Abdelhakim,, H. E., Coupe,, A., Tuleu,, C., Edirisinghe,, M., & Craig,, D. Q. M. (2019). Electrospinning optimization of Eudragit E PO with and without Chlorpheniramine maleate using a design of experiment approach. Molecular Pharmaceutics, 16(6), 2557–2568. https://doi.org/10.1021/acs.molpharmaceut.9b00159
Angkawinitwong,, U., Awwad,, S., Khaw,, P. T., Brocchini,, S., & Williams,, G. R. (2017). Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomaterialia, 64, 126–136. https://doi.org/10.1016/j.actbio.2017.10.015
Angkawinitwong,, U., Sharma,, G., Khaw,, P. T., Brocchini,, S., & Williams,, G. R. (2015). Solid‐state protein formulations. Therapeutic Delivery, 6(1), 59–82. https://doi.org/10.4155/tde.14.98
Armantrout,, J. E., Bryner,, M. A., & Spiers,, C. B. (2009). WO2007022390A1.
Aytac,, Z., & Uyar,, T. (2018). Applications of core‐shell nanofibers: Drug and biomolecules release and gene therapy. In Core‐shell nanostructures for drug delivery and theranostics (pp. 375–404). Amsterdam, Netherlands: Elsevier.
Balogh,, A., Cselko,, R., Demuth,, B., Verreck,, G., Mensch,, J., Marosi,, G., & Nagy,, Z. K. (2015). Alternating current electrospinning for preparation of fibrous drug delivery systems. International Journal of Pharmaceutics, 495(1), 75–80. https://doi.org/10.1016/j.ijpharm.2015.08.069
Balogh,, A., Domokos,, A., Farkas,, B., Farkas,, A., Rapi,, Z., Kiss,, D., … Nagy,, Z. K. (2018). Continuous end‐to‐end production of solid drug dosage forms: Coupling flow synthesis and formulation by electrospinning. Chemical Engineering Journal, 350, 290–299. https://doi.org/10.1016/j.cej.2018.05.188
Balogh,, A., Dravavolgyi, G., Farago, K., Farkas, A., Vigh, T., Soti, P. L., … Nagy, Z.K. (2014). Plasticized drug‐loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. Journal of Pharmaceutical Sciences, 103(4), 1278–1287. https://doi.org/10.1002/jps.23904
Balogh,, A., Farkas,, B., Domokos,, A., Farkas,, A., Démuth,, B., Borbás,, E., … Nagy,, Z. K. (2017). Controlled‐release solid dispersions of Eudragit® FS 100 and poorly soluble spironolactone prepared by electrospinning and melt extrusion. European Polymer Journal, 95, 406–417. https://doi.org/10.1016/j.eurpolymj.2017.08.032
Balogh,, A., Farkas,, B., Palvolgyi,, A., Domokos,, A., Demuth,, B., Marosi,, G., & Nagy,, Z. K. (2017). Novel alternating current electrospinning of hydroxypropylmethylcellulose acetate succinate (HPMCAS) nanofibers for dissolution enhancement: The importance of solution conductivity. Journal of Pharmaceutical Sciences, 106(6), 1634–1643. https://doi.org/10.1016/j.xphs.2017.02.021
Balogh,, A., Farkas,, B., Verreck,, G., Mensch,, J., Borbas,, E., Nagy,, B., … Nagy,, Z. K. (2016). AC and DC electrospinning of hydroxypropylmethylcellulose with polyethylene oxides as secondary polymer for improved drug dissolution. International Journal of Pharmaceutics, 505(1–2), 159–166. https://doi.org/10.1016/j.ijpharm.2016.03.024
Balogh,, A., Horváthová,, T., Fülöp,, Z., Loftsson,, T., Harasztos,, A. H., Marosi,, G., & Nagy,, Z. K. (2015). Electroblowing and electrospinning of fibrous diclofenac sodium‐cyclodextrin complex‐based reconstitution injection. Journal of Drug Delivery Science and Technology, 26, 28–34. https://doi.org/10.1016/j.jddst.2015.02.003
Begum,, S. K. R., Varma,, M. M., Raju,, D. B., Prasad,, R. G. S. V., Phani,, A. R., Jacob,, B., & Salins,, P. C. (2012). Enhancement of dissolution rate of piroxicam by electrospinning technique. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(4), 045012. https://doi.org/10.1088/2043-6262/3/4/045012
Bioinicia. (n.d.). Retrieved from https://bioinicia.com/.
Borbás,, E., Sinkó,, B., Tsinman,, O., Tsinman,, K., Kiserdei,, É., Démuth,, B., … Nagy,, Z. K. (2016). Investigation and mathematical description of the real driving force of passive transport of drug molecules from supersaturated solutions. Molecular Pharmaceutics, 13(11), 3816–3826. https://doi.org/10.1021/acs.molpharmaceut.6b00613
Brettmann,, B. K., Cheng,, K., Myerson,, A. S., & Trout,, B. L. (2013). Electrospun formulations containing crystalline active pharmaceutical ingredients. Pharmaceutical Research, 30(1), 238–246. https://doi.org/10.1007/s11095-012-0868-4
Buzgo,, M., Mickova,, A., Rampichova,, M., & Doupnik,, M. (2018). Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. In Core‐shell nanostructures for drug delivery and theranostics (pp. 325–347). Amsterdam, Netherlands: Elsevier.
Cabello,, J. M. L., Sandoval,, W. R. C., Rovira,, M. J. F., & Rubio,, A. L. (2017). EP3225722B1.
Chen,, G., Xu,, Y., Yu,, D.‐G., Zhang,, D.‐F., Chatterton,, N. P., & White,, K. N. (2015). Structure‐tunable Janus fibers fabricated using spinnerets with varying port angles. Chemical Communications, 51(22), 4623–4626. https://doi.org/10.1039/C5CC00378D
Chen,, S., Li,, R., Li,, X., & Xie,, J. (2018). Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Advanced Drug Delivery Reviews, 132, 188–213. https://doi.org/10.1016/j.addr.2018.05.001
Choi,, J. S., Han,, S.‐H., Hyun,, C., & Yoo,, H. S. (2016). Buccal adhesive nanofibers containing human growth hormone for oral mucositis. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(7), 1396–1406. https://doi.org/10.1002/jbm.b.33487
Chou,, S.‐F., Carson,, D., & Woodrow,, K. A. (2015). Current strategies for sustaining drug release from electrospun nanofibers. Journal of Controlled Release, 220, 584–591. https://doi.org/10.1016/j.jconrel.2015.09.008
Cooley,, J. F. (1899). US692631A.
Cramariuc,, B., Cramariuc,, R., Scarlet,, R., Manea,, L. R., Lupu,, I. G., & Cramariuc,, O. (2013). Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3), 189–198. https://doi.org/10.1016/j.elstat.2012.12.018
Dalton,, P. D., Joergensen,, N. T., Groll,, J., & Moeller,, M. (2008). Patterned melt electrospun substrates for tissue engineering. Biomedical Materials, 3(3), 034109. https://doi.org/10.1088/1748-6041/3/3/034109
Dalton,, P. D., Klinkhammer,, K., Salber,, J., Klee,, D., & Möller,, M. (2006). Direct in vitro electrospinning with polymer melts. Biomacromolecules, 7(3), 686–690. https://doi.org/10.1021/bm050777q
Dalton,, P. D., Lleixà Calvet,, J., Mourran,, A., Klee,, D., & Möller,, M. (2006). Melt electrospinning of poly‐(ethylene glycol‐block‐ε‐caprolactone). Biotechnology Journal, 1(9), 998–1006. https://doi.org/10.1002/biot.200600064
Démuth,, B., Farkas,, A., Balogh,, A., Bartosiewicz,, K., Kállai‐Szabó,, B., Bertels,, J., … Nagy,, Z. K. (2016). Lubricant‐induced crystallization of itraconazole from tablets made of electrospun amorphous solid dispersion. Journal of Pharmaceutical Sciences, 105(9), 2982–2988. https://doi.org/10.1016/j.xphs.2016.04.032
Démuth,, B., Farkas,, A., Pataki,, H., Balogh,, A., Szabó,, B., Borbás,, E., … Farkas,, B. (2016). Detailed stability investigation of amorphous solid dispersions prepared by single‐needle and high speed electrospinning. International Journal of Pharmaceutics, 498(1–2), 234–244. https://doi.org/10.1016/j.ijpharm.2015.12.029
Démuth,, B., Farkas,, A., Szabó,, B., Balogh,, A., Nagy,, B., Vágó,, E., … Nagy,, Z. K. (2017). Development and tableting of directly compressible powder from electrospun nanofibrous amorphous solid dispersion. Advanced Powder Technology, 28(6), 1554–1563. https://doi.org/10.1016/j.apt.2017.03.026
Deng,, R., Liu,, Y., Ding,, Y., Xie,, P., Luo,, L., & Yang,, W. (2009). Melt electrospinning of low‐density polyethylene having a low‐melt flow index. Journal of Applied Polymer Science, 114(1), 166–175. https://doi.org/10.1002/app.29864
Ding,, Y., Li,, W., Zhang,, F., Liu,, Z., Zanjanizadeh Ezazi,, N., Liu,, D., & Santos,, H. A. (2019). Electrospun fibrous architectures for drug delivery, tissue engineering and Cancer therapy. Advanced Functional Materials, 29(2), 1802852. https://doi.org/10.1002/adfm.201802852
Domokos,, A., Balogh,, A., Dénes,, D., Nyerges,, G., Ződi,, L., Farkas,, B., … Nagy,, Z. K. (2019). Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. European Journal of Pharmaceutical Sciences, 130, 91–99. https://doi.org/10.1016/j.ejps.2019.01.026
Duan,, G., & Greiner,, A. (2019). Air‐blowing‐assisted coaxial electrospinning toward high productivity of Core/sheath and hollow fibers. Macromolecular Materials and Engineering, 304, 1800669. https://doi.org/10.1002/mame.201800669
El‐Newehy,, M. H., Al‐Deyab,, S. S., Kenawy,, E.‐R., & Abdel‐Megeed,, A. (2011). Nanospider technology for the production of nylon‐6 nanofibers for biomedical applications. Journal of Nanomaterials, 2011, 9–8. https://doi.org/10.1155/2011/626589
El‐Newehy,, M. H., Al‐Deyab,, S. S., Kenawy,, E.‐R., & Abdel‐Megeed,, A. (2012). Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers and Polymers, 13(6), 709–717. https://doi.org/10.1007/s12221-012-0709-4
Elmarco s.r.o. (n.d.) Retrieved from https://elmarco.com/.
Emami,, F., Vatanara,, A., Park,, E., & Na,, D. (2018). Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics, 10(3), 131. https://doi.org/10.3390/pharmaceutics10030131
Fang,, J., Zhang,, L., Sutton,, D., Wang,, X., & Lin,, T. (2012). Needleless melt‐electrospinning of polypropylene nanofibres. Journal of Nanomaterials, 2012, 1–9. https://doi.org/10.1155/2012/382639
Farkas,, B., Balogh,, A., Cselkó,, R., Molnár,, K., Farkas,, A., Borbás,, E., … Nagy,, Z. K. (2019). Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning. International Journal of Pharmaceutics, 561, 219–227. https://doi.org/10.1016/j.ijpharm.2019.03.005
Forward,, K. M., Flores,, A., & Rutledge,, G. C. (2013). Production of core/shell fibers by electrospinning from a free surface. Chemical Engineering Science, 104, 250–259. https://doi.org/10.1016/j.ces.2013.09.002
Forward,, K. M., & Rutledge,, G. C. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045
Forward,, K. M., & Rutledge,, G. C. (2013). WO2014074565A1.
Hamori,, M., Nagano,, K., Kakimoto,, S., Naruhashi,, K., Kiriyama,, A., Nishimura,, A., & Shibata,, N. (2016). Preparation and pharmaceutical evaluation of acetaminophen nano‐fiber tablets: Application of a solvent‐based electrospinning method for tableting. Biomedicine %26 Pharmacotherapy, 78, 14–22. https://doi.org/10.1016/j.biopha.2015.12.023
Hamori,, M., Shimizu,, Y., Yoshida,, K., Fukushima,, K., Sugioka,, N., Nishimura,, A., … Shibata,, N. (2015). Preparation of methacrylic acid copolymer S nano‐fibers using a solvent‐based electrospinning method and their application in pharmaceutical formulations. Chemical and Pharmaceutical Bulletin, 63(2), 81–87. https://doi.org/10.1248/cpb.c14-00563
He,, P., Zhong,, Q., Ge,, Y., Guo,, Z., Tian,, J., Zhou,, Y., … Zhou,, C. (2018). Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Materials Science and Engineering: C, 90, 549–556. https://doi.org/10.1016/j.msec.2018.04.014
Heseltine,, P. L., Ahmed,, J., & Edirisinghe,, M. (2018). Developments in pressurized gyration for the mass production of polymeric fibers. Macromolecular Materials and Engineering, 303(9), 1800218. https://doi.org/10.1002/mame.201800218
Hirsch,, E., Vass,, P., Demuth,, B., Petho,, Z., Bitay,, E., Andersen,, S. K., … Marosi,, G. (2019). Electrospinning scale‐up and formulation development of PVA nanofibers aiming oral delivery of biopharmaceuticals. Express Polymer Letters, 13(7), 590–603. https://doi.org/10.3144/expresspolymlett.2019.50
Hooper,, J. P. (1922). US1500931A.
Hu,, X., Liu,, S., Zhou,, G., Huang,, Y., Xie,, Z., & Jing,, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12–21. https://doi.org/10.1016/j.jconrel.2014.04.018
Huang,, B., Zhang,, Z., Zhao,, C., Cairang,, L., Bai,, J., Zhang,, Y., … Pan,, X. (2018). Enhanced gas‐sensing performance of ZnO@ In2O3 core@ shell nanofibers prepared by coaxial electrospinning. Sensors and Actuators B: Chemical, 255, 2248–2257. https://doi.org/10.1016/j.snb.2017.09.022
Huang,, Z.‐X., Wu,, J.‐W., Wong,, S.‐C., Qu,, J.‐P., & Srivatsan,, T. (2018). The technique of electrospinning for manufacturing core‐shell nanofibers. Materials and Manufacturing Processes, 33(2), 202–219. https://doi.org/10.1080/10426914.2017.1303144
Hutmacher,, D. W., & Dalton,, P. D. (2011). Melt electrospinning. Chemistry—An Asian Journal, 6(1), 44–56. https://doi.org/10.1002/asia.201000436
Huttunen,, M., & Kellomäki,, M. (2011). A simple and high production rate manufacturing method for submicron polymer fibres. Journal of Tissue Engineering and Regenerative Medicine, 5(8), e239–e243. https://doi.org/10.1002/term.421
Ignatious,, F., & Baldoni,, J. M. (2001). WO2001054667A1.
Ignatious,, F., Sun,, L., Lee,, C.‐P., & Baldoni,, J. (2010). Electrospun nanofibers in oral drug delivery. Pharmaceutical Research, 27(4), 576–588. https://doi.org/10.1007/s11095-010-0061-6
InoCure s.r.o. (n.d.) Retrieved from https://inocure.cz/.
Jermain,, S. V., Brough,, C., & Williams,, R. O., 3rd. (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water‐soluble drug delivery—An update. International Journal of Pharmaceutics, 535(1–2), 379–392. https://doi.org/10.1016/j.ijpharm.2017.10.051
Jiang,, G., & Qin,, X. (2014). An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Materials Letters, 128, 259–262. https://doi.org/10.1016/j.matlet.2014.04.074
Jiang,, G., Zhang,, S., & Qin,, X. (2013). High throughput of quality nanofibers via one stepped pyramid‐shaped spinneret. Materials Letters, 106, 56–58. https://doi.org/10.1016/j.matlet.2013.04.084
Jirsak,, O., Sanetrnik,, F., Lukas,, D., Kotek,, V., Martinova,, L., & Chaloupek,, J. (2003). WO2005024101A1.
Jouybari,, M. H., Hosseini,, S., Mahboobnia,, K., Boloursaz,, L. A., Moradi,, M., & Irani,, M. (2019). Simultaneous controlled release of 5‐FU, DOX and PTX from chitosan/PLA/5‐FU/g‐C3N4‐DOX/g‐C3N4‐PTX triaxial nanofibers for breast cancer treatment in vitro. Colloids and Surfaces B: Biointerfaces, 179, 495–504. https://doi.org/10.1016/j.colsurfb.2019.04.026
Kajdič,, S., Planinšek,, O., Gašperlin,, M., & Kocbek,, P. (2019). Electrospun nanofibers for customized drug‐delivery systems. Journal of Drug Delivery Science and Technology, 51, 672–681. https://doi.org/10.1016/j.jddst.2019.03.038
Kakoria,, A., & Sinha‐Ray,, S. (2018). A review on biopolymer‐based fibers via electrospinning and solution blowing and their applications. Fibers, 6(3), 45. https://doi.org/10.3390/fib6030045
Kenawy,, E.‐R., Bowlin,, G. L., Mansfield,, K., Layman,, J., Simpson,, D. G., Sanders,, E. H., & Wnek,, G. E. (2002). Release of tetracycline hydrochloride from electrospun poly(ethylene‐co‐vinylacetate), poly(lactic acid), and a blend. Journal of Controlled Release, 81(1–2), 57–64. https://doi.org/10.1016/s0168-3659(02)00041-x
Kessick,, R., Fenn,, J., & Tepper,, G. (2004). The use of AC potentials in electrospraying and electrospinning processes. Polymer, 45(9), 2981–2984. https://doi.org/10.1016/j.polymer.2004.02.056
Khalf,, A., & Madihally,, S. V. (2017). Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 112, 1–17. https://doi.org/10.1016/j.ejpb.2016.11.010
Knockenhauer,, K. E., Sawicka,, K. M., Roemer,, E. J., & Simon,, S. R. (2008). Protective antigen composite nanofibers as a transdermal anthrax vaccine. Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2008, 1040–1043. https://doi.org/10.1109/iembs.2008.4649337
Krogstad,, E. A., & Woodrow,, K. A. (2014). Manufacturing scale‐up of electrospun poly (vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. International Journal of Pharmaceutics, 475(1–2), 282–291. https://doi.org/10.1016/j.ijpharm.2014.08.039
Lancina,, M. G., Shankar,, R. K., & Yang,, H. (2017). Chitosan nanofibers for transbuccal insulin delivery. Journal of Biomedical Materials Research Part A, 105(5), 1252–1259. https://doi.org/10.1002/jbm.a.35984
Lawson,, C., Stanishevsky,, A., Sivan,, M., Pokorny,, P., & Lukáš,, D. (2016). Rapid fabrication of poly(ε‐caprolactone) nanofibers using needleless alternating current electrospinning. Journal of Applied Polymer Science, 133(13), n/a–n/a. https://doi.org/10.1002/app.43232
Liu,, S.‐L., Huang,, Y.‐Y., Zhang,, H.‐D., Sun,, B., Zhang,, J.‐C., & Long,, Y.‐Z. (2014). Needleless electrospinning for large scale production of ultrathin polymer fibres. Materials Research Innovations, 18(Suppl 4), S4‐833–S834‐837, S4‐837. https://doi.org/10.1179/1432891714Z.000000000802
Liu,, S., Zhou,, G., Liu,, D., Xie,, Z., Huang,, Y., Wang,, X., … Jing,, X. (2013). Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin‐loaded electrospun polylactide nanofibers. Journal of Materials Chemistry B, 1(1), 101–109. https://doi.org/10.1039/c2tb00121g
Liu,, X., Yang,, Y., Yu,, D.‐G., Zhu,, M.‐J., Zhao,, M., & Williams,, G. R. (2019). Tunable zero‐order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal, 356, 886–894. https://doi.org/10.1016/j.cej.2018.09.096
Liu,, Y., He,, J.‐H., & Yu,, J.‐Y. (2008). Bubble‐electrospinning: a novel method for making nanofibers. Paper presented at the Journal of Physics: Conference Series.
Lozano,, K., & Sarkar,, K. (2009). WO2010008621A1.
Lu,, Y., Huang,, J., Yu,, G., Cardenas,, R., Wei,, S., Wujcik,, E. K., & Guo,, Z. (2016). Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5), 654–677. https://doi.org/10.1002/wnan.1391
Ma,, G., Liu,, Y., Peng,, C., Fang,, D., He,, B., & Nie,, J. (2011). Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydrate Polymers, 86(2), 505–512. https://doi.org/10.1016/j.carbpol.2011.04.082
Mahalingam,, S., & Edirisinghe,, M. (2013). Forming of polymer nanofibers by a pressurised gyration process. Macromolecular Rapid Communications, 34(14), 1134–1139. https://doi.org/10.1002/marc.201300339
Maheshwari,, S., & Chang,, H.‐C. (2009). Assembly of multi‐stranded nanofiber threads through AC electrospinning. Advanced Materials, 21(3), 349–354. https://doi.org/10.1002/adma.200800722
Medeiros,, E. S., Glenn,, G. M., Klamczynski,, A. P., Orts,, W. J., & Mattoso,, L. H. C. (2009). Solution blow spinning: A new method to produce micro‐ and nanofibers from polymer solutions. Journal of Applied Polymer Science, 113(4), 2322–2330. https://doi.org/10.1002/app.30275
Mehta,, P., Haj‐Ahmad,, R., Rasekh,, M., Arshad,, M. S., Smith,, A., van der Merwe,, S. M., … Ahmad,, Z. (2017). Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discovery Today, 22(1), 157–165. https://doi.org/10.1016/j.drudis.2016.09.021
Miloh,, T., Spivak,, B., & Yarin,, A. L. (2009). Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. Journal of Applied Physics, 106(11), 114910. https://doi.org/10.1063/1.3264884
Molnar,, K., & Nagy,, Z. K. (2016). Corona‐electrospinning: Needleless method for high‐throughput continuous nanofiber production. European Polymer Journal, 74, 279–286. https://doi.org/10.1016/j.eurpolymj.2015.11.028
Molnár,, K., Nagy,, Z. K., Marosi,, G., & Mészáros,, L. (2012). P1200677.
Nagy,, Z. K., Balogh,, A., Démuth,, B., Pataki,, H., Vigh,, T., Szabó,, B., … Marosi,, G. (2015). High speed electrospinning for scaled‐up production of amorphous solid dispersion of itraconazole. International Journal of Pharmaceutics, 480(1–2), 137–142. https://doi.org/10.1016/j.ijpharm.2015.01.025
Nagy,, Z. K., Balogh,, A., Dravavolgyi,, G., Ferguson,, J., Pataki,, H., Vajna,, B., & Marosi,, G. (2013). Solvent‐free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent‐based electrospun and melt extruded systems. Journal of Pharmaceutical Sciences, 102(2), 508–517. https://doi.org/10.1002/jps.23374
Nagy,, Z. K., Balogh,, A., Vajna,, B., Farkas,, A., Patyi,, G., Kramarics,, Á., & Marosi,, G. (2012). Comparison of electrospun and extruded Soluplus®‐based solid dosage forms of improved dissolution. Journal of Pharmaceutical Sciences, 101(1), 322–332. https://doi.org/10.1002/jps.22731
Nagy,, Z. K., Nyul,, K., Wagner,, I., Molnar,, K., & Marosi,, G. (2010). Electrospun water soluble polymer mat for ultrafast release of donepezil HCl. Express Polymer Letters, 4(12), 763–772. https://doi.org/10.3144/expresspolymlett.2010.92
Niu,, H., & Lin,, T. (2012). Fiber generators in needleless electrospinning. Journal of Nanomaterials, 2012, 12–13. https://doi.org/10.1155/2012/725950
Niu,, H., Lin,, T., & Wang,, X. (2009). Needleless electrospinning. I. A comparison of cylinder and disk nozzles. Journal of Applied Polymer Science, 114(6), 3524–3530. https://doi.org/10.1002/app.30891
Padron,, S., Fuentes,, A., Caruntu,, D., & Lozano,, K. (2013). Experimental study of nanofiber production through forcespinning. Journal of Applied Physics, 113(2), 024318. https://doi.org/10.1063/1.4769886
Persano,, L., Camposeo,, A., Tekmen,, C., & Pisignano,, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromolecular Materials and Engineering, 298(5), 504–520. https://doi.org/10.1002/mame.201200290
Pham,, Q., Sharma,, U., Marini,, J., Yan,, X., Mulligan,, R., & Freyman,, T. (2013). WO2014062627A1.
Pokorny,, M., Rassushin,, V., Wolfova,, L., & Velebny,, V. (2016). Increased production of nanofibrous materials by electroblowing from blends of hyaluronic acid and polyethylene oxide. Polymer Engineering %26 Science, 56(8), 932–938. https://doi.org/10.1002/pen.24322
Pokorny,, P., Kostakova,, E., Sanetrnik,, F., Mikes,, P., Chvojka,, J., Kalous,, T., … Lukas,, D. (2014). Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry Chemical Physics, 16(48), 26816–26822. https://doi.org/10.1039/c4cp04346d
Poller,, B., Strachan,, C., Broadbent,, R., & Walker,, G. F. (2017). A minitablet formulation made from electrospun nanofibers. European Journal of Pharmaceutics and Biopharmaceutics, 114, 213–220. https://doi.org/10.1016/j.ejpb.2017.01.022
Puppi,, D., & Chiellini,, F. (2018). Drug release kinetics of electrospun fibrous systems. In Core‐shell nanostructures for drug delivery and theranostics (pp. 349–374). Amsterdam, Netherlands: Elsevier.
Qi,, S., & Craig,, D. (2016). Recent developments in micro‐ and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms. Advanced Drug Delivery Reviews, 100, 67–84. https://doi.org/10.1016/j.addr.2016.01.003
Radacsi,, N., Giapis,, K. P., Ovari,, G., Szabó‐Révész,, P., & Ambrus,, R. (2019). Electrospun nanofiber‐based niflumic acid capsules with superior physicochemical properties. Journal of Pharmaceutical and Biomedical Analysis, 166, 371–378. https://doi.org/10.1016/j.jpba.2019.01.037
Raimi‐Abraham,, B. T., Mahalingam,, S., Davies,, P. J., Edirisinghe,, M., & Craig,, D. Q. (2015). Development and characterization of amorphous nanofiber drug dispersions prepared using pressurized gyration. Molecular Pharmaceutics, 12(11), 3851–3861. https://doi.org/10.1021/acs.molpharmaceut.5b00127
Ranjbar‐Mohammadi,, M., Zamani,, M., Prabhakaran,, M. P., Bahrami,, S. H., & Ramakrishna,, S. (2016). Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering: C, 58, 521–531. https://doi.org/10.1016/j.msec.2015.08.066
SalehHudin,, H. S., Mohamad,, E. N., Mahadi,, W. N. L., & Muhammad Afifi,, A. (2018). Multiple‐jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 33(5), 479–498. https://doi.org/10.1080/10426914.2017.1388523
Sarkar,, K., Gomez,, C., Zambrano,, S., Ramirez,, M., de Hoyos,, E., Vasquez,, H., & Lozano,, K. (2010). Electrospinning to forcespinning™. Materials Today, 13(11), 12–14. https://doi.org/10.1016/S1369-7021(10)70199-1
Sarkar,, S., Deevi,, S., & Tepper,, G. (2007). Biased AC electrospinning of aligned polymer nanofibers. Macromolecular Rapid Communications, 28(9), 1034–1039. https://doi.org/10.1002/marc.200700053
Sebe,, I., Bodai,, Z., Eke,, Z., Kállai‐Szabó,, B., Szabó,, P., & Zelkó,, R. (2015). Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary‐spun microfibers and cast films. Drug Development and Industrial Pharmacy, 41(9), 1438–1442. https://doi.org/10.3109/03639045.2014.956112
Sebe,, I., Szabó,, B., Nagy,, Z. K., Szabó,, D., Zsidai,, L., Kocsis,, B., & Zelkó,, R. (2013). Polymer structure and antimicrobial activity of polyvinylpyrrolidone‐based iodine nanofibers prepared with high‐speed rotary spinning technique. International Journal of Pharmaceutics, 458(1), 99–103. https://doi.org/10.1016/j.ijpharm.2013.10.011
Sebe,, I., Szabó,, P., Kállai‐Szabó,, B., & Zelkó,, R. (2015). Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. International Journal of Pharmaceutics, 494(1), 516–530. https://doi.org/10.1016/j.ijpharm.2015.08.054
Seeram,, R., Zamani,, M., & Molamma,, P. P. (2013). Advances in drug delivery via electrospun and electrosprayed nanomaterials. International Journal of Nanomedicine, 8, 2997–3017. https://doi.org/10.2147/ijn.s43575
Senthamizhan,, A., Balusamy,, B., & Uyar,, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue‐engineering applications. In Electrospun materials for tissue engineering and biomedical applications (pp. 3–41). Amsterdam, Netherlands: Elsevier.
Sharma,, R., Singh,, H., Joshi,, M., Sharma,, A., Garg,, T., Goyal,, A. K., & Rath,, G. (2014). Recent advances in polymeric electrospun nanofibers for drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 31(3), 187–217. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008193
Sharma,, U., Pham,, Q., & Marini,, J. (2015). US9034240B2.
Sharma,, U., Pham,, Q., Marini,, J., Yan,, X., & Core,, L. (2014). WO2014120454A1.
Sill,, T. J., & von Recum,, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
Sipos,, E., Kósa,, N., Kazsoki,, A., Szabó,, Z.‐I., & Zelkó,, R. (2019). Formulation and characterization of aceclofenac‐loaded nanofiber based orally dissolving webs. Pharmaceutics, 11(8), 417. https://doi.org/10.3390/pharmaceutics11080417
Škrlec,, K., Zupančič,, Š., Prpar Mihevc,, S., Kocbek,, P., Kristl,, J., & Berlec,, A. (2019). Development of electrospun nanofibers that enable high loading and long‐term viability of probiotics. European Journal of Pharmaceutics and Biopharmaceutics, 136, 108–119. https://doi.org/10.1016/j.ejpb.2019.01.013
Slocum,, A. H., Sondej,, N. M., Trout,, B. L., Rutledge,, G. C., & Bhattacharyya,, I. (2016). WO2016176530A3.
Smit,, A. E., & Sanderson,, R. D. (2009a). EP2294252B1.
Smit,, A. E., & Sanderson,, R. D. (2009b). EP2142687B1.
Sóti,, P. L., Bocz,, K., Pataki,, H., Eke,, Z., Farkas,, A., Verreck,, G., … Marosi,, G. (2015). Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions. International Journal of Pharmaceutics, 494(1), 23–30. https://doi.org/10.1016/j.ijpharm.2015.07.076
Sousa,, A. M. M., Souza,, H. K. S., Uknalis,, J., Liu,, S.‐C., Gonçalves,, M. P., & Liu,, L. (2015). Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydrate Polymers, 115, 348–355. https://doi.org/10.1016/j.carbpol.2014.08.074
Sperling,, L. E., Reis,, K. P., Pranke,, P., & Wendorff,, J. H. (2016). Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discovery Today, 21(8), 1243–1256. https://doi.org/10.1016/j.drudis.2016.04.024
Sun,, B., Long,, Y. Z., Zhang,, H. D., Li,, M. M., Duvail,, J. L., Jiang,, X. Y., & Yin,, H. L. (2014). Advances in three‐dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002
Sun,, Z., Zussman,, E., Yarin,, A. L., Wendorff,, J. H., & Greiner,, A. (2003). Compound core–shell polymer nanofibers by co‐electrospinning. Advanced Materials, 15(22), 1929–1932. https://doi.org/10.1002/adma.200305136
Sutka,, A., Kukle,, S., Gravitis,, J., Milašius,, R., & Malašauskienė,, J. (2013). Nanofibre electrospinning poly (vinyl alcohol) and cellulose composite mats obtained by use of a cylindrical electrode. Advances in Materials Science and Engineering, 2013, 1–6.https://doi.org/10.1155/2013/932636
Szabó,, E., Démuth,, B., Nagy,, B., Molnár,, K., Farkas,, A., Szabó,, B., … Nagy,, Z. (2018). Scaled‐up preparation of drug‐loaded electrospun polymer fibres and investigation of their continuous processing to tablet form. Express Polymer Letters, 12(5), 436–451. https://doi.org/10.3144/expresspolymlett.2018.37
Szabó,, P., Kállai‐Szabó,, B., Kállai‐Szabó,, N., Sebe,, I., & Zelkó,, R. (2014). Preparation of hydroxypropyl cellulose microfibers by high‐speed rotary spinning and prediction of the fiber‐forming properties of hydroxypropyl cellulose gels by texture analysis. Cellulose, 21(6), 4419–4427. https://doi.org/10.1007/s10570-014-0391-3
Szabó,, P., Kállai‐Szabó,, B., Sebe,, I., & Zelkó,, R. (2014). Preformulation study of fiber formation and formulation of drug‐loaded microfiber based orodispersible tablets for in vitro dissolution enhancement. International Journal of Pharmaceutics, 477(1), 643–649. https://doi.org/10.1016/j.ijpharm.2014.11.011
Tamm,, I., Heinämäki,, J., Laidmäe,, I., Rammo,, L., Paaver,, U., Ingebrigtsen,, S. G., … Kogermann,, K. (2016). Development of suberin fatty acids and chloramphenicol‐loaded antimicrobial electrospun nanofibrous mats intended for wound therapy. Journal of Pharmaceutical Sciences, 105(3), 1239–1247. https://doi.org/10.1016/j.xphs.2015.12.025
Taylor,, G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 280(1382), 383–397. https://doi.org/10.1098/rspa.1964.0151
Teo,, W., Kotaki,, M., Mo,, X., & Ramakrishna,, S. (2005). Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology, 16(6), 918–924. https://doi.org/10.1088/0957-4484/16/6/049
Thakkar,, S., & Misra,, M. (2017). Electrospun polymeric nanofibers: New horizons in drug delivery. European Journal of Pharmaceutical Sciences, 107, 148–167. https://doi.org/10.1016/j.ejps.2017.07.001
Theron,, S., Yarin,, A., Zussman,, E., & Kroll,, E. (2005). Multiple jets in electrospinning: Experiment and modeling. Polymer, 46(9), 2889–2899. https://doi.org/10.1016/j.polymer.2005.01.054
Thoppey,, N., Bochinski,, J., Clarke,, L., & Gorga,, R. (2011). Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology, 22(34), 345301. https://doi.org/10.1088/0957-4484/22/34/345301
Thoppey,, N. M., Bochinski,, J. R., Clarke,, L. I., & Gorga,, R. E. (2010). Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer, 51(21), 4928–4936. https://doi.org/10.1016/j.polymer.2010.07.046
Topuz,, F., & Uyar,, T. (2018). Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics, 11(1), 6. https://doi.org/10.3390/pharmaceutics11010006
Trout,, B. L., Brettmann,, B. K., & Myerson,, A. S. (2013). WO2013165604A1.
Trout,, B. L., Hatton,, T. A., Chang,, E., Evans,, J. M., Mascia,, S., Kim,, W., … Forward,, K. M. (2015). WO2012149326A1.
Tyo,, K. M., Minooei,, F., Curry,, K. C., NeCamp,, S. M., Graves,, D. L., Fried,, J. R., & Steinbach‐Rankins,, J. M. (2019). Relating advanced electrospun fiber architectures to the temporal release of active agents to meet the needs of next‐generation intravaginal delivery applications. Pharmaceutics, 11(4), 160. https://doi.org/10.3390/pharmaceutics11040160
Um,, I. C., Fang,, D., Hsiao,, B. S., Okamoto,, A., & Chu,, B. (2004). Electro‐spinning and electro‐blowing of hyaluronic acid. Biomacromolecules, 5(4), 1428–1436. https://doi.org/10.1021/bm034539b
Varabhas,, J., Chase,, G. G., & Reneker,, D. (2008). Electrospun nanofibers from a porous hollow tube. Polymer, 49(19), 4226–4229. https://doi.org/10.1016/j.polymer.2008.07.043
Vass,, P., Démuth,, B., Farkas,, A., Hirsch,, E., Szabó,, E., Nagy,, B., … Nagy,, Z. K. (2019). Continuous alternative to freeze drying: Manufacturing of cyclodextrin‐based reconstitution powder from aqueous solution using scaled‐up electrospinning. Journal of Controlled Release, 298, 120–127. https://doi.org/10.1016/j.jconrel.2019.02.019
Vass,, P., Démuth,, B., Hirsch,, E., Nagy,, B., Andersen,, S. K., Vigh,, T., … Marosi,, G. (2019). Drying technology strategies for colon‐targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 296, 162–178. https://doi.org/10.1016/j.jconrel.2019.01.023
Vass,, P., Hirsch,, E., Kóczián,, R., Démuth,, B., Farkas,, A., Fehér,, C., … Nagy,, Z. K. (2019). Scaled‐up production and tableting of grindable electrospun fibers containing a protein‐type drug. Pharmaceutics, 11(7), 329. https://doi.org/10.3390/pharmaceutics11070329
Vass,, P., Nagy,, Z. K., Kóczián,, R., Fehér,, C., Démuth,, B., Szabó,, E., … Hirsch,, E. (2020). Continuous drying of a protein‐type drug using scaled‐up fiber formation with HP‐β‐CD matrix resulting in a directly compressible powder for tableting. European Journal of Pharmaceutical Sciences, 141, 105089. https://doi.org/10.1016/j.ejps.2019.105089
Veras,, F. F., Roggia,, I., Pranke,, P., Pereira,, C. N., & Brandelli,, A. (2016). Inhibition of filamentous fungi by ketoconazole‐functionalized electrospun nanofibers. European Journal of Pharmaceutical Sciences, 84, 70–76. https://doi.org/10.1016/j.ejps.2016.01.014
Verreck,, G., Chun,, I., Peeters,, J., Rosenblatt,, J., & Brewster,, M. E. (2003). Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharmaceutical Research, 20(5), 810–817. https://doi.org/10.1023/a:1023450006281
Verreck,, G., Chun,, I., Rosenblatt,, J., Peeters,, J., Dijck,, A. V., Mensch,, J., … Brewster,, M. E. (2003). Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water‐insoluble, nonbiodegradable polymer. Journal of Controlled Release, 92(3), 349–360. https://doi.org/10.1016/s0168-3659(03)00342-0
Vigh,, T., Démuth,, B., Balogh,, A., Galata,, D. L., Van Assche,, I., Mackie,, C., … Nagy,, Z. K. (2017). Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosage forms. Drug Development and Industrial Pharmacy, 43(7), 1126–1133. https://doi.org/10.1080/03639045.2017.1298121
Vigh,, T., Horváthová,, T., Balogh,, A., Sóti,, P. L., Drávavölgyi,, G., Nagy,, Z. K., & Marosi,, G. (2013). Polymer‐free and polyvinylpirrolidone‐based electrospun solid dosage forms for drug dissolution enhancement. European Journal of Pharmaceutical Sciences, 49(4), 595–602. https://doi.org/10.1016/j.ejps.2013.04.034
Vlachou,, M., Kikionis,, S., Siamidi,, A., Tragou,, K., Ioannou,, E., Roussis,, V., & Tsotinis,, A. (2019). Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into monolayered and three‐layered tablets. Journal of Pharmaceutical Sciences, 108(2), 970–976. https://doi.org/10.1016/j.xphs.2018.09.035
Vrbata,, P., Berka,, P., Stránská,, D., Doležal,, P., & Lázníček,, M. (2014). Electrospinning of diosmin from aqueous solutions for improved dissolution and oral absorption. International Journal of Pharmaceutics, 473(1–2), 407–413. https://doi.org/10.1016/j.ijpharm.2014.07.017
Vysloužilová,, L., Buzgo,, M., Pokorný,, P., Chvojka,, J., Míčková,, A., Rampichová,, M., … Lukáš,, D. (2017). Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. International Journal of Pharmaceutics, 516(1–2), 293–300. https://doi.org/10.1016/j.ijpharm.2016.11.034
Vysloužilová,, L., Valtera,, J., Pejchar,, K., Beran,, J., & Lukáš,, D. (2014). Design of coaxial needleless electrospinning electrode with respect to the distribution of electric field. Paper presented at the Applied Mechanics and Materials.
Wagner,, I., Nagy,, Z. K., Vass,, P., Fehér,, C., Barta,, Z., Vigh,, T., … Marosi,, G. (2015). Stable formulation of protein‐type drug in electrospun polymeric fiber followed by tableting and scaling‐up experiments. Polymers for Advanced Technologies, 26(12), 1461–1467. https://doi.org/10.1002/pat.3569
Wang,, L., Zhang,, C., Gao,, F., & Pan,, G. (2016). Needleless electrospinning for scaled‐up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Advances, 6(107), 105988–105995. https://doi.org/10.1039/c6ra24557a
Wang,, M., Zhou,, Y., Shi,, D., Chang,, R., Zhang,, J., Keidar,, M., & Webster,, T. J. (2019). Cold atmospheric plasma (CAP)‐modified and bioactive protein‐loaded core‐shell nanofibers for bone tissue engineering applications. Biomaterials Science, 7, 2430–2439. https://doi.org/10.1039/c8bm01284a
Wang,, X., Niu,, H., Lin,, T., & Wang,, X. (2009). Needleless electrospinning of nanofibers with a conical wire coil. Polymer Engineering %26 Science, 49(8), 1582–1586. https://doi.org/10.1002/pen.21377
Wang,, X., Niu,, H., Wang,, X., & Lin,, T. (2012). Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. Journal of Nanomaterials, 2012, 3–9. https://doi.org/10.1155/2012/785920
Weitz,, R. T., Harnau,, L., Rauschenbach,, S., Burghard,, M., & Kern,, K. (2008). Polymer nanofibers via nozzle‐free centrifugal spinning. Nano Letters, 8(4), 1187–1191. https://doi.org/10.1021/nl080124q
Xu,, X., Zhong,, W., Zhou,, S., Trajtman,, A., & Alfa,, M. (2010). Electrospun PEG‐PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. Journal of Applied Polymer Science, 118(1), 588–595. https://doi.org/10.1002/app.32415
Yan,, G., Niu,, H., & Lin,, T. (2019). Needle‐less electrospinning. In Electrospinning: Nanofabrication and applications (pp. 219–247). Amsterdam, Netherlands: Elsevier.
Yan,, G., Niu,, H., Shao,, H., Zhao,, X., Zhou,, H., & Lin,, T. (2017). Curved convex slot: An effective needleless electrospinning spinneret. Journal of Materials Science, 52(19), 11749–11758. https://doi.org/10.1007/s10853-017-1315-z
Yan,, X., Marini,, J., Mulligan,, R., Deleault,, A., Sharma,, U., Brenner,, M. P., … Pham,, Q. P. (2015). Slit‐surface electrospinning: A novel process developed for high‐throughput fabrication of core‐sheath fibers. PLoS One, 10(5), e0125407. https://doi.org/10.1371/journal.pone.0125407
Yang,, C., Yu,, D.‐G., Pan,, D., Liu,, X.‐K., Wang,, X., Bligh,, S. A., & Williams,, G. R. (2016). Electrospun pH‐sensitive core–shell polymer nanocomposites fabricated using a tri‐axial process. Acta Biomaterialia, 35, 77–86. https://doi.org/10.1016/j.actbio.2016.02.029
Yao,, Z.‐C., Wang,, J.‐C., Wang,, B., Ahmad,, Z., Li,, J.‐S., & Chang,, M.‐W. (2019). A novel approach for tailored medicines: Direct writing of Janus fibers. Journal of Drug Delivery Science and Technology, 50, 372–379. https://doi.org/10.1016/j.jddst.2019.02.006
Yarin,, A., & Zussman,, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45(9), 2977–2980. https://doi.org/10.1016/j.polymer.2004.02.066
Yu,, D.‐G., Li,, J.‐J., Williams,, G. R., & Zhao,, M. (2018). Electrospun amorphous solid dispersions of poorly water‐soluble drugs: A review. Journal of Controlled Release, 292, 91–110. https://doi.org/10.1016/j.jconrel.2018.08.016
Yu,, D.‐G., Li,, X.‐Y., Wang,, X., Chian,, W., Liao,, Y.‐Z., & Li,, Y. (2013). Zero‐order drug release cellulose acetate nanofibers prepared using coaxial electrospinning. Cellulose, 20(1), 379–389. https://doi.org/10.1007/s10570-012-9824-z
Yu,, D.‐G., Shen,, X.‐X., Branford‐White,, C., White,, K., Zhu,, L.‐M., & Annie Bligh,, S. W. (2009). Oral fast‐dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology, 20(5), 055104. https://doi.org/10.1088/0957-4484/20/5/055104
Yu,, D., Wang,, X., Li,, X., Chian,, W., Li,, Y., & Liao,, Y. (2013). Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomaterialia, 9(3), 5665–5672. https://doi.org/10.1016/j.actbio.2012.10.021
Yu,, M., Dong,, R. H., Yan,, X., Yu,, G. F., You,, M. H., Ning,, X., & Long,, Y. Z. (2017). Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production. Macromolecular Materials and Engineering, 302(7), 1700002. https://doi.org/10.1002/mame.201700002
Zeng,, J., Aigner,, A., Czubayko,, F., Kissel,, T., Wendorff,, J. H., & Greiner,, A. (2005). Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 6(3), 1484–1488. https://doi.org/10.1021/bm0492576
Zhang,, M., Huang,, X., Xin,, H., Li,, D., Zhao,, Y., Shi,, L., … Zhu,, C. (2019). Coaxial electrospinning synthesis hollow Mo2C@ C core‐shell nanofibers for high‐performance and long‐term lithium‐ion batteries. Applied Surface Science, 473, 352–358.
Zhou,, F.‐L., Gong,, R.‐H., & Porat,, I. (2009a). Three‐jet electrospinning using a flat spinneret. Journal of Materials Science, 44(20), 5501–5508. https://doi.org/10.1007/s10853-009-3768-1
Zhou,, F. L., Gong,, R. H., & Porat,, I. (2009b). Mass production of nanofibre assemblies by electrostatic spinning. Polymer International, 58(4), 331–342. https://doi.org/10.1002/pi.2521
Zupančič,, Š., Preem,, L., Kristl,, J., Putrinš,, M., Tenson,, T., Kocbek,, P., & Kogermann,, K. (2018). Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens. European Journal of Pharmaceutical Sciences, 122, 347–358. https://doi.org/10.1016/j.ejps.2018.07.024