Alexis,, F., Pridgen,, E., Molnar,, L. K., & Farokhzad,, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505–515.
Altınoglu,, S., Wang,, M., & Xu,, Q. (2015). Combinatorial library strategies for synthesis of cationic lipid‐like nanoparticles and their potential medical applications. Nanomedicine, 10(4), 643–657. https://doi.org/10.2217/nnm.14.192
Altınoğlu,, S. A., Wang,, M., Li,, K. Q., Li,, Y., & Xu,, Q. (2016). Intracellular delivery of the PTEN protein using cationic lipidoids for cancer therapy. Biomaterials Science, 4(12), 1773–1780. https://doi.org/10.1039/C6BM00580B
Antal,, C. E., Hudson,, A. M., Kang,, E., Zanca,, C., Wirth,, C., Stephenson,, N. L., … Furnari,, F. B. (2015). Cancer‐associated protein kinase C mutations reveal kinase`s role as tumor suppressor. Cell, 160(3), 489–502.
Barrangou,, R., Fremaux,, C., Deveau,, H., Richards,, M., Boyaval,, P., Moineau,, S., … Horvath,, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140
Bertram,, L., & Tanzi,, R. E. (2008). Thirty years of Alzheimer`s disease genetics: The implications of systematic meta‐analyses. Nature Reviews Neuroscience, 9(10), 768–778.
Bikard,, D., Jiang,, W., Samai,, P., Hochschild,, A., Zhang,, F., & Marraffini,, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR‐Cas system. Nucleic Acids Research, 41(15), 7429–7437.
Brouns,, S. J. J., Jore,, M. M., Lundgren,, M., Westra,, E. R., Slijkhuis,, R. J. H., Snijders,, A. P. L., … van der Oost,, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960–964. https://doi.org/10.1126/science.1159689
Cabral,, H., Matsumoto,, Y., Mizuno,, K., Chen,, Q., Murakami,, M., Kimura,, M., … Uesaka,, M. (2011). Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 6(12), 815–823.
Cardarelli,, F., Pozzi,, D., Bifone,, A., Marchini,, C., & Caracciolo,, G. (2012). Cholesterol‐dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Molecular Pharmaceutics, 9(2), 334–340.
Chadwick,, A. C., Evitt,, N. H., Lv,, W., & Musunuru,, K. (2018). Reduced blood lipid levels with in vivo CRISPR‐Cas9 base editing of ANGPTL3. Circulation, 137(9), 975–977.
Chakraborty,, S., Ji,, H., Kabadi,, A. M., Gersbach,, C. A., Christoforou,, N., & Leong,, K. W. (2014). A CRISPR/Cas9‐based system for reprogramming cell lineage specification. Stem Cell Reports, 3(6), 940–947.
Chamberlain,, K., Riyad,, J. M., & Weber,, T. (2016). Expressing transgenes that exceed the packaging capacity of adeno‐associated virus capsids. Human Gene Therapy Methods, 27(1), 1–12.
Chen,, F.‐Q., Zhang,, J.‐M., Fang,, X.‐F., Yu,, H., Liu,, Y.‐L., Li,, H., … Chen,, M.‐W. (2017). Reversal of paclitaxel resistance in human ovarian cancer cells with redox‐responsive micelles consisting of α‐tocopheryl succinate‐based polyphosphoester copolymers. Acta Pharmacologica Sinica, 38, 859. https://doi.org/10.1038/aps.2016.150
Chen,, F., Zhang,, J., He,, Y., Fang,, X., Wang,, Y., & Chen,, M. (2016). Glycyrrhetinic acid‐decorated and reduction‐sensitive micelles to enhance the bioavailability and anti‐hepatocellular carcinoma efficacy of tanshinone IIA. Biomaterials Science, 4(1), 167–182.
Chen,, F., Zhang,, J., Wang,, L., Wang,, Y., & Chen,, M. (2015). Tumor pHe‐triggered charge‐reversal and redox‐responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale, 7(38), 15763–15779.
Chen,, X., & Gonçalves,, M. A. (2016). Engineered viruses as genome editing devices. Molecular Therapy, 24(3), 447–457.
Chen,, Z., Liu,, F., Chen,, Y., Liu,, J., Wang,, X., Chen,, A. T., … Hong,, Z. (2017). Targeted delivery of CRISPR/Cas9‐mediated cancer gene therapy via liposome‐templated hydrogel nanoparticles. Advanced Functional Materials, 27(46), 1703036.
Chu,, V. T., Weber,, T., Wefers,, B., Wurst,, W., Sander,, S., Rajewsky,, K., & Kühn,, R. (2015). Increasing the efficiency of homology‐directed repair for CRISPR‐Cas9‐induced precise gene editing in mammalian cells. Nature Biotechnology, 33(5), 543–548.
Cong,, L., Ran,, F. A., Cox,, D., Lin,, S., Barretto,, R., Habib,, N., … Marraffini,, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.
Cox,, D. B. T., Platt,, R. J., & Zhang,, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21, 121–131. https://doi.org/10.1038/nm.3793
Cyranoski,, D. (2016). Chinese scientists to pioneer first human CRISPR trial. Nature News, 535(7613), 476–477.
Dever,, D. P., Bak,, R. O., Reinisch,, A., Camarena,, J., Washington,, G., Nicolas,, C. E., … Mantri,, S. (2016). CRISPR/Cas9 β‐globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.
Dong,, C., Qu,, L., Wang,, H., Wei,, L., Dong,, Y., & Xiong,, S. (2015). Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Research, 118, 110–117.
Doudna,, J. A., & Charpentier,, E. (2014). The new frontier of genome engineering with CRISPR‐Cas9. Science, 346(6213), 1258096.
Ebina,, H., Misawa,, N., Kanemura,, Y., & Koyanagi,, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV‐1 provirus. Scientific Reports, 3, 2510.
Felgner,, P. L., Gadek,, T. R., Holm,, M., Roman,, R., Chan,, H. W., Wenz,, M., … Danielsen,, M. (1987). Lipofection: A highly efficient, lipid‐mediated DNA‐transfection procedure. Proceedings of the National Academy of Sciences of the United States of America, 84(21), 7413–7417.
Fengqian,, C., Martin,, P. A., Yan,, L., & Qi,, L. (2019). Targeting mutant KRAS for anticancer therapy. Current Topics in Medicinal Chemistry, 19, 1–16. https://doi.org/10.2174/1568026619666190902151307
Finn,, J. D., Smith,, A. R., Patel,, M. C., Shaw,, L., Youniss,, M. R., van Heteren,, J., … Seitzer,, J. (2018). A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports, 22(9), 2227–2235.
Gilbert,, L. A., Larson,, M. H., Morsut,, L., Liu,, Z., Brar,, G. A., Torres,, S. E., … Doudna,, J. A. (2013). CRISPR‐mediated modular RNA‐guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451.
Givens,, B. E., Naguib,, Y. W., Geary,, S. M., Devor,, E. J., & Salem,, A. K. (2018). Nanoparticle‐based delivery of CRISPR/Cas9 genome‐editing therapeutics. The AAPS Journal, 20(6), 108.
Glass,, Z., Lee,, M., Li,, Y., & Xu,, Q. (2018). Engineering the delivery system for CRISPR‐based genome editing. Trends in Biotechnology, 36(2), 173–185.
Glass,, Z., Li,, Y., & Xu,, Q. (2017). Nanoparticles for CRISPR–Cas9 delivery. Nature Biomedical Engineering, 1(11), 854–855. https://doi.org/10.1038/s41551-017-0158-x
Gori,, J. L., Hsu,, P. D., Maeder,, M. L., Shen,, S., Welstead,, G. G., & Bumcrot,, D. (2015). Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Human Gene Therapy, 26(7), 443–451.
Harush‐Frenkel,, O., Debotton,, N., Benita,, S., & Altschuler,, Y. (2007). Targeting of nanoparticles to the clathrin‐mediated endocytic pathway. Biochemical and Biophysical Research Communications, 353(1), 26–32.
Hattori,, Y., Suzuki,, S., Kawakami,, S., Yamashita,, F., & Hashida,, M. (2005). The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. Journal of Controlled Release, 108(2), 484–495. https://doi.org/10.1016/j.jconrel.2005.08.012
Hemmi,, H., Takeuchi,, O., Kawai,, T., Kaisho,, T., Sato,, S., Sanjo,, H., … Takeda,, K. (2000). A toll‐like receptor recognizes bacterial DNA. Nature, 408(6813), 740–745.
Hsu,, P. D., Lander,, E. S., & Zhang,, F. (2014). Development and applications of CRISPR‐Cas9 for genome engineering. Cell, 157(6), 1262–1278.
Hsu,, P. D., Scott,, D. A., Weinstein,, J. A., Ran,, F. A., Konermann,, S., Agarwala,, V., … Shalem,, O. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature Biotechnology, 31(9), 827–832.
Hu,, J. H., Davis,, K. M., & Liu,, D. R. (2016). Chemical biology approaches to genome editing: Understanding, controlling, and delivering programmable nucleases. Cell Chemical Biology, 23(1), 57–73.
Ishino,, Y., Shinagawa,, H., Makino,, K., Amemura,, M., & Nakata,, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Jiang,, C., Mei,, M., Li,, B., Zhu,, X., Zu,, W., Tian,, Y., … Tan,, X. (2017). A non‐viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Research, 27, 440–443. https://doi.org/10.1038/cr.2017.16
Jinek,, M., Chylinski,, K., Fonfara,, I., Hauer,, M., Doudna,, J. A., & Charpentier,, E. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.
Kaczmarek,, J. C., Kowalski,, P. S., & Anderson,, D. G. (2017). Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Medicine, 9(1), 60.
Kaczmarek,, J. C., Patel,, A. K., Kauffman,, K. J., Fenton,, O. S., Webber,, M. J., Heartlein,, M. W., … Anderson,, D. G. (2016). Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angewandte Chemie International Edition, 55(44), 13808–13812.
Kang,, Y. K., Kwon,, K., Ryu,, J. S., Lee,, H. N., Park,, C., & Chung,, H. J. (2017). Nonviral genome editing based on a polymer‐derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chemistry, 28(4), 957–967. https://doi.org/10.1021/acs.bioconjchem.6b00676
Kay,, M. A. (2011). State‐of‐the‐art gene‐based therapies: The road ahead. Nature Reviews Genetics, 12, 316–328. https://doi.org/10.1038/nrg2971
Kish,, P. E., Tsume,, Y., Kijek,, P., Lanigan,, T. M., Hilfinger,, J. M., & Roessler,, B. J. (2007). Bile acid−oligopeptide conjugates interact with DNA and facilitate transfection. Molecular Pharmaceutics, 4(1), 95–103.
Knop,, K., Hoogenboom,, R., Fischer,, D., & Schubert,, U. S. (2010). Poly (ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angewandte Chemie International Edition, 49(36), 6288–6308.
Kontermann,, R. E. (2011). Strategies for extended serum half‐life of protein therapeutics. Current Opinion in Biotechnology, 22(6), 868–876.
Lee,, B., Lee,, K., Panda,, S., Gonzales‐Rojas,, R., Chong,, A., Bugay,, V., … Lee,, H. Y. (2018). Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering, 2(7), 497–507. https://doi.org/10.1038/s41551-018-0252-8
Lee,, K., Conboy,, M., Park,, H. M., Jiang,, F., Kim,, H. J., Dewitt,, M. A., … Murthy,, N. (2017). Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology‐directed DNA repair. Nature Biomedical Engineering, 1(11), 889–901. https://doi.org/10.1038/s41551-017-0137-2
Leung,, A. K., Tam,, Y. Y. C., & Cullis,, P. R. (2014). Lipid nanoparticles for short interfering RNA delivery. In Advances in genetics (Vol. 88, pp. 71–110). Elsevier. https://doi.org/10.1016/B978-0-12-800148-6.00004-3
Li,, L., He,, Z.‐Y., Wei,, X.‐W., Gao,, G.‐P., & Wei,, Y.‐Q. (2015). Challenges in CRISPR/CAS9 delivery: Potential roles of nonviral vectors. Human Gene Therapy, 26(7), 452–462.
Li,, L., Wang,, H., Ong,, Z. Y., Xu,, K., Ee,, P. L. R., Zheng,, S., … Yang,, Y.‐Y. (2010). Polymer‐and lipid‐based nanoparticle therapeutics for the treatment of liver diseases. Nano Today, 5(4), 296–312.
Li,, L., Wei,, Y., & Gong,, C. (2015). Polymeric nanocarriers for non‐viral gene delivery. Journal of Biomedical Nanotechnology, 11(5), 739–770.
Li,, S., Tseng,, W., Stolz,, D. B., Wu,, S., Watkins,, S., & Huang,, L. (1999). Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: Implications for intravenous lipofection. Gene Therapy, 6(4), 585–594.
Liang,, X., Potter,, J., Kumar,, S., Zou,, Y., Quintanilla,, R., Sridharan,, M., … Ranganathan,, S. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 208, 44–53.
Lin,, M. K., & Farrer,, M. J. (2014). Genetics and genomics of Parkinson`s disease. Genome Medicine, 6(6), 48.
Lin,, S., Staahl,, B. T., Alla,, R. K., & Doudna,, J. A. (2014). Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 3, e04766.
Liu,, C., Wan,, T., Wang,, H., Zhang,, S., Ping,, Y., & Cheng,, Y. (2019). A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR‐Cas9 gene editing. Science Advances, 5(6), eaaw8922. https://doi.org/10.1126/sciadv.aaw8922
Liu,, C., Zhang,, L., Liu,, H., & Cheng,, K. (2017). Delivery strategies of the CRISPR‐Cas9 gene‐editing system for therapeutic applications. Journal of Controlled Release, 266, 17–26.
Liu,, Q., Chen,, F., Hou,, L., Shen,, L., Zhang,, X., Wang,, D., & Huang,, L. (2018). Nanocarrier‐mediated chemo‐immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano, 12(8), 7812–7825.
Liu,, Q., Das,, M., Liu,, Y., & Huang,, L. (2018). Targeted drug delivery to melanoma. Advanced Drug Delivery Reviews, 127, 208–221. https://doi.org/10.1016/j.addr.2017.09.016
Liu,, Q., Zhu,, H., Liu,, Y., Musetti,, S., & Huang,, L. (2018). BRAF peptide vaccine facilitates therapy of murine BRAF‐mutant melanoma. Cancer Immunology, Immunotherapy, 67(2), 299–310. https://doi.org/10.1007/s00262-017-2079-7
Liu,, Q., Zhu,, H., Tiruthani,, K., Shen,, L., Chen,, F., Gao,, K., … Huang,, L. (2018). Nanoparticle‐mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B‐Raf proto‐oncogene mutant melanoma. ACS Nano, 12(2), 1250–1261. https://doi.org/10.1021/acsnano.7b07384
Liu,, Y., Zeng,, Y., Liu,, L., Zhuang,, C., Fu,, X., Huang,, W., & Cai,, Z. (2014). Synthesizing AND gate genetic circuits based on CRISPR‐Cas9 for identification of bladder cancer cells. Nature Communications, 5, 5393.
Liu,, Y., Zhao,, G., Xu,, C.‐F., Luo,, Y.‐L., Lu,, Z.‐D., & Wang,, J. (2018). Systemic delivery of CRISPR/Cas9 with PEG‐PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomaterials Science, 6(6), 1592–1603.
Lonez,, C., Vandenbranden,, M., & Ruysschaert,, J.‐M. (2008). Cationic liposomal lipids: From gene carriers to cell signaling. Progress in Lipid Research, 47(5), 340–347.
Long,, C., Amoasii,, L., Mireault,, A. A., McAnally,, J. R., Li,, H., Sanchez‐Ortiz,, E., … Olson,, E. N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351(6271), 400–403. https://doi.org/10.1126/science.aad5725
Lotti,, S. N. (2017). Using CRISPR/Cas9 to modify the genome of cattle.
Ma,, Y., Wang,, M., Li,, W., Zhang,, Z., Zhang,, X., Wu,, G., … Zhang,, X.‐E. (2017). Live visualization of HIV‐1 proviral DNA using a dual‐color‐labeled crispr system. Analytical Chemistry, 89(23), 12896–12901.
Mali,, P., Aach,, J., Stranges,, P. B., Esvelt,, K. M., Moosburner,, M., Kosuri,, S., … Church,, G. M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833–838. https://doi.org/10.1038/nbt.2675
Mali,, P., Yang,, L., Esvelt,, K. M., Aach,, J., Guell,, M., DiCarlo,, J. E., … Church,, G. M. (2013). RNA‐guided human genome engineering via Cas9. Science, 339(6121), 823–826.
Miller,, J. B., Zhang,, S., Kos,, P., Xiong,, H., Zhou,, K., Perelman,, S. S., … Siegwart,, D. J. (2017). Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co‐delivery of Cas9 mRNA and sgRNA. Angewandte Chemie International Edition, 56(4), 1059–1063.
Mintzer,, M. A., & Simanek,, E. E. (2008). Nonviral vectors for gene delivery. Chemical Reviews, 109(2), 259–302.
Mout,, R., Ray,, M., Lee,, Y.‐W., Scaletti,, F., & Rotello,, V. M. (2017). In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges. Bioconjugate Chemistry, 28(4), 880–884.
Mout,, R., Ray,, M., Yesilbag Tonga,, G., Lee,, Y.‐W., Tay,, T., Sasaki,, K., & Rotello,, V. M. (2017). Direct cytosolic delivery of CRISPR/Cas9‐ribonucleoprotein for efficient gene editing. ACS Nano, 11(3), 2452–2458.
Mout,, R., & Rotello,, V. M. (2017). Cytosolic and nuclear delivery of CRISPR/Cas9‐ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles. Bio‐Protocol, 7(20), 1–6. https://doi.org/10.21769/BioProtoc.2586
Onuki,, Y., Obata,, Y., Kawano,, K., Sano,, H., Matsumoto,, R., Hayashi,, Y., & Takayama,, K. (2016). Membrane microdomain structures of liposomes and their contribution to the cellular uptake efficiency into HeLa cells. Molecular Pharmaceutics, 13(2), 369–378. https://doi.org/10.1021/acs.molpharmaceut.5b00601
Pack,, D. W., Hoffman,, A. S., Pun,, S., & Stayton,, P. S. (2005). Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 4(7), 581–593.
Petersen,, H., Fechner,, P. M., Martin,, A. L., Kunath,, K., Stolnik,, S., Roberts,, C. J., … Kissel,, T. (2002). Polyethylenimine‐graft‐poly (ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chemistry, 13(4), 845–854.
Price,, A. A., Sampson,, T. R., Ratner,, H. K., Grakoui,, A., & Weiss,, D. S. (2015). Cas9‐mediated targeting of viral RNA in eukaryotic cells. Proceedings of the National Academy of Sciences, 112(19), 6164–6169.
Qi,, L. S., Larson,, M. H., Gilbert,, L. A., Doudna,, J. A., Weissman,, J. S., Arkin,, A. P., & Lim,, W. A. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell, 152(5), 1173–1183.
Qiao,, J., Sun,, W., Lin,, S., Jin,, R., Ma,, L., & Liu,, Y. (2019). Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan‐coated red fluorescent protein. Chemical Communications, 55(32), 4707–4710.
Ramamoorth,, M., & Narvekar,, A. (2015). Non viral vectors in gene therapy‐an overview. Journal of Clinical and Diagnostic Research: JCDR, 9(1), GE01–GE06.
Ran,, F. A., Hsu,, P. D., Lin,, C.‐Y., Gootenberg,, J. S., Konermann,, S., Trevino,, A. E., … Zhang,, Y. (2013). Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6), 1380–1389.
Ran,, F. A., Hsu,, P. D., Wright,, J., Agarwala,, V., Scott,, D. A., & Zhang,, F. (2013). Genome engineering using the CRISPR‐Cas9 system. Nature Protocols, 8(11), 2281–2308.
Rodriguez,, P. L., Harada,, T., Christian,, D. A., Pantano,, D. A., Tsai,, R. K., & Discher,, D. E. (2013). Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science, 339(6122), 971–975.
Ryu,, N., Kim,, M.‐A., Park,, D., Lee,, B., Kim,, Y.‐R., Kim,, K.‐H., … Kim,, U.‐K. (2018). Effective PEI‐mediated delivery of CRISPR‐Cas9 complex for targeted gene therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2095–2102.
Schmidt,, F., & Grimm,, D. (2015). CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal, 10(2), 258–272.
Schumann,, K., Lin,, S., Boyer,, E., Simeonov,, D. R., Subramaniam,, M., Gate,, R. E., … Marson,, A. (2015). Generation of knock‐in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10437–10442. https://doi.org/10.1073/pnas.1512503112
Schwank,, G., Koo,, B.‐K., Sasselli,, V., Dekkers,, J. F., Heo,, I., Demircan,, T., … van der Ent,, C. K. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6), 653–658.
Senís,, E., Fatouros,, C., Große,, S., Wiedtke,, E., Niopek,, D., Mueller,, A. K., … Grimm,, D. (2014). CRISPR/Cas9‐mediated genome engineering: An adeno‐associated viral (AAV) vector toolbox. Biotechnology Journal, 9(11), 1402–1412.
Spoelstra,, W. K., Jacques,, J. M., Nóbrega,, F. L., Haagsma,, A. C., Dogterom,, M., Idema,, T., … Reese,, L. (2018). CRISPR‐based DNA and RNA detection with liquid phase separation. bioRxiv 471482. https://doi.org/10.1101/471482
Stratton,, M. R. (2011). Exploring the genomes of cancer cells: Progress and promise. Science, 331(6024), 1553–1558.
Sun,, W., Ji,, W., Hall,, J. M., Hu,, Q., Wang,, C., Beisel,, C. L., & Gu,, Z. (2015). Self‐assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angewandte Chemie International Edition, 54(41), 12029–12033. https://doi.org/10.1002/anie.201506030
Tabebordbar,, M., Zhu,, K., Cheng,, J. K., Chew,, W. L., Widrick,, J. J., Yan,, W. X., … Ran,, F. A. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 351(6271), 407–411.
Thakore,, P. I., Black,, J. B., Hilton,, I. B., & Gersbach,, C. A. (2016). Editing the epigenome: Technologies for programmable transcription and epigenetic modulation. Nature Methods, 13(2), 127–137.
Tzelepis,, K., Koike‐Yusa,, H., De Braekeleer,, E., Li,, Y., Metzakopian,, E., Dovey,, O. M., … Mazan,, M. (2016). A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Reports, 17(4), 1193–1205.
Wang,, H.‐X., Li,, M., Lee,, C. M., Chakraborty,, S., Kim,, H.‐W., Bao,, G., & Leong,, K. W. (2017). CRISPR/Cas9‐based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews, 117(15), 9874–9906.
Wang,, M., Zuris,, J. A., Meng,, F., Rees,, H., Sun,, S., Deng,, P., … Xu,, Q. (2016). Efficient delivery of genome‐editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences, 113(11), 2868–2873. https://doi.org/10.1073/pnas.1520244113
Wang,, P., Zhang,, L., Zheng,, W., Cong,, L., Guo,, Z., Xie,, Y., … Hamada,, Y. (2018). Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy. Angewandte Chemie International Edition, 57(6), 1491–1496.
Westra,, E. R., Buckling,, A., & Fineran,, P. C. (2014). CRISPR–Cas systems: Beyond adaptive immunity. Nature Reviews Microbiology, 12, 317–326. https://doi.org/10.1038/nrmicro3241, https://www.nature.com/articles/nrmicro3241#supplementary-information
Whitehead,, K. A., Langer,, R., & Anderson,, D. G. (2009). Knocking down barriers: Advances in siRNA delivery. Nature Reviews Drug Discovery, 8(2), 129–138.
Xiong,, Y., Wang,, Y., & Tiruthani,, K. (2019). Tumor immune microenvironment and nano‐immunotherapeutics in colorectal cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102034.
Yang,, H., Wang,, H., Shivalila,, C. S., Cheng,, A. W., Shi,, L., & Jaenisch,, R. (2013). One‐step generation of mice carrying reporter and conditional alleles by CRISPR/Cas‐mediated genome engineering. Cell, 154(6), 1370–1379.
Yin,, H., Kanasty,, R. L., Eltoukhy,, A. A., Vegas,, A. J., Dorkin,, J. R., & Anderson,, D. G. (2014). Non‐viral vectors for gene‐based therapy. Nature Reviews Genetics, 15(8), 541–555.
Yin,, H., Song,, C.‐Q., Dorkin,, J. R., Zhu,, L. J., Li,, Y., Wu,, Q., … Bizhanova,, A. (2016). Therapeutic genome editing by combined viral and non‐viral delivery of CRISPR system components in vivo. Nature Biotechnology, 34(3), 328–333.
Yin,, H., Song,, C.‐Q., Suresh,, S., Wu,, Q., Walsh,, S., Rhym,, L. H., … Anderson,, D. G. (2017). Structure‐guided chemical modification of guide RNA enables potent non‐viral in vivo genome editing. Nature Biotechnology, 35, 1179–1187. https://doi.org/10.1038/nbt.4005
Yin,, H., Xue,, W., Chen,, S., Bogorad,, R. L., Benedetti,, E., Grompe,, M., … Anderson,, D. G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551–553.
Zalatan,, J. G., Lee,, M. E., Almeida,, R., Gilbert,, L. A., Whitehead,, E. H., La Russa,, M., … Qi,, L. S. (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(1–2), 339–350.
Zhang,, H., Bahamondez‐Canas,, T. F., Zhang,, Y., Leal,, J., & Smyth,, H. D. (2018). PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Molecular Pharmaceutics, 15(11), 4814–4826.
Zhang,, J., Chen,, R., Fang,, X., Chen,, F., Wang,, Y., & Chen,, M. (2015). Nucleolin targeting AS1411 aptamer modified pH‐sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Research, 8(1), 201–218.
Zhang,, Z., Wan,, T., Chen,, Y., Chen,, Y., Sun,, H., Cao,, T., … Ping,, Y. (2019). Cationic polymer‐mediated CRISPR/Cas9 plasmid delivery for genome editing. Macromolecular Rapid Communications, 40(5), 1800068.
Zhen,, S., Hua,, L., Liu,, Y., Gao,, L., Fu,, J., Wan,, D., … Gao,, X. (2015). Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated Cas9 system to disrupt the hepatitis B virus. Gene Therapy, 22(5), 404–412.
Zhen,, S., Takahashi,, Y., Narita,, S., Yang,, Y.‐C., & Li,, X. (2017). Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer‐cationic liposome. Oncotarget, 8(6), 9375–9387.
Zou,, L., Chen,, F., Bao,, J., Wang,, S., Wang,, L., Chen,, M., … Wang,, Y. (2016). Preparation, characterization, and anticancer efficacy of evodiamine‐loaded PLGA nanoparticles. Drug Delivery, 23(3), 898–906.
Zuckermann,, M., Hovestadt,, V., Knobbe‐Thomsen,, C. B., Zapatka,, M., Northcott,, P. A., Schramm,, K., … Moriarity,, B. (2015). Somatic CRISPR/Cas9‐mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 6, 7391.
Zuris,, J. A., Thompson,, D. B., Shu,, Y., Guilinger,, J. P., Bessen,, J. L., Hu,, J. H., … Liu,, D. R. (2015). Cationic lipid‐mediated delivery of proteins enables efficient protein‐based genome editing in vitro and in vivo. Nature Biotechnology, 33(1), 73–80.