Ahmadian,, E., Shahi,, S., Yazdani,, J., Maleki Dizaj,, S., & Sharifi,, S. (2018). Local treatment of the dental caries using nanomaterials. Biomedicine %26 Pharmacotherapy, 108, 443–447. https://doi.org/10.1016/j.biopha.2018.09.026
Aïssa,, B., Therriault,, D., Haddad,, E., & Jamroz,, W. (2012). Self‐healing materials systems: Overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012, 17. https://doi.org/10.1155/2012/854203
Al Thaher,, Y., Perni,, S., & Prokopovich,, P. (2017). Nano‐carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Advances in Colloid and Interface Science, 249, 234–247. https://doi.org/10.1016/j.cis.2017.04.017
Alexander‐Bryant,, A. A., Vanden Berg‐Foels,, W. S., & Wen,, X. (2013). Bioengineering strategies for designing targeted cancer therapies. Advances in Cancer Research, 118, 1–59. https://doi.org/10.1016/B978-0-12-407173-5.00002-9
Apostu,, D., Lucaciu,, O., Berce,, C., Lucaciu,, D., & Cosma,, D. (2018). Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. The Journal of International Medical Research, 46(6), 2104–2119. https://doi.org/10.1177/0300060517732697
American Dental Association. (2005). When a filling needs to be replaced (p. 136). Chicago, IL: American Dental Association.
Arora,, M., Chan,, E. K., Gupta, S., & Diwan,, A. D. (2013). Polymethylmethacrylate bone cements and additives: A review of the literature. World Journal of Orthopedics, 4(2), 67–74.
Awaja,, F., Zhang,, S., Tripathi,, M., Nikiforov,, A., & Pugno,, N. (2016). Cracks, microcracks and fracture in polymer structures: Formation, detection. Autonomic Repair, 83, 536–573.
Bacchi,, A., Nelson,, M., & Pfeifer,, C. S. (2016). Characterization of methacrylate‐based composites containing thio‐urethane oligomers. Dental Materials, 32(2), 233–239. https://doi.org/10.1016/j.dental.2015.11.022
Biggs,, P., Jones,, L., Wellborn,, B., & Lewis,, G. (2009). A self‐healing PMMA bone cement: Influence of crystal size of Grubbs’ catalyst. Paper presented at the 25th Southern Biomedical Engineering Conference 2009, 15–17 May 2009, Miami, FL, Berlin, Heidelberg.
Blaiszik,, B. J., Kramer,, S. L. B., Olugebefola,, S. C., Moore,, J. S., Sottos,, N. R., & White,, S. R. (2010). Self‐healing polymers and composites. Annual Review of Materials Research, 40(5), 179–211. https://doi.org/10.1146/annurev-matsci-070909-104532
Brinkman,, E. (2011). Self healing materials: Concept and applications (2nd ed.). The Netherlands: NL Agency.
Brochu,, A. B. W., Craig,, S. L., & Reichert,, W. M. (2011). Self‐healing biomaterials. Journal of Biomedical Materials Research Part A, 96(2), 492–506. https://doi.org/10.1002/jbm.a.32987
Brochu,, A. B. W., Matthys,, O. B., Craig,, S. L., & Reichert,, W. M. (2015). Extended fatigue life of a catalyst free self‐healing acrylic bone cement using microencapsulated 2‐octyl cyanoacrylate. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 103(2), 305–312. https://doi.org/10.1002/jbm.b.33199
Brown,, E. N., Kessler,, M. R., Sottos,, N. R., & White,, S. R. (2003). In situ poly(urea‐formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation, 20(6), 719–730. https://doi.org/10.1080/0265204031000154160
Caruso,, M. M., Delafuente,, D. A., Ho,, V., Sottos,, N. R., Moore,, J. S., & White,, S. R. (2007). Solvent‐promoted self‐healing epoxy materials. Macromolecules, 40(25), 8830–8832. https://doi.org/10.1021/ma701992z
Chin,, G., Chong,, J., Kluczewska,, A., Lau,, A., Gorjy,, S., & Tennant,, M. (2000). The environmental effects of dental amalgam. Australian Dental Journal, 45(4), 246–249.
Cluett,, J. (2018). How Joint Replacement Implants Are Held in the Bone. Retrieved from https://www.verywellhealth.com/how-are-joint-replacements-held-in-the-bone-2549505.
Cramer,, N. B., Stansbury,, J. W., & Bowman,, C. N. (2011). Recent advances and developments in composite dental restorative materials. Journal of Dental Research, 90(4), 402–416. https://doi.org/10.1177/0022034510381263
Dailey,, M. M. C., Silvia,, A. W., McIntire,, P. J., Wilson,, G. O., Moore,, J. S., & White,, S. R. (2014). A self‐healing biomaterial based on free‐radical polymerization. Journal of Biomedical Materials Research Part A, 102(9), 3024–3032. https://doi.org/10.1002/jbm.a.34975
Deb,, S. (1999). A review of improvements in acrylic bone cements. Journal of Biomaterials Applications, 14(1), 16–47. https://doi.org/10.1177/088532829901400102
Deb,, S., Abdulghani,, S., & Behiri,, J. C. (2002). Radiopacity in bone cements using an organo‐bismuth compound. Biomaterials, 23(16), 3387–3393.
Dewhirst,, F. E., Chen,, T., Izard,, J., Paster,, B. J., Tanner,, A. C. R., Yu,, W.‐H., … Wade,, W. G. (2010). The human Oral microbiome. Journal of Bacteriology, 192(19), 5002. https://doi.org/10.1128/JB.00542-10
Diba,, M., Spaans,, S., Ning,, K., Ippel,, B. D., Yang,, F., Loomans,, B., … Leeuwenburgh,, S. C. G. (2018). Self‐healing biomaterials: From molecular concepts to clinical applications. Advanced Materials Interfaces, 5(17), 1800118. https://doi.org/10.1002/admi.201800118
Diesendruck,, C. E., Sottos,, N. R., Moore,, J. S., & White,, S. R. (2015). Biomimetic self‐healing. Angewandte Chemie, International Edition, 54(36), 10428–10447. https://doi.org/10.1002/anie.201500484
Dunne,, N. J., Orr,, J. F., Mushipe,, M. T., & Eveleigh,, R. J. (2003). The relationship between porosity and fatigue characteristics of bone cements. Biomaterials, 24(2), 239–245. https://doi.org/10.1016/S0142-9612(02)00296-X
Echeverria,, C., Fernandes,, S. N., Godinho,, M. H., Borges,, J. P., & Soares,, P. I. P. (2018). Functional stimuli‐responsive gels: Hydrogels and microgels. Gels, 4(2), 54. https://doi.org/10.3390/gels4020054
Ferracane,, J. L. (2013). Resin‐based composite performance: Are there some things we can`t predict? Dental Materials, 29(1), 51–58. https://doi.org/10.1016/j.dental.2012.06.013
Fugolin,, A. P. P., & Pfeifer,, C. S. (2017). New resins for dental composites. Journal of Dental Research, 96(10), 1085–1091. https://doi.org/10.1177/0022034517720658
WHO. (2010). Future Use of Materials for Dental Restoration. Geneva, Switzerland: WHO Retrieved from http://www.who.int/oral_health/publications/dental_material_2011.pdf
Ghosh,, S. K. (2009). Self‐healing materials: Fundamentals, design strategies, and applications. Hoboken, NJ: Wiley.
Gladman,, A. S., Celestine,, A.‐D. N., Sottos,, N. R., & White,, S. R. (2015). Autonomic healing of acrylic bone cement. Advanced Healthcare Materials, 4(2), 202–207. https://doi.org/10.1002/adhm.201400084
Gonzalez‐Bonet,, A., Kaufman,, G., Yang,, Y., Wong,, C., Jackson,, A., Huyang,, G., … Sun,, J. (2015). Preparation of dental resins resistant to enzymatic and hydrolytic degradation in Oral environments. Biomacromolecules, 16(10), 3381–3388. https://doi.org/10.1021/acs.biomac.5b01069
Habib,, E., Wang,, R., Wang,, Y., Zhu,, M., & Zhu,, X. X. (2016). Inorganic fillers for dental resin composites: Present and future. ACS Biomaterials Science %26 Engineering, 2(1), 1–11. https://doi.org/10.1021/acsbiomaterials.5b00401
Harrigan,, T. P., & Harris,, W. H. (1991). A three‐dimensional non‐linear finite element study of the effect of cement‐prosthesis debonding in cemented femoral total hip components. Journal of Biomechanics, 24(11), 1047–1058. https://doi.org/10.1016/0021-9290(91)90021-E
Hesaraki,, S. (2016). Photocurable bioactive bone cement based on hydroxyethyl methacrylate‐poly(acrylic/maleic) acid resin and mesoporous sol gel‐derived bioactive glass. The Korean Journal of Counseling and Psychotherapy, 63, 535–545. https://doi.org/10.1016/j.msec.2016.03.029
Hill,, J., Orr,, J., & Dunne,, N. (2008). In vitro study investigating the mechanical properties of acrylic bone cement containing calcium carbonate nanoparticles. Journal of Materials Science. Materials in Medicine, 19(11), 3327–3333. https://doi.org/10.1007/s10856-008-3465-7
Hoey,, D., & Taylor,, D. (2009). Quantitative analysis of the effect of porosity on the fatigue strength of bone cement. Acta Biomaterialia, 5(2), 719–726. https://doi.org/10.1016/j.actbio.2008.08.024
Huang,, M., & Yang,, J. (2011). Facile microencapsulation of HDI for self‐healing anticorrosion coatings. Journal of Materials Chemistry, 21(30), 11123–11130. https://doi.org/10.1039/C1JM10794A
Huyang,, G., Debertin,, A. E., & Sun,, J. (2016). Design and development of self‐healing dental composites. Materials %26 Design, 94, 295–302. https://doi.org/10.1016/j.matdes.2016.01.046
James,, S. P., Jasty,, M., Davies,, J., Piehler,, H., & Harris,, W. H. (1992). A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life. Journal of Biomedical Materials Research, 26(5), 651–662. https://doi.org/10.1002/jbm.820260507
Jin,, H., Mangun,, C. L., Stradley,, D. S., Moore,, J. S., Sottos,, N. R., & White,, S. R. (2012). Self‐healing thermoset using encapsulated epoxy‐amine healing chemistry. Polymer, 53(2), 581–587. https://doi.org/10.1016/j.polymer.2011.12.005
Jonkers,, H. M. (2007). Self healing concrete: A biological approach (Vol. 100, pp. 195–204). Dordrecht: Springer.
Kavoosi,, F., Modaresi,, F., Sanaei,, M., & Rezaei,, Z. (2018). Medical and dental applications of nanomedicines. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 126(10), 795–803. https://doi.org/10.1111/apm.12890
Kenny,, S. M., & Buggy,, M. (2003). Bone cements and fillers: A review. Journal of Materials Science. Materials in Medicine, 14(11), 923–938. https://doi.org/10.1023/A:1026394530192
Kessler,, M. R., Sottos,, N. R., & White,, S. R. (2003). Self‐healing structural composite materials. Composites Part B: Engineering, A, 34, 11. https://doi.org/10.1016/S1359-835X(03)00138-6
Kim,, S. (2008). Changes in surgical loads and economic burden of hip and knee replacements in the US: 1997–2004. Arthritis Care %26 Research (Hoboken), 59(4), 481–488. https://doi.org/10.1002/art.23525
Kindt‐Larsen,, T., Smith,, D. B., & Jensen,, J. S. (1995). Innovations in acrylic bone cement and application equipment. Journal of Applied Biomaterials, 6(1), 75–83.
Lee,, J. J. W., Kwon,, J. Y., Chai,, H., Lucas,, P. W., Thompson,, V. P., & Lawn,, B. R. (2009). Fracture modes in human teeth. Journal of Dental Research, 88(3), 224–228. https://doi.org/10.1177/0022034508330055
Lewis,, G. (1997). Properties of acrylic bone cement: State of the art review. Journal of Biomedical Materials Research, 38(2), 155–182.
Li,, F., Zhang,, L., Weir,, M. D., Cheng,, L., Zhang,, K., & Xu,, H. H. K. (2017). 6—Understanding the chemistry and improving the durability of dental resin–dentin bonded interface. In P. Spencer, & A. Misra, (Eds.), Material‐Tissue Interfacial Phenomena (pp. 147–180). Cambridge, UK: Woodhead Publishing.
Li,, H., Yang,, P., Pageni,, P., & Tang,, C. (2017). Recent advances in metal‐containing polymer hydrogels. Macromolecular Rapid Communications, 38(14). https://doi.org/10.1002/marc.201700109
Liu,, X., Sheng,, X., Lee,, J. K., & Kessler,, M. R. (2009). Synthesis and characterization of melamine‐urea‐formaldehyde microcapsules containing ENB‐based self‐healing agents. Macromolecular Materials and Engineering, 294(6–7), 389–395. https://doi.org/10.1002/mame.200900015
Loebel,, C., Rodell,, C. B., Chen,, M. H., & Burdick,, J. A. (2017). Shear‐thinning and self‐healing hydrogels as injectable therapeutics and for 3D‐printing. Nature Protocols, 12(8), 1521–1541. https://doi.org/10.1038/nprot.2017.053
Malinskii,, Y. M., Prokopenko,, V. V., Ivanova,, N. A., & Kargin,, V. A. (1970). Investigation of self‐healing of cracks in polymers. Polymer Mechanics, 6(2), 240–244. https://doi.org/10.1007/bf00859196
Manhart,, J., Chen,, H., Hamm,, G., & Hickel,, R. (2004). Buonocore memorial lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Operative Dentistry, 29(5), 481–508.
Moszner,, N., Fischer,, U. K., Angermann,, J., & Rheinberger,, V. (2006). Bis‐(acrylamide)s as new cross‐linkers for resin‐based composite restoratives. Dental Materials, 22(12), 1157–1162. https://doi.org/10.1016/j.dental.2005.11.032
Murray,, P. E., Windsor,, L. J., Smyth,, T. W., Hafez,, A. A., & Cox,, C. F. (2002). Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Critical Reviews in Oral Biology and Medicine, 13(6), 509–520.
National Center for Biotechnology Information. (2019). PubChem Compound Database (CID=87595). Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/87595.
Neubauer,, M. P., Poehlmann,, M., & Fery,, A. (2014). Microcapsule mechanics: From stability to function. Advances in Colloid and Interface Science, 207, 65–80. https://doi.org/10.1016/j.cis.2013.11.016
Opdam,, N. J., Loomans,, B. A., Roeters,, F. J., & Bronkhorst,, E. M. (2004). Five‐year clinical performance of posterior resin composite restorations placed by dental students. Journal of Dentistry, 32(5), 379–383. https://doi.org/10.1016/j.jdent.2004.02.005
Ouyang,, X., Huang,, X., Pan,, Q., Zuo,, C., Huang,, C., Yang,, X., & Zhao,, Y. (2011). Synthesis and characterization of triethylene glycol dimethacrylate nanocapsules used in a self‐healing bonding resin. Journal of Dentistry, 39(12), 825–833. https://doi.org/10.1016/j.jdent.2011.09.001
Padovani,, G. C., Feitosa,, V. P., Sauro,, S., Tay,, F. R., Durán,, G., Paula,, A. J., & Durán,, N. (2015). Advances in dental materials through nanotechnology: Facts, perspectives and toxicological aspects. Trends in Biotechnology, 33(11), 621–636. https://doi.org/10.1016/j.tibtech.2015.09.005
Petersen,, P. E., Bourgeois,, D., Ogawa,, H., Estupinan‐Day,, S., & Ndiaye,, C. (2005). The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization, 83(9), 661–669.
Podgorski,, M., Becka,, E., Chatani,, S., Claudino,, M., & Bowman,, C. N. (2015). Ester‐free thiol‐X resins: New materials with enhanced mechanical behavior and solvent resistance. Polymer Chemistry, 6(12), 2234–2240. https://doi.org/10.1039/C4PY01552E
Puska,, P., Porter,, D., & Petersen,, P. E. (2003). Dental diseases and oral health. Geneva, Switzerland: World Health Organization.
Ruben,, J. L., Roeters,, F. J. M., Montagner,, A. F., & Huysmans,, M. C. (2014). A multifunctional device to simulate oral ageing: The "Rub%26Roll". Journal of the Mechanical Behavior of Biomedical Materials, 30, 75–82. https://doi.org/10.1016/j.jmbbm.2013.10.019
Santerre,, J. P., Woodhouse,, K., Laroche,, G., & Labow,, R. S. (2005). Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 26(35), 7457–7470. https://doi.org/10.1016/j.biomaterials.2005.05.079
Sanz‐Ruiz,, P., Carbó‐Laso,, E., Del Real‐Romero,, J. C., Arán‐Ais,, F., Ballesteros‐Iglesias,, Y., Paz‐Jiménez,, E., … Vaquero‐Martín,, J. (2018). Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement. Journal of Orthopaedic Research, 36(1), 459–466. https://doi.org/10.1002/jor.23614
Shadjou,, N., & Hasanzadeh,, M. (2016). Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. Journal of Biomedical Materials Research Part A, 104(5), 1250–1275. https://doi.org/10.1002/jbm.a.35645
Shi,, J., Jiang,, Y., Wang,, X., Wu,, H., Yang,, D., Pan,, F., … Jiang,, Z. (2014). Design and synthesis of organic‐inorganic hybrid capsules for biotechnological applications. Chemical Society Reviews, 43(15), 5192–5210. https://doi.org/10.1039/c4cs00108g
Simon,, J., Barla,, F., Kelemen‐Haller,, A., Farkas,, F., & Kraxner,, M. (1988). Thermal stability of polyurethanes. Chromatographia, 25(2), 99–106. https://doi.org/10.1007/BF02259024
Sloan,, M., Premkumar,, A., & Sheth,, N. P. (2018). Projected volume of primary Total joint Arthroplasty in the U.S., 2014 to 2030. The Journal of Bone and Joint Surgery American Volume, 100(17), 1455–1460. https://doi.org/10.2106/JBJS.17.01617
Song,, H. B., Sowan,, N., Shah,, P. K., Baranek,, A., Flores,, A., Stansbury,, J. W., & Bowman,, C. N. (2016). Reduced shrinkage stress via photo‐initiated copper(I)‐catalyzed cycloaddition polymerizations of azide‐alkyne resins. Dental Materials, 32(11), 1332–1342. https://doi.org/10.1016/j.dental.2016.07.014
Spector,, M. (1992). Biomaterial failure. The Orthopedic Clinics of North America, 23(2), 211.
Spencer,, P., Ye,, Q., Misra,, A., Goncalves,, S. E. P., & Laurence,, J. S. (2014). Proteins, pathogens, and failure at the composite‐tooth interface. Journal of Dental Research, 93(12), 1243–1249. https://doi.org/10.1177/0022034514550039
Staff,, M. C. (2018). Cavities/tooth decay: Diagnosis. Patient Care %26 Health Information. Retrieved from https://www.mayoclinic.org/diseases-conditions/cavities/symptoms-causes/syc-20352892.
Stryker. (2006). Simplex P Bone Cement Products (Vol. 2010). Kalamazoo, MI: Stryker.
Taylor,, T. D., & Agar,, J. R. (2002). Twenty years of progress in implant prosthodontics. The Journal of Prosthetic Dentistry, 88(1), 89–95. https://doi.org/10.1067/mpr.2002.126818
Turner,, C. G., II, Scott,, G. R., Townsend,, G. C., & Martinón‐Torres,, M. (2018). The anthropology of modern human teeth: Dental morphology and its variation in recent and fossil Homo sapiens (2nd ed., pp. i–ii). Cambridge: Cambridge University Press.
Tomsia,, A. P., Lee,, J. S., Wegst,, U. G. K., & Saiz,, E. (2013). Nanotechnology for dental implants. The International Journal of Oral %26 Maxillofacial Implants, 28(6), e535–e546. https://doi.org/10.11607/jomi.te34
Topoleski,, L. D. T., Ducheyne,, P., & Cukler,, J. M. (1990). A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms. Journal of Biomedical Materials Research, 24(2), 135–154. https://doi.org/10.1002/jbm.820240202
iData Research. (2018). Total Knee Replacement Statistics 2017: Younger Patients Driving Growth. Burnaby, BC: iData Research Retrieved from https://idataresearch.com/total-knee-replacement-statistics-2017-younger-patients-driving-growth/
Vaishya,, R., Chauhan,, M., & Vaish,, A. (2013). Bone cement. Journal of Clinical Orthopaedics and Trauma, 4(4), 157–163. https://doi.org/10.1016/j.jcot.2013.11.005
Van Tittelboom,, K., & Belie,, N. D. (2009). Autogenous Healing of Cracks in Cementitious Materials with Varying Mix Compositions. Proceedings of the 2nd International Conference on Self‐Healing Materials.
Van Tittelboom,, K., & De Belie,, N. (2013). Self‐healing in Cementitious materials—A review. Materials (Basel, Switzerland), 6(6), 2182–2217. https://doi.org/10.3390/ma6062182
Wang,, W., Narain,, R., & Zeng,, H. (2018). Rational Design of Self‐Healing Tough Hydrogels: A mini review. Frontiers in Chemistry, 6, 497. https://doi.org/10.3389/fchem.2018.00497
Wang,, Y., Adokoh,, C. K., & Narain,, R. (2018). Recent development and biomedical applications of self‐healing hydrogels. Expert Opinion on Drug Delivery, 15(1), 77–91. https://doi.org/10.1080/17425247.2017.1360865
Wertzberger,, B. E., Steere,, J. T., Pfeifer,, R. M., Nensel,, M. A., Latta,, M. A., & Gross,, S. M. (2010). Physical characterization of a self‐healing dental restorative material. Journal of Applied Polymer Science, 118(1), 428–434. https://doi.org/10.1002/app.31542
White,, S. R., Sottos,, N. R., Geubelle,, P. H., Moore,, J. S., Kessler,, M. R., Sriram,, S. R., … Viswanathan,, S. (2001). Autonomic healing of polymer composites. Nature, 409(6822), 794–797. https://doi.org/10.1038/35057232
Wilson,, G. O., Henderson,, J. W., Caruso,, M. M., Blaiszik,, B. J., McIntire,, P. J., Sottos,, N. R., … Moore,, J. S. (2010). Evaluation of peroxide initiators for radical polymerization‐based self‐healing applications. Journal of Polymer Science Part A: Polymer Chemistry, 48(12), 2698–2708. https://doi.org/10.1002/pola.24053
Wooley,, P. H., & Schwarz,, E. M. (2004). Aseptic loosening. Gene Therapy, 11(4), 402–407. https://doi.org/10.1038/sj.gt.3302202
Wu,, J., Weir,, M. D., Zhang,, Q., Zhou,, C., Melo,, M. A. S., & Xu,, H. H. K. (2016). Novel self‐healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N‐dihydroxyethyl‐p‐toluidine. Dental Materials, 32(2), 294–304. https://doi.org/10.1016/j.dental.2015.11.014
Wu,, T., Gao,, S., Cui,, Y., Qiao,, Y., Zhou,, F., & Qiu,, D. (2018). Amphiphilic bioactive filler for acrylic bone cement to enhance its cell adhesion. Journal of Biomedical Nanotechnology, 14(4), 795–801. https://doi.org/10.1166/jbn.2018.2543
Yang,, J., Keller,, M. W., Moore,, J. S., White,, S. R., & Sottos,, N. R. (2008). Microencapsulation of isocyanates for self‐healing polymers. Macromolecules, 41(24), 9650–9655. https://doi.org/10.1021/ma801718v
Yang,, Y., Ding,, X., & Urban,, M. W. (2015). Chemical and physical aspects of self‐healing materials. Progress in Polymer Science, 49‐50, 34–59. https://doi.org/10.1016/j.progpolymsci.2015.06.001
Yuan,, L., Liang,, G.‐Z., Xie,, J.‐Q., & He,, S.‐B. (2007). Synthesis and characterization of microencapsulated dicyclopentadiene with melamine–formaldehyde resins. Colloid %26 Polymer Science, 285(7), 781–791. https://doi.org/10.1007/s00396-006-1621-5
Yuan,, Y. C., Rong,, M. Z., Zhang,, M. Q., Chen,, J., Yang,, G. C., & Li,, X. M. (2008). Self‐healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules, 41(14), 5197–5202. https://doi.org/10.1021/ma800028d
Zhu,, D. Y., Rong,, M. Z., & Zhang,, M. Q. (2015). Self‐healing polymeric materials based on microencapsulated healing agents: From design to preparation. Progress in Polymer Science, 49‐50, 175–220. https://doi.org/10.1016/j.progpolymsci.2015.07.002
Zhu,, S., Wang,, J., Yan,, H., Wang,, Y., Zhao,, Y., Feng,, B., … Weng,, J. (2017). An injectable supramolecular self‐healing bio‐hydrogel with high stretchability, extensibility and ductility, and a high swelling ratio. Journal of Materials Chemistry B, 5(34), 7021–7034. https://doi.org/10.1039/C7TB01183K