Abdel‐Motal,, U. M., Berg,, L., Rosén,, A., Bengtsson,, M., Thorpe,, C. J., Kihlberg,, J., … Jondal,, M. (1996). Immunization with glycosylated Kb‐binding peptides generates carbohydrate‐specific, understricted cytotoxic T cells. European Journal of Immunology, 26, 544–551.
Adak,, A.K., Li,, B.‐Y., &. C.‐C. Lin,. (2015). Advances in multifunctional glycosylated nanomaterials: Preparation and applications in glycoscience. Carbohydrate Research, 405, 2–12.
Ahamad,, T., Mapolie,, S. F., & Alshehri,, S. M. (2012). Synthesis and characterization of polyamide metallodendrimers and their anti‐bacterial and anti‐tumor activities. Medicinal Chemistry Research, 21, 2023–2031.
Appelhans,, D., Klajnert‐Maculewicz,, B., Janaszewska,, A., Lazniewskab,, J., & Voit,, B. (2015). Dendritic glycopolymers based on dendritic polyamine scaffolds: View on their synthetic approaches, characteristics and potential for biomedical applications. Chemical Society Reviews, 44, 3968–3996.
Astronomo,, R. D., & Burton,, D. R. (2010). Carbohydrate vaccines: Developing sweet solutions to sticky situations? Nature Reviews Drug Discovery, 9, 308–324.
Baartzes,, N., Stringer,, T., Seldon,, R., Warner,, D. F., de Kock,, C., Smith,, P. J., & Smith,, G. S. (2016). Synthesis, characterization and antimicrobial evaluation of mono and polynuclear ferrocenyl‐derived amino and imino complexes. Journal of Organometallic Chemistry, 809, 79–85.
Baartzes,, N., Szabo,, C., Cenariu,, M., Imre‐Lucaci,, F., Dorneanu,, S. A., Fischer‐Fodor,, E., & Smith,, G. S. (2018). In vitro antitumour activity of two ferrocenyl metallodendrimers in a colon cancer cell line. International Chemical Communication, 98, 75–79.
Baek,, M.‐G., Rittenhouse‐Olson,, K., & Roy,, R. (2001). Synthesis and antibody binding properties of glycodendrimers bearing the tumor related T‐antigen. Chemical Communications, 32, 257–258.
Baek,, M.‐G., & Roy,, R. (2000). Design and synthesis of water‐soluble glycopolymers bearing breast tumor marker and enhanced lipophilicity for solid‐phase assays. Biomacromolecules, 1, 768–770.
Baek,, M.‐G., & Roy,, R. (2001a). Relative lectin binding properties of T‐antigen‐containing glycopolymers: Copolymerization of N‐acryloylated T‐antigen monomer vs. graft conjugation of aminated T‐antigen ligands onto poly(N‐acryloxysuccinimide). Macromolecular Bioscience, 1, 305–311.
Baek,, M.‐G., & Roy,, R. (2001b). Simultaneous binding of mouse monoclonal antibody and streptavidin to hetero‐bifunctional dendritic L‐lysine core bearing T‐antigen tumor marker and biotin. Bioorganic %26 Medicinal Chemistry, 9, 3005–3011.
Baek,, M.‐G., & Roy,, R. (2002a). Glycodendrimers: Novel glycotope isosteres unmasking sugar coding. Case study with T‐antigen markers from breast cancer MUC1 glycoprotein. Reviews in Molecular Biotechnology, 90, 291–309.
Baek,, M.‐G., & Roy,, R. (2002b). Synthesis and protein binding properties of T‐antigen containing glycoPAMAM dendrimers. Bioorganic %26 Medicinal Chemistry, 10, 11–17.
Ballut,, S., Naud‐Martin,, D., Loock,, B., & Maillard,, P. (2011). A strategy for the targeting of photosensitizers. Synthesis, characterization, and photobiological property of porphyrins bearing glycodendrimeric moieties. Journal of Organic Chemistry, 76, 2010–2028.
Bandaru,, N. M., & Hans Voelcker,, N. (2012). Glycoconjugate‐functionalized carbon nanotubes in biomedicine. Journal of Materials Chemistry, 22, 8748–8758.
Banday,, A. H., Jeelani,, S., & Hruby,, V. J. (2014). Cancer vaccine adjuvants‐recent clinical progress and future perspectives. Immunopharmacology and Immunotoxicology, 37, 1–11.
Bay,, S., Fort,, S., Birikaki,, L., Ganneau,, C., Samain,, E., Coïc,, Y.‐M., … Lo‐Man,, R. (2009). Induction of a melanoma‐specific antibody response by a monovalent, but not a divalent, synthetic GM2 neoglycopeptide. ChemMedChem, 4, 582–587.
Bernardi,, A., Jiménez‐Barbero,, J., Casnati,, A., De Castro,, C., Darbre,, T., Fieschi,, F., … Imberty,, A. (2013). Multivalent glycoconjugates as anti‐pathogenic agents. Chemical Society Reviews, 42, 4709–4727.
Bhardwaj,, N. (2007). Harnessing the immune system to treat cancer. Journal of Clinical Investigation, 117, 1130–1136.
Biswas,, S., Medina,, S. H., & Barchi,, J. J., Jr. (2015). Synthesis and cell‐selective antitumor properties of amino acid conjugated tumor‐associated carbohydrate antigen‐coated gold nanoparticles. Carbohydrate Research, 405, 93–101.
Bobisse,, S., Foukas,, P. G., Coukos,, G., & Harari,, A. (2016). Neoantigen‐based cancer immunotherapy. Annals of Translational Medicine, 4, 262–271.
Bojarová,, P., Rosencrantz,, R. R., Elling,, L., & Křen,, V. (2013). Enzymatic glycosylation of multivalent scaffolds. Chemical Society Reviews, 2013(42), 4774–4797.
Brennick,, C. A., George,, M. M., Corwin,, W. L., Srivastava,, P. K., & Ebrahimi‐Nik,, H. (2017). Neoepitopes as cancer immunotherapy targets: Key challenges and opportunities. Immunotherapy, 9, 361–371.
Brinãs,, R. P., Sundgren,, A., Sahoo,, P., Morey,, S., Rittenhouse‐Olson,, K., Wilding,, G. E., … Barchi,, J. J., Jr. (2012). Design and synthesis of multifunctional gold nanoparticles bearing tumor‐associated glycopeptide antigens as potential cancer vaccines. Bioconjugate Chemistry, 23, 1513–1523.
Caminade,, A.‐M., Turrin,, C.‐O., & Majoral,, J.‐P. (2018). Phosphorus dendrimers in biology and nanomedicine [Chapter 9]. Singapore: Pan Stanford Publishing.
Campanero‐Rhodes,, M. A., Sa Palma,, A., Menéndez,, M., & Solís,, D. (2020). Microarray strategies for exploring bacterial surface glycans and their interactions with glycan‐binding proteins. Frontiers in Microbiology, 10, 2909.
Carloni,, R., del Olmo,, N. S., Ortega,, P., Fattori,, A., Gómez,, R., Ottaviani,, M. F., … de la Mata,, F. J. (2019). Exploring the interactions of ruthenium (II) Carbosilane metallodendrimers and precursors with model cell membranes through a dual spin‐label spin‐probe Tectnique using EPR. Biomolecules, 9, 540. https://doi.org/10.3390/biom9100540
Cazet,, A., Julien,, S., Bobowski,, M., Burchell,, J., & Delannoy,, P. (2010). Tumour‐associated carbohydrate antigens in breast cancer. Breast Cancer Research, 12, 2041–2013.
Cazet,, A., Julien,, S., Bobowski,, M., Krzewinski‐Recchi,, M.‐A., Harduin‐Lepers,, A., Groux‐Degroote,, S., & Delannoy,, P. (2010). Consequences of the expression of sialylated antigens in breast cancer. Carbohydrate Research, 345, 1377–1383.
Chabre,, Y. M., & Roy,, R. (2010). Design and creativity in multivalent neoglycoconjugate synthesis. Advances in Carbohydrate Chemistry and Biochemistry, 63, 165–393.
Chabre,, Y. M., & Roy,, R. (2013). Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chemical Society Reviews, 42, 4657–4708.
Chen,, X., & Jensen,, P. E. (2008). The role of B lymphocytes as antigen‐presenting cells. Archivum Immunologiae et Therapiae Experimentalis, 56, 77–83.
Cheng,, Y., Zhao,, L., Li,, Y., & Xu,, T. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future perspectives. Chemical Society Reviews, 40, 2673–2703.
Corthay,, A., Bäcklund,, J., Broddefalk,, J., Michaëlsoon,, E., Goldschmidt,, T. J., Kihlberg,, J., & Holmdahl,, R. (1998). Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen‐induced arthritis. European Journal of Immunology, 28, 2580–2590.
Dag,, A., Omurtag Ozgen,, P. S., & Atasoy,, S. (2019). Glyconanoparticles for targeted tumor therapy of platinum anticancer drug. Biomacromolecules, 20(8), 2962–2972.
Dam,, T. K., Gerken,, T. A., & Brewer,, C. F. (2002). Thermodynamics of multivalent carbohydrate‐lectin cross‐linking interactions: Importance of entropy in the bind and jump mechanism. Biochemistry, 41, 1359–1363.
DeFranco,, A. L. (1997). The complexity of signaling pathways activated by the BCR. Current Opinion in Immunology, 9, 296–308.
Dengjel,, J., & Stevanović,, S. (2006). Naturally presented MHC ligands carrying glycans. Transfusion Medicine and Hemotherapy, 33, 38–44.
Donavan,, R., S., Datti,, A., Baek,, M.‐G., Wu,, Q., Sas,, I. J., Korczak,, B., Berger,, E. G., Roy,, R., Dennis,, J. W. (1992). A solid‐phase glycosyltransferase assay for high‐throughput screening in drug discovery research. Glycoconjugate Journal, 16, 607–615.
Dudler,, T., Altmann,, F., Carballido,, J. M., & Blaser,, K. (1995). Carbohydrate‐dependent, HLA class II‐restricted, human T cell response to the bee venom allergen phospholipase A2 in allergic patients. European Journal of Immunology, 25, 538–542.
Dunn,, G. P., Old,, L. J., & Schreiber,, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2, 137–148.
Dzhambazov,, B., Holmdahl,, M., Yamada,, H., Lu,, S., Vestberg,, M., Holm,, B., … Holmddah,, R. (2005). The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. European Journal of Immunology, 35, 357–366.
El Kazzouli,, S., El Brahmi,, N., Mignani,, S., Bousmina,, M., Zablocka,, M., & Majoral,, J.‐P. (2012). From metallodrugs to metallodendrimers for nanotherapy in oncology: A concise overview. Current Medicinal Chemistry, 19, 4995–5010.
Embgenbroich,, M., & Burgdorf,, S. (2018). Current concepts of antigen cross‐presentation. Frontiers in Immunology, 9, 1643–1653.
Finn,, O. J. (2003). Cancer vaccines: Between the idea and the reality. Nature Reviews. Immunology, 3, 630–641.
Finn,, O. J., & Beatty,, P. L. (2016). Cancer immunoprevention. Current Opinion in Immunology, 39, 52–58.
Finn,, O. J., & Lohmueller,, J. (2017). Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacology Therapy, 178, 31–47.
Franco,, A. (2005). CTL‐based cancer preventive/therapeutic vaccines for carcinomas: Role of tumour‐associated carbohydrate antigens. Immunology, 61, 391–397.
Gaidzik,, N., Westerlind,, U., & Kunz,, H. (2013). The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chemical Society Reviews, 42, 4421–4442.
Galan,, M. C., Dumy,, P., & Renaudet,, O. (2013). Multivalent glyco(cyclo)peptides. Chemical Society Reviews, 42, 4599–4612.
Galili,, U. (2005). The alpha‐gal epitope and the anti‐gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 83, 674–686.
Ganneau,, C., Simenel,, C., Emptas,, E., Courtiol,, T., Coïc,, Y.‐M., Artaud,, C., … Bay,, S. (2017). Large‐scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti‐cancer vaccine candidate. Organic %26 Biomolecular Chemistry, 15, 114–123.
Glinskii,, O. V., Sud,, S., Mossine,, V. V., Mawhinney,, T. P., Anthony,, D. C., Glinsky,, G. V., … Glinsky,, V. V. (2012). Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin‐3 inhibitor lactulose‐L‐leucine. Neoplasia, 14, 65–73.
Glinsky,, G. V., Mossine,, V. V., Price,, J. E., Bielenberg,, D., Glinsky,, V. V., Ananthaswamy,, H. N., & Feather,, M. S. (1996). Inhibition of colony formation in agarose of metastatic human breast carcinoma and melanoma cells by synthetic glycoamine analogs. Clinical %26 Experimental Metastasis, 14, 253–267.
Glithero,, A., Tormo,, J., Haurum,, J. S., Arsequell,, G., Valencia,, G., Edwards,, J., … Elliott,, T. (1999). Crystal structures of two H‐2Db/glycopeptide complexes suggest a molecular basis for CTL cross‐reactivity. Immunity, 10, 63–74.
Golbaghi,, G., & Castonguay,, A. (2020). Rationally designed ruthenium complexes for breast cancer therapy. Molecules, 25, 265.
Govender,, P., Edafe,, F., Makhubela,, B. C. E., Dyson,, P. J., Therrien,, B., & Smith,, G. S. (2014). Neutral and cationic osmium(II)‐arene metallodendrimers: Synthesis, characterization and anticancer activity. Inorganica Chimica Acta, 409, 112–120.
Govender,, P., Riedel,, T., Dyson,, P. J., & Smith,, G. S. (2015). Higher generation cationic N,N‐ruthenium(II)‐ethylene‐glycol‐derived metallodendrimers: Synthesis, characterization and cytotoxicity. The Journal of Organic Chemistry, 799–800, 38–44.
Govender,, P., Sudding,, L. C., Clavel,, C. M., Dyson,, P. J., Therrien,, B., & Smith,, G. S. (2013). The influence of RAPTA moieties on the antiproliferative activity of peripheral‐functionalised poly(salicylaldiminato) metallodendrimers. Dalton Transactions, 42, 1267–1277.
Govender,, P., Therrien,, B., & Smith,, G. S. (2012). Bio‐metallodendrimers—Emerging strategies in metal‐based drug design. European Journal of Inorganic Chemistry, 17, 2853–2862.
Grabchev,, I., Qianb,, X., Bojinov,, V., Xiao,, Y., & Zhang,, W. (2002). Synthesis and photophysical properties of 1,8‐naphthalimide‐labelled PAMAM as PET sensors of protons and of transition metal ions. Polymer, 43, 5731–5736.
Grabchev,, I., Vasileva‐Tonkova,, E., Staneva,, D., Bosch,, P., Kukeva,, R., & Stoyanova,, R. (2018). Impact of cu(II) and Zn(II) ions on the functional properties of new PAMAM metallodendrimers. New Journal of Chemistry, 42, 7853–7862.
Hadrup,, A., Donia,, M., & Straten,, P. T. (2013). Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenvironment, 6, 123–133.
Hakomori,, S. (2002). Glycosylation defining cancer malignancy: New wine in an old bottle. Proceedings of the National Academy of Sciences of the United States of America, 99, 10231–10233.
Heimburg,, J., Yan,, J., Morey,, S., Glinskii,, O. V., Huxley,, V. H., Wild,, L., … Rittenhouse‐Olson,, K. (2006). Inhibition of spontaneous breast cancer metastasis by anti‐Thomsen‐Friedenreich antigen monoclonal antibody JAA‐F11. Neoplasia, 8, 939–948.
Heimburg‐Molinaro,, J., Almogren,, A., Morey,, S., Glinskii,, O. V., Roy,, R., Wilding,, G. E., … Rittenhouse‐Olson,, K. (2009). Development, characterization, and immunotherapeutic use of peptide mimics of the Thomsen‐Friedenreich carbohydrate antigen. Neoplasia, 11, 780–792.
Hockla,, P. F., Wolosiukb,, A., Pérez‐Sáeza,, J. M., Bordonib,, A. V., Crocia,, D. O., Toum‐Terronesb,, Y., … Rabinovich,, G. A. (2016). Glyco‐nano‐oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacological Research, 109, 45–54.
Hołota,, M., Magiera,, J., Michlewska,, S., Kubczak,, M., Sanz del Olmo,, N., García‐Gallego,, S., … Bryszewska,, M. (2019). In vitro anticancer properties of copper metallodendrimers. Biomolecules, 9, 155. https://doi.org/10.3390/biom9040155
Hossain,, M. K., Vartak,, A., Sucheck,, S. J., & Wall,, K. A. (2019). Liposomal fc domain conjugated to a cancer vaccine enhances both humoral and cellular immunity. ACS Omega, 4, 5204–5208.
Houghton,, A. N., & Guevara‐Patiño,, J. A. (2004). Immune recognition of self in immunity against cancer. Journal of Clinical Investigation, 114, 468–471.
Joffre,, O. P., Segura,, E., Savina,, A., & Amigorena,, S. (2012). Cross‐presentation by dendritic cells. Nature Reviews Immunology, 12, 557–569.
Ju,, T., Otto,, V. I., & Cummings,, R. D. (2011). The Tn antigen‐structural simplicity and biological complexity. Angewandte Chemie, International Edition, 50, 1770–1791.
Juarez‐Perez,, E. J., Vinas,, C., Teixidor,, F., Santillan,, R., Farfan,, N., Abreu,, A., … Nunez,, R. (2010). Polyanionic aryl ether metallodendrimers based on cobaltabisdicarbollide derivatives. Photoluminescent properties. Macromolecules, 43, 150–159.
Karmakar,, P., Lee,, K., Sarkar,, S., Wall,, K. A., & Sucheck,, S. J. (2016). Synthesis of a liposomal MUC1 glycopeptide‐based immunotherapeutic and evaluation of the effect of L‐rhamnose targeting on cellular immune responses. Bioconjugate Chemistry, 27, 110–120.
Khanye,, S. D., Gut,, J., Rosenthal,, P. J., Chibale,, K., & Smith,, G. S. (2011). Ferrocenylthiosemicarbazones conjugated to a poly(propyleneimine) dendrimer scaffold: Synthesis and in vitro antimalarial activity. Journal of Organometallic Chemistry, 696, 3296–3300.
Kiessling,, L. L., Gestwicki,, J. E., & Strong,, L. E. (2006). Synthetic multivalent ligands as probes of signal transduction. Angewandte Chemie, International Edition, 45, 2348–2368.
Kiessling,, L. L., & Grim,, G. C. (2013). Glycopolymer probes of signal transduction. Chemical Society Reviews, 42, 4476–4491.
Koganty,, R. R., Yalamati,, D., & Jiang,, Z.‐H. (2008). Glycopeptide‐based cancer vaccines: The role of synthesis and structural definition. ACS Symposium Series, 989, 311–334.
Li,, X., Rao,, X., Cai,, L., Liu,, X., Wang,, H., Wu,, W., … Yi,, W. (2016). Targeting tumor cells by natural anti‐carbohydrate antibodies using rhamnose‐functionalized liposomes. ACS Chemical Biology, 11, 1205–1209.
Liakatos,, A., & Kunz,, H. (2007). Synthetic glycopeptides for the development of cancer vaccines. Current Opinion in Molecular Therapy, 9, 35–44.
Liu,, B., Lu,, X., Ruan,, H., Cui,, J., & Li,, H. (2016). Synthesis and applications of glyconanoparticles. Current Organic Chemistry, 20, 1502–1511.
Liu,, K., Xu,, Z., & Yin,, M. (2015). Perylenediimide‐cored dendrimers and their bioimagingand gene delivery applications. Progress in Polymer Science, 46, 25–54.
Mahanta,, C. S., Bhavsar,, R., Dash,, B. P., & Satapathy,, R. (2018). Cobaltabisdicarbollide based metallodendrimers with cyclotriphosphazene core. The Journal of Organic Chemistry, 865, 183–188.
Malaker,, S. A., Ferracane,, M., Depontieu,, F. R., Zarling,, A., Shabanowitz,, J., Bai,, D. L., … Hunt,, D. F. (2017). Identification and characterization of complex glycosylated peptides presented by the MHC class II processing pathway in melanoma. Journal of Proteome Research, 16, 228–237.
Maroto‐Díaz,, M., Elie,, B. T., Gómez‐Sal,, P., Pérez‐Serrano,, J., Gómez,, R., Contel,, M., & de la Mata,, F. J. (2016). Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(II) complexes. Dalton Transactions, 45, 7049–7066.
Marradi,, M., Chiodo,, F., Garcia,, I., & Penades,, S. (2013). Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 42, 4728–4745.
Martínez,, I., Ortiz Mellet,, C., & García Fernández,, J. M. (2013). Cyclodextrin‐based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 42, 4746–4773.
Martínez‐Riaño,, A., Bovolenta,, E. R., Mendoza,, P., Oeste,, C. L., Martín‐Bermejo,, M. J., Bovolenta,, P., … Alarcón,, B. (2018). Antigen phagocytosis by B cells is required for a potent humoral response. EMBO Reports, 19, e46016.
Melero,, I., Gaudernack,, G., Gerritsen,, W., Huber,, C., Parmiani,, G., Thatcher,, N., … Mellstedt,, H. (2014). Therapeutic vaccines for cancer: An overview of clinical trials. Nature Reviews. Clinical Oncology, 11, 509–524.
Michlewska,, S., Ionov,, M., Shcharbin,, D., Maroto‐Díaz,, M., Ramirez,, R. G., de la Mata,, F. J., & Bryszewska,, M. (2017). Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). European Polymer Journal, 87, 39–47.
Nierengarten,, I., & Nierengarten,, J.‐F. (2014). Fullerene sugar balls: A new class of biologically active fullerene derivatives. Chemistry Asian Journal, 9, 1436–1444.
Ostroumov,, D., Fekete‐Drimusz,, N., Saborowski,, M., Kühnel,, F., & Woller,, N. (2018). CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cellular and Molecular Life Sciences, 75, 689–713.
Ozawa,, C., Katayama,, H., Hojo,, H., Nakahara,, Y., & Nakahara,, Y. (2008). Efficient sequential segment coupling using N‐alkylcysteine assisted thioesterification for glycopeptide dendrimer synthesis. Organic Letters, 10, 3531–3533.
Palcic,, M. M., Li,, H., Zanini,, D., Bhella,, R. S., & Roy,, R. (1998). Chemoenzymatic synthesis of dendritic sialyl Lewis x. Carbohydrate Research, 305, 433–442.
Pashov,, A., Monzavi‐Karbassi,, B., Raghava,, G. P. S., & Kieber‐Emmons,, T. (2010). Bridging innate and adaptive antitumor immunity targeting glycans. Journal of Biomedicine and Biotechnology, 2010, 354068. https://doi.org/10.1155/2010/354068
Pashov,, A. D., Monzavi‐Karbassi,, B., & Kieber‐Emmons,, T. (2011). Glycan mediated immune responses to tumor cells. Human Vaccines, 7, 156–165.
Percec,, V., Leowanawat,, P., Sun,, H.‐J., Kulikov,, O., Nusbaum,, C. D., Tran,, T. M., … Heiney,, P. A. (2013). Modular synthesis of amphiphilic Janus glycodendrimers and their self‐assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. Journal of the American Chemical Society, 135, 9055–9077.
Peri,, F. (2013). Clustered carbohydrates in synthetic vaccines. Chemical Society Reviews, 42, 4543–4556.
Pifferi,, C., Thomas,, B., Goyard,, D., Berthet,, N., & Renaudet,, O. (2017). Heterovalent glycodendrimers as epitope carriers for antitumor synthetic vaccines. Chemistry A European Journal, 23, 16283–16296.
Qiao,, Y., Wan,, J., Zhou,, L., Ma,, W., Yang,, Y., Luo,, W., … Wang,, H. (2019). Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomedicine and Nanobiotechnology, 11, e1527.
Renaudet,, O., & Roy,, R. (2013). Multivalent scaffolds in glycoscience: An overview. Chemical Society Reviews, 42, 4515–4517.
Reynolds,, M., & Pérez,, S. (2011). Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie, 14, 74–95.
Rittenhouse‐Diakun,, K., Xia,, Z., Pickhardt,, D., Baek,, M.‐G., & Roy,, R. (1998). Development and characterization of monoclonal antibody to T‐antigen: (Galβ1‐3GalNAc‐a‐O). Hybridoma, 17, 165–173.
Rosenbaum,, P., Artaud,, C., Bay,, S., Ganneau,, C., Campone,, M., Delaloge,, S., … Leclerc,, C. (2020). The fully synthetic glycopeptide MAG‐Tn3 therapeutic vaccine induces tumor‐specific cytotoxic antibodies in breast cancer patients. Cancer Immunology, Immunotherapy, 69(5), 703–716.
Roy,, R. (1996a). Design and synthesis of glycoconjugates. In S. H. Khan, & R. A. O`Neil, (Eds.), Modern Methods in Carbohydrate Synthesis (pp. 378–402). Amsterdam: Harwood Academic.
Roy,, R. (1996b). Synthesis and some applications of chemically defined multivalent glycoconjugates. Current Opinion in Structural Biology, 6, 692–702.
Roy,, R. (2003). A decade of glycodendrimer chemistry. Trends in Glycoscience and Glycotechnology, 15, 291–310.
Roy,, R. (2004). New trends in carbohydrate‐based vaccines. Drug Discovery Today: Technologies, 1, 327–336.
Roy,, R., Baek,, M.‐G., & Rittenhouse‐Olson,, K. (2001). Synthesis ofN,N′‐bis(Acrylamido)acetic acid‐based T‐antigen Glycodendrimers and their mouse monoclonal IgG antibody binding properties. Journal of the American Chemical Society, 123, 1809–1816.
Roy,, R., & Shiao,, T. C. (2011). Organic chemistry and immunochemical strategies in the design of potent carbohydrate‐based vaccines. Chimia, 65, 24–29.
Roy,, R., Shiao,, T. C., & Rittenhouse‐Olson,, K. (2013). Glycodendrimers: Versatile tools for nanotechnology. Brazilian Journal of Pharmaceutical Sciences, 49, 85–108.
Sanginario,, A., Miccoli,, B., & Demarchi,, D. (2017). Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors, 7, 9. https://doi.org/10.3390/bios7010009
Sansone,, F., & Casnati,, A. (2013). Multivalent glycocalixarenes for recognition of biological macromolecules: Glycocalyx mimics capable of multitasking. Chemical Society Reviews, 42, 4623–4639.
Sanz del Olmo,, N., Carloni,, R., Bajo,, A. M., Ortega,, P., Gómez,, A. F. R., Ottaviani,, M. F., … de la Mata,, F. J. (2019). Insight into the antitumor activity of carbosilane cu(II)–metallodendrimers through their interaction with biological membrane models. Nanoscale, 11, 13330–13342.
Sanz del Olmo,, N., Maroto‐Díaz,, M., Gómez,, R., Ortega,, P., Cangiotti,, M., Ottaviani,, M. F., & de la Mata,, F. J. (2017). Carbosilane metallodendrimers based on copper (II) complexes: Synthesis, EPR characterization and anticancer activity. Journal of Inorganic Biochemistry, 177, 211–218.
Sarkar,, S., Lombardo,, S.A., Herner,, D.N., Talan,, R.S., Wall,, K.A., & Sucheck, S. J (2010). Synthesis of a single‐molecule L‐rhamnose‐containing three‐component vaccine and evaluation of antigenicity in the presence of anti‐L‐rhamnose antibodies. Journal of the American Chemical Society, 132, 17236–17246.
Sarkar,, S., Salyer,, A. C. D., Wall,, K. A., & Sucheck,, S. J. (2013). Synthesis and immunological evaluation of a MUC1 glycopeptide incorporated into L‐rhamnose displaying liposomes. Bioconjugate Chemistry, 24, 363–375.
Sebestik,, J., Niederhafner,, P., & Jezek,, J. (2011). Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids, 40, 301–370.
Sharma,, P., & Allison,, J. P. (2015). The future of immune checkpoint therapy. Science, 348, 56–61.
Shiao,, T. C., & Roy,, R. (2012). Glycodendrimers as functional antigens and antitumorales vaccines. New Journal of Chemistry, 36, 324–339.
Solís,, D., Bovin,, N. V., Davis,, A. P., Jiménez‐Barbero,, J., Romero,, A., Roy,, R., … Gabius,, H.‐J. (2015). A guide into glycosciences: How chemistry and biochemistry cooperate to crack the sugar code. Biochimica et Biophysica Acta, 1850, 186–235.
Speir,, J. A., Abdel‐Motal,, U. M., Jondal,, M., & Wilson,, I. A. (1999). Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate‐specific CTL. Immunity, 10, 51–61.
Springer,, G. F. (1984). T and Tn, general carcinoma autoantigens. Science, 224, 1198–1206.
Staneva,, D., Grabchev,, I., Bosch,, P., Vasileva‐Tonkova,, E., Kukeva,, R., & Stoyanova,, R. (2018). Synthesis, characterization and antimicrobial activity of polypropylenamine metallodendrimers modified with 1,8‐naphthalimides. Journal of Molecular Structure, 1164, 363–369.
Suzuki,, M., Kato,, C., & Kato,, A. (2015). Therapeutic antibodies: Their mechanisms of action and the pathological findings they induce in toxicity studies. Journal of Toxicologic Pathology, 28, 133–139.
Tarp,, M. A., Sorensen,, A. L., Mandel,, U., Paulsen,, H., Burchell,, J., Taylor‐Papadimitriou,, J., & Clausen,, H. (2007). Identification of a novel cancer‐specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology, 17, 197–209.
Touaibia,, M., & Roy,, R. (2007). Application of multivalent mannosylated dendrimers in glycobiology. In J. P. Kamerling, (Ed.), Comprehensive Glycoscience (Vol. 3, pp. 821–870). Amsterdam: Elsevier.
Trant,, J. F., Jain,, N., Mazzuca,, D. M., McIntosh,, J. T., Fan,, B., Haeryfar,, S. M., … Gillies,, E. R. (2016). Synthesis, self‐assembly, and immunological activity of α‐galactose‐functionalized dendron‐lipid amphiphiles. Nanoscale, 8, 17694–17704.
Treanor,, B. (2012). B‐cell receptor: From resting state to activate. Immunology, 136, 21–27.
Tsou,, P., Katayama,, H., Ostrin,, E. J., & Hanash,, S. M. (2016). The emerging role of B cells in tumor immunity. Cancer Research, 76, 5597–5601.
Verez‐Bencomo,, V., Fernández‐Santana,, V., Hardy,, E., Toledo,, M. E., Rodríguez,, M. C., Heynngnezz,, L., … Roy,, R. (2004). A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science, 305, 522–525.
Wei,, S. C., Duffy,, C. R., & Allison,, J. P. (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery, 8, 1069–1086.
Wu,, P., Chen,, X., Hu,, N., Tam,, U. C., Blixt,, O., Zettl,, A., & Bertozzi,, C. R. (2008). Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angewandte Chemie International Edition, 47, 5022–5025.
Xu,, Y., Gendler,, S. J., & Franco,, A. (2004). Designer glycopeptides for cytotoxic T cell‐based elimination of carcinomas. Journal of Experimental Medicine, 199, 707–716.
Yang,, J., & Reth,, M. (2016). Receptor dissociation and B‐cell activation. Current Topics in Microbiology and Immunology, 393, 27–43.
Yilmaza,, G., & Becer,, C. R. (2015). Glyconanoparticles and their interactions with lectins. Polymer Chemistry, 6, 5503–5514.
Yin,, Z., & Huang,, X. (2012). Recent development in carbohydrate based anti‐cancer vaccines. Journal of Carbohydrate Chemistry, 31, 143–186.
Zhao,, C.‐M., Wang,, K.‐R., Wang,, C., He,, X., & Li,, X.‐L. (2019). Cooling‐induced NIR emission enhancement and targeting fluorescence imaging of biperylene monoimide and glycodendrimer conjugates. ACS Macro Letters, 8, 381–386.