV16 and HPV18. Virology, 321(2), 205–216. https://doi.org/10.1016/j.virol.2003.12.027
Pera,, F. F., Mutepfa,, D. L., Khan,, A. M., Els,, J. H., Mbewana,, S., van Dijk,, A. A., … Hitzeroth,, I. I. (2015). Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana. Virology Journal, 12, 205. https://doi.org/10.1186/s12985-015-0436-8
Peyret,, H., Gehin,, A., Thuenemann,, E. C., Blond,, D., El Turabi,, A., Beales,, L., … Rowlands,, D. J. (2015). Tandem fusion of hepatitis B core antigen allows assembly of virus‐like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One, 10(4), e0120751. https://doi.org/10.1371/journal.pone.0120751
Pillet,, S., Aubin,, E., Trepanier,, S., Bussiere,, D., Dargis,, M., Poulin,, J. F., … Landry,, N. (2016). A plant‐derived quadrivalent virus like particle influenza vaccine induces cross‐reactive antibody and T cell response in healthy adults. Clinical Immunology, 168, 72–87. https://doi.org/10.1016/j.clim.2016.03.008
Pillet,, S., Racine,, T., Nfon,, C., Di Lenardo,, T. Z., Babiuk,, S., Ward,, B. J., … Landry,, N. (2015). Plant‐derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine, 33(46), 6282–6289. https://doi.org/10.1016/j.vaccine.2015.09.065
Pineo,, C. B., Hitzeroth,, I. I., & Rybicki,, E. P. (2013). Immunogenic assessment of plant‐produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnology Journal, 11(8), 964–975. https://doi.org/10.1111/pbi.12089
Pitek,, A. S., Hu,, H., Shukla,, S., & Steinmetz,, N. F. (2018). Cancer theranostic applications of albumin‐coated tobacco mosaic virus nanoparticles. ACS Applied Materials %26 Interfaces, 10(46), 39468–39477. https://doi.org/10.1021/acsami.8b12499
Pumpens,, P., Borisova,, G. P., Crowther,, R. A., & Grens,, E. (1995). Hepatitis B virus core particles as epitope carriers. Intervirology, 38(1–2), 63–74. https://doi.org/10.1159/000150415
Pumpens,, P., & Grens,, E. (1999). Hepatitis B core particles as a universal display model: A structure‐function basis for development. FEBS Letters, 442(1), 1–6.
Quacquarelli,, A., Vovlas,, C., & Piazzolla,, P. (1972). Freezing in production of artificial top component of chicory yellow mottle virus. Journal of General Virology, 17, 147. https://doi.org/10.1099/0022-1317-17-2-147
Rademacher,, T., Sack,, M., Blessing,, D., Fischer,, R., Holland,, T., & Buyel,, J. (2019). Plant cell packs: A scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnology Journal, 17, 1560–1566. https://doi.org/10.1111/pbi.13081
Ravin,, N. V., Kotlyarov,, R. Y., Mardanova,, E. S., Kuprianov,, V. V., Migunov,, A. I., Stepanova,, L. A., … Skryabin,, K. G. (2012). Plant‐produced recombinant influenza vaccine based on virus‐like HBc particles carrying an extracellular domain of M2 protein. Biochemistry (Mosc), 77(1), 33–40. https://doi.org/10.1134/S000629791201004X
Regnard,, G. L., de Moor,, W. R. J., Hitzeroth,, I. I., Williamson,, A. L., & Rybicki,, E. P. (2017). Xenogenic rolling‐circle replication of a synthetic beak and feather disease virus genomic clone in 293TT mammalian cells and Nicotiana benthamiana. Journal of General Virology, 98(9), 2329–2338. https://doi.org/10.1099/jgv.0.000915
Regnard,, G. L., Halley‐Stott,, R. P., Tanzer,, F. L., Hitzeroth,, I. I., & Rybicki,, E. P. (2010). High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnology Journal, 8(1), 38–46. https://doi.org/10.1111/j.1467-7652.2009.00462.x
Regnard,, G. L., Rybicki,, E. P., & Hitzeroth,, I. I. (2017). Recombinant expression of beak and feather disease virus capsid protein and assembly of virus‐like particles in Nicotiana benthamiana. Virology Journal, 14(1), 174. https://doi.org/10.1186/s12985-017-0847-9
Ritchie,, B. W., Niagro,, F. D., Lukert,, P. D., Latimer,, K. S., Steffens,, W. L., III, & Pritchard,, N. (1989). A review of psittacine beak and feather disease: Characteristics of the PBFD virus. Journal of the Association of Avian Veterinarians, 3, 143–149.
Roy,, P., Bishop,, D. H., LeBlois,, H., & Erasmus,, B. J. (1994). Long‐lasting protection of sheep against bluetongue challenge after vaccination with virus‐like particles: Evidence for homologous and partial heterologous protection. Vaccine, 12(9), 805–811.
Ruiz,, V., Baztarrica,, J., Rybicki,, E. P., Meyers,, A. E., & Wigdorovitz,, A. (2018). Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus‐like particles are immunogenic in mice. Biotechnology Reports (Amsterdam, Netherlands), 20, e00283. https://doi.org/10.1016/j.btre.2018.e00283
Rybicki,, E. (2015). From plant virology to vaccinology: The road less travelled. Human Vaccines %26 Immunotherapeutics, 11(11), 2517–2521. https://doi.org/10.1080/21645515.2015.1092751
Rybicki,, E. P. (2009). Plant‐produced vaccines: Promise and reality. Drug Discovery Today, 14(1–2), 16–24. https://doi.org/10.1016/j.drudis.2008.10.002
Rybicki,, E. P. (2010). Plant‐made vaccines for humans and animals. Plant Biotechnology Journal, 8(5), 620–637. https://doi.org/10.1111/j.1467-7652.2010.00507.x
Rybicki,, E. P. (2014). Plant‐based vaccines against viruses. Virology Journal, 11, 205. https://doi.org/10.1186/s12985-014-0205-0
Rybicki,, E. P., & Coyne,, V. E. (1983). Serological differentiation of brome mosaic‐virus morphomers. FEMS Microbiology Letters, 20(1), 103–106.
Rybicki,, E. P., & Martin,, D. P. (2014). Virus‐derived ssDNA vectors for the expression of foreign proteins in plants. Current Topics in Microbiology and Immunology, 375, 19–45. https://doi.org/10.1007/82_2011_185
Sainsbury,, F., Canizares,, M. C., & Lomonossoff,, G. P. (2010). Cowpea mosaic virus: The plant virus‐based biotechnology workhorse. Annual Review of Phytopathology, 48, 437–455. https://doi.org/10.1146/annurev-phyto-073009-114242
Saldana,, S., Esquivel Guadarrama,, F., Olivera Flores Tde,, J., Arias,, N., Lopez,, S., Arias,, C., … Gomez Lim,, M. A. (2006). Production of rotavirus‐like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunology, 19(1), 42–53. https://doi.org/10.1089/vim.2006.19.42
Sarker,, S., Ghorashi,, S. A., Swarbrick,, C. M., Khandokar,, Y. B., Himiari,, Z., Forwood,, J. K., & Raidal,, S. R. (2015). An efficient approach for recombinant expression and purification of the viral capsid protein from beak and feather disease virus (BFDV) in Escherichia coli. Journal of Virological Methods, 215–216, 1–8. https://doi.org/10.1016/j.jviromet.2015.02.005
Schoonen,, L., Maas,, R. J. M., Nolte,, R. J. M., & van Hest,, J. C. M. (2017). Expansion of the assembly of cowpea chlorotic mottle virus towards non‐native and physiological conditions. Tetrahedron, 73(33), 4968–4971. https://doi.org/10.1016/j.tet.2017.04.038
Schramm,, G., & Zillig,. (1955). Über die Struktur des Tabakmosaikvirus. IV. Die Reaggregation des nucleinsäure‐freien Proteins. Zeitschrift für Naturforschung, 10b, 9.
Scotti,, N., & Rybicki,, E. P. (2013). Virus‐like particles produced in plants as potential vaccines. Expert Review of Vaccines, 12(2), 211–224. https://doi.org/10.1586/erv.12.147
Shanks,, M., & Lomonossoff,, G. P. (2000). Go‐expression of the capsid proteins of cowpea mosaic virus in insect cells leads to the formation of virus‐like particles. Journal of General Virology, 81, 3093–3097. https://doi.org/10.1099/0022-1317-81-12-3093
Shukla,, S., Ablack,, A. L., Wen,, A. M., Lee,, K. L., Lewis,, J. D., & Steinmetz,, N. F. (2013). Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Molecular Pharmaceutics, 10(1), 33–42. https://doi.org/10.1021/mp300240m
Shukla,, S., Eber,, F. J., Nagarajan,, A. S., DiFranco,, N. A., Schmidt,, N., Wen,, A. M., … Steinmetz,, N. F. (2015). The impact of aspect ratio on the biodistribution and tumor homing of rigid soft‐matter nanorods. Advanced Healthcare Materials, 4(6), 874–882. https://doi.org/10.1002/adhm.201400641
Shulman,, L. M., & Davidson,, I. (2017). Viruses with circular single‐stranded DNA genomes are everywhere! Annual Review of Virology, 4(1), 159–180. https://doi.org/10.1146/annurev-virology-101416-041953
Siegel,, A. (1971). Pseudovirions of tobacco mosaic virus. Virology, 46(1), 50. https://doi.org/10.1016/0042-6822(71)90005-5
Sleat,, D. E., Gallie,, D. R., Watts,, J. W., Deom,, C. M., Turner,, P. C., Beachy,, R. N., & Wilson,, T. M. (1988). Selective recovery of foreign gene transcripts as virus‐like particles in TMV‐infected transgenic tobaccos. Nucleic Acids Research, 16(8), 3127–3140. https://doi.org/10.1093/nar/16.8.3127
Sleat,, D. E., Turner,, P. C., Finch,, J. T., Butler,, P. J., & Wilson,, T. M. (1986). Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin‐of‐assembly sequence from tobacco mosaic virus RNA. Virology, 155(2), 299–308.
Smith,, M. L., Corbo,, T., Bernales,, J., Lindbo,, J. A., Pogue,, G. P., Palmer,, K. E., & McCormick,, A. A. (2007). Assembly of trans‐encapsidated recombinant viral vectors engineered from tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology, 358(2), 321–333. https://doi.org/10.1016/j.virol.2006.08.040
Smith,, M. L., Lindbo,, J. A., Dillard‐Telm,, S., Brosio,, P. M., Lasnik,, A. B., McCormick,, A. A., … Palmer,, K. E. (2006). Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 348(2), 475–488. https://doi.org/10.1016/j.virol.2005.12.039
Steinmetz,, N. F., Maurer,, J., Sheng,, H., Bensussan,, A., Maricic,, I., Kumar,, V., & Braciak,, T. A. (2011). Two domains of vimentin are expressed on the surface of lymph node, bone and brain metastatic prostate cancer lines along with the putative stem cell marker proteins CD44 and CD133. Cancers (Basel), 3(3), 2870–2885. https://doi.org/10.3390/cancers3032870
Stephen,, S. L., Beales,, L., Peyret,, H., Roe,, A., Stonehouse,, N. J., & Rowlands,, D. J. (2018). Recombinant expression of tandem‐HBc virus‐like particles (VLPs). Methods in Molecular Biology, 1776, 97–123. https://doi.org/10.1007/978-1-4939-7808-3_7
Stewart,, M. E., Bonne,, N., Shearer,, P., Khalesi,, B., Sharp,, M., & Raidal,, S. (2007). Baculovirus expression of beak and feather disease virus (BFDV) capsid protein capable of self‐assembly and haemagglutination. Journal of Virological Methods, 141(2), 181–187. https://doi.org/10.1016/j.jviromet.2006.12.011
Strasser,, R., Altmann,, F., & Steinkellner,, H. (2014). Controlled glycosylation of plant‐produced recombinant proteins. Current Opinion in Biotechnology, 30C, 95–100. https://doi.org/10.1016/j.copbio.2014.06.008
Suci,, P. A., Klem,, M. T., Arce,, F. T., Douglas,, T., & Young,, M. (2006). Assembly of multilayer films incorporating a viral protein cage architecture. Langmuir, 22(21), 8891–8896. https://doi.org/10.1021/la0612062
Sun,, X., Li,, W., Zhang,, X., Qi,, M., Zhang,, Z., Zhang,, X. E., & Cui,, Z. (2016). In vivo targeting and imaging of atherosclerosis using multifunctional virus‐like particles of simian virus 40. Nano Letters, 16(10), 6164–6171. https://doi.org/10.1021/acs.nanolett.6b02386
Thuenemann,, E. C., Lenzi,, P., Love,, A. J., Taliansky,, M., Becares,, M., Zuniga,, S., … Lomonossoff,, G. P. (2013). The use of transient expression systems for the rapid production of virus‐like particles in plants. Current Pharmaceutical Design, 19(31), 5564–5573.
Thuenemann,, E. C., Meyers,, A. E., Verwey,, J., Rybicki,, E. P., & Lomonossoff,, G. P. (2013). A method for rapid production of heteromultimeric protein complexes in plants: Assembly of protective bluetongue virus‐like particles. Plant Biotechnology Journal, 11(7), 839–846. https://doi.org/10.1111/pbi.12076
Tiu,, B. D. B., Advincula,, R. C., & Steinmetz,, N. F. (2018). Nanomanufacture of free‐standing, porous, Janus‐type films of polymer‐plant virus nanoparticle arrays. Methods in Molecular Biology, 1776, 143–157. https://doi.org/10.1007/978-1-4939-7808-3_9
Torres‐Salgado,, J. F., Comas‐Garcia,, M., Villagrana‐Escareno,, M. V., Duran‐Meza,, A. L., Ruiz‐Garcia,, J., & Cadena‐Nava,, R. D. (2016). Physicochemical study of viral nanoparticles at the air/water interface. Journal of Physical Chemistry B, 120(26), 5864–5873. https://doi.org/10.1021/acs.jpcb.6b00624
Turner,, P. C., Watkins,, P. A., Zaitlin,, M., & Wilson,, T. M. (1987). Tobacco mosaic virus particles uncoat and express their RNA in Xenopus laevis oocytes: Implications for early interactions between plant cells and viruses. Virology, 160(2), 515–517.
Valley‐Omar,, Z., Meyers,, A. E., Shephard,, E. G., Williamson,, A. L., & Rybicki,, E. P. (2011). Abrogation of contaminating RNA activity in HIV‐1 Gag VLPs. Virology Journal, 8, 462. https://doi.org/10.1186/1743-422X-8-462
van Zyl,, A. R., Meyers,, A. E., & Rybicki,, E. P. (2016). Transient bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana. Biotechnology Reports (Amsterdam, Netherlands), 9, 15–24. https://doi.org/10.1016/j.btre.2015.12.001
Varsani,, A., Williamson,, A. L., Rose,, R. C., Jaffer,, M., & Rybicki,, E. P. (2003). Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv Xanthi. Archives of Virology, 148(9), 1771–1786. https://doi.org/10.1007/s00705-003-0119-4
Veerapen,, V. P., van Zyl,, A. R., Wigdorovitz,, A., Rybicki,, E. P., & Meyers,, A. E. (2018). Novel expression of immunogenic foot‐and‐mouth disease virus‐like particles in Nicotiana benthamiana. Virus Research, 244, 213–217. https://doi.org/10.1016/j.virusres.2017.11.027
Verduin,, B. J. (1974). The preparation of CCMV‐protein in connection with its association into a spherical particle. FEBS Letters, 45(1), 50–54.
Walwyn,, D. R., Huddy,, S. M., & Rybicki,, E. P. (2015). Techno‐economic analysis of horseradish peroxidase production using a transient expression system in Nicotiana benthamiana. Applied Biochemistry and Biotechnology, 175(2), 841–854. https://doi.org/10.1007/s12010-014-1320-5
Wang,, C., & Steinmetz,, N. F. (2019). CD47 blockade and cowpea mosaic virus nanoparticle in situ vaccination triggers phagocytosis and tumor killing. Advanced Healthcare Materials, 8, e1801288. https://doi.org/10.1002/adhm.201801288
Ward,, B. J., Landry,, N., Trepanier,, S., Mercier,, G., Dargis,, M., Couture,, M., … Vezina,, L. P. (2014). Human antibody response to N‐glycans present on plant‐made influenza virus‐like particle (VLP) vaccines. Vaccine, 32(46), 6098–6106. https://doi.org/10.1016/j.vaccine.2014.08.079
Warzecha,, H., Mason,, H. S., Lane,, C., Tryggvesson,, A., Rybicki,, E., Williamson,, A. L., … Rose,, R. C. (2003). Oral immunogenicity of human papillomavirus‐like particles expressed in potato. Journal of Virology, 77(16), 8702–8711.
Wen,, A. M., Infusino,, M., De Luca,, A., Kernan,, D. L., Czapar,, A. E., Strangi,, G., & Steinmetz,, N. F. (2015). Interface of physics and biology: Engineering virus‐based nanoparticles for biophotonics. Bioconjugate Chemistry, 26(1), 51–62. https://doi.org/10.1021/bc500524f
Wigdorovitz,, A., Mozgovoj,, M., Santos,, M. J., Parreno,, V., Gomez,, C., Perez‐Filgueira,, D. M., … Borca,, M. V. (2004). Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. Journal of General Virology, 85(Pt. 7), 1825–1832. https://doi.org/10.1099/vir.0.19659-0
Williamson,, A. L., & Rybicki,, E. P. (2016). Justification for the inclusion of Gag in HIV vaccine candidates. Expert Review of Vaccines, 15(5), 585–598. https://doi.org/10.1586/14760584.2016.1129904
Won,, S. Y., Hunt,, K., Guak,, H., Hasaj,, B., Charland,, N., Landry,, N., … Krawczyk,, C. M. (2018). Characterization of the innate stimulatory capacity of plant‐derived virus‐like particles bearing influenza hemagglutinin. Vaccine, 36(52), 8028–8038. https://doi.org/10.1016/j.vaccine.2018.10.099
Xi,, X., Mo,, X., Xiao,, Y., Yin,, B., Lv,, C., Wang,, Y., … Tian,, K. (2016). Production of Escherichia coli‐based virus‐like particle vaccine against porcine circovirus type 2 challenge in piglets: Structure characterization and protective efficacy validation. Journal of Biotechnology, 223, 8–12. https://doi.org/10.1016/j.jbiotec.2016.02.025
Yang,, M., Lai,, H., Sun,, H., & Chen,, Q. (2017). Virus‐like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Scientific Reports, 7(1), 7679. https://doi.org/10.1038/s41598-017-08247-9
Yu,, J., & Langridge,, W. H. (2001). A plant‐based multicomponent vaccine protects mice from enteric diseases. Nature Biotechnology, 19(6), 548–552. https://doi.org/10.1038/89297
Zhang,, H., Qian,, P., Liu,, L., Qian,, S., Chen,, H., & Li,, X. (2014). Virus‐like particles of chimeric recombinant porcine circovirus type 2 as antigen vehicle carrying foreign epitopes. Viruses, 6(12), 4839–4855. https://doi.org/10.3390/v6124839
Zhang,, W., Zhang,, X. E., & Li,, F. (2018). Virus‐based nanoparticles of simian virus 40 in the field of nanobiotechnology. Biotechnology Journal, 13(6), e1700619. https://doi.org/10.1002/biot.201700619
Zhao,, X. X., Fox,, J. M., Olson,, N. H., Baker,, T. S., & Young,, M. J. (1995). In‐vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro‐transcribed viral cDNA. Virology, 207(2), 486–494. https://doi.org/10.1006/viro.1995.1108
Zhou,, Y., & Kearney,, C. M. (2017). Chimeric flock house virus protein A with endoplasmic reticulum‐targeting domain enhances viral replication and virus‐like particle trans‐encapsidation in plants. Virology, 507, 151–160. https://doi.org/10.1016/j.virol.2017.04.018
Zhou,, Y., Maharaj,, P. D., Mallajosyula,, J. K., McCormick,, A. A., & Kearney,, C. M. (2015). In planta production of flock house virus transencapsidated RNA and its potential use as a vaccine. Molecular Biotechnology, 57(4), 325–336. https://doi.org/10.1007/s12033-014-9826-1
Zost,, S. J., Parkhouse,, K., Gumina,, M. E., Kim,, K., Diaz Perez,, S., Wilson,, P. C., … Hensley,, S. E. (2017). Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg‐adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 12578–12583. https://doi.org/10.1073/pnas.1712377114