Agathokleous,, E., Feng,, Z., Iavicoli,, L., & Calabrese,, E. J. (2020). Nano‐pesticides: A great challenge for biodiversity? The need for a broader perspective. Nano Today, 30, 100808. https://doi.org/10.1016/j.nantod.2019.100808
Ahmad,, F., Wang,, X., Jiang,, Z., Yu,, X., Liu,, X., Mao,, R., … Li,, W. (2019). Codoping enhanced radioluminescence of nanoscintillators for X‐ray‐activated synergistic cancer therapy and prognosis using metabolomics. ACS Nano, 13(9), 10419–10433. https://doi.org/10.1021/acsnano.9b04213
Albarqi,, H., Wong,, L., Schumann,, C., Sabei,, F., Korzun,, T., Li,, X., … Taratula,, O. (2019). Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano, 13(6), 6383–6395. https://doi.org/10.1021/acsnano.8b06542
Beik,, J., Khateri,, M., Khosravi,, Z., Kamrava,, S. K., Kooranifar,, S., Ghaznavi,, H., & Shakeri‐Zadeh,, A. (2019). Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews, 387, 299–324. https://doi.org/10.1016/j.ccr.2019.02.025
Borden,, E. C. (2019). Interferons α and β in cancer: Therapeutic opportunities from new insights. Nature Reviews Drug Discovery, 18, 219–234. https://doi.org/10.1038/s41573-018-0011-2
Bordet,, A., Landis,, R. F., Lee,, Y., Tonga,, G. Y., Asensio,, J. M., Li,, C., … Chaudret,, B. (2019). Water‐dispersible and biocompatible iron carbide nanoparticles with high specific absorption rate. ACS Nano, 13(3), 2870–2878. https://doi.org/10.1021/acsnano.8b05671
Bray,, F., Ferlay,, J., Soerjomataram,, I., Siegel,, R. L., Torre,, L. A., & Jemal,, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
Cai,, Y., Wei,, Z., Song,, C., Tang,, C., Han,, W., & Dong,, X. (2019). Optical nano‐agents in the second near‐infrared window for biomedical applications. Chemical Society Reviews, 48(1), 22–37. https://doi.org/10.1039/c8cs00494c
Cao,, H., Wang,, L., Yang,, Y., Li,, J., Qi,, Y., Li,, Y., … Li,, J. (2018). An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy. Angewandte Chemie International Edition, 57(26), 7759–7763. https://doi.org/10.1002/anie.201802497
Cao,, S., Fan,, J., Sun,, W., Li,, F., Li,, K., Tai,, X., & Peng,, X. (2019). A novel Mn‐cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 55(86), 12956–12959. https://doi.org/10.1039/c9cc06040e
Chang,, Y., He,, L., Li,, Z., Zeng,, L., Song,, Z., Li,, P., … Chen,, T. (2017). Designing core‐shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano, 11(5), 4848–4858. https://doi.org/10.1021/acsnano.7b01346
Chen,, J., Luo,, H., Liu,, Y., Zhang,, W., Li,, H., Luo,, T., … Liu,, J. (2017). Oxygen‐self‐produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 11(12), 12849–12862. https://doi.org/10.1021/acsnano.7b08225
Chen,, L., Zhou,, X., & He,, C. (2019). Mesoporous silica nanoparticles for tissue‐engineering applications. WIREs Nanomedicine and Nanobiotechnology, 11(6), e1573. https://doi.org/10.1002/wnan.1573
Chen,, M., Zhang,, X., Liu,, J., Liu,, F., Zhang,, R., Wei,, P., … Tang,, B. (2020). Evoking photothermy by capturing intramolecular bond stretching vibration‐induced dark‐state energy. ACS Nano, 14(4), 4265–4275. https://doi.org/10.1021/acsnano.9b09625
Chen,, Q., Chen,, J., Yang,, Z., Xu,, J., Xu,, L., Liang,, C., … Liu,, Z. (2019). Nanoparticle‐enhanced radiotherapy to trigger robust cancer immunotherapy. Advanced Materials, 31(10), 1802228. https://doi.org/10.1002/adma.201802228
Chen,, Q., Feng,, L., Liu,, J., Zhu,, W., Dong,, Z., Wu,, Y., & Liu,, Z. (2016). Intelligent albumin‐MnO2 nanoparticles as pH‐/H2O2‐responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Advanced Materials, 28(33), 7129–7136. https://doi.org/10.1002/adma.201601902
Chen,, Q., Huang,, G., Wu,, W., Wang,, J., Hu,, J., Mao,, J., … Tang,, G. (2020). A hybrid eukaryotic‐prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Advanced Materials, 32(16), 1908185. https://doi.org/10.1002/adma.201908185
Chen,, Q., Luo,, Y., Du,, W., Liu,, Z., Zhang,, S., Yang,, J., … Chen,, H. (2019). Clearable theranostic platform with a pH‐independent chemodynamic therapy enhancement strategy for synergetic photothermal tumor therapy. ACS Applied Materials %26 Interfaces, 11(20), 18133–18144. https://doi.org/10.1021/acsami.9b02905
Chen,, Q., Xu,, L., Liang,, C., Wang,, C., Peng,, R., & Liu,, Z. (2016). Photothermal therapy with immune‐adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 7, 13193. https://doi.org/10.1038/ncomms13193
Chen,, Q., Zhou,, J., Chen,, Z., Luo,, Q., Xu,, J., & Song,, G. (2019). Tumor‐specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials %26 Interfaces, 11(34), 30551–30565. https://doi.org/10.1021/acsami.9b09323
Chen,, W., Ouyang,, J., Liu,, H., Chen,, M., Zeng,, K., Sheng,, J., … Guo,, S. (2017). Black phosphorus nanosheet‐based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Advanced Materials, 29(5), 1603864. https://doi.org/10.1002/adma.201603864
Chen,, X., Song,, J., Chen,, X., & Yang,, H. (2019). X‐ray‐activated nanosystems for theranostic applications. Chemical Society Reviews, 48(11), 3073–3101. https://doi.org/10.1039/c8cs00921j
Chen,, X., Zhang,, H., Zhang,, M., Zhao,, P., Song,, R., Gong,, T., … Bu,, W. (2019). Amorphous Fe‐based nanoagents for self‐enhanced chemodynamic therapy by re‐establishing tumor acidosis. Advanced Functional Materials, 30(6), 1908365. https://doi.org/10.1002/adfm.201908365
Chen,, Y., Li,, Z., Pan,, P., Hu,, J., Cheng,, S., & Zhang,, X. (2020). Tumor‐microenvironment‐triggered ion exchange of a metal‐organic framework hybrid for multimodal imaging and synergistic therapy of tumors. Advanced Materials, 32, 2001452. https://doi.org/10.1002/adma.202001452
Chen,, Z., Liu,, L., Liang,, R., Luo,, Z., He,, H., Wu,, Z., … Cai,, L. (2018). Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti‐tumor immunity and abscopal effect. ACS Nano, 12(8), 8633–8645. https://doi.org/10.1021/acsnano.8b04371
Cheng,, H., Zhu,, J., Li,, S., Zeng,, J., Lei,, Q., Chen,, K., … Zhang,, X. (2016). An O2 self‐sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Advanced Functional Materials, 26(43), 7847–7860. https://doi.org/10.1002/adfm.201603212
Cheng,, L., Liu,, J., Gu,, X., Gong,, H., Shi,, X., Liu,, T., … Liu,, Z. (2014). PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual‐modal ct/photoacoustic imaging guided photothermal therapy. Advanced Materials, 26(12), 1886–1893. https://doi.org/10.1002/adma.201304497
Cheng,, L., Shen,, S., Shi,, S., Yi,, Y., Wang,, X., Song,, G., … Liu,, Z. (2016). FeSe2‐decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator‐free 64Cu‐labeling and multimodal image‐guided photothermal‐radiation therapy. Advanced Functional Materials, 26(13), 2185–2197. https://doi.org/10.1002/adfm.201504810
Cheng,, L., Yuan,, C., Shen,, S., Yi,, X., Gong,, H., Yang,, K., & Liu,, Z. (2015). Bottom‐up synthesis of metal‐ion‐doped WS2 nanoflakes for cancer theranostics. ACS Nano, 9(11), 11090–11101. https://doi.org/10.1021/acsnano.5b04606
Cheng,, Y., Cheng,, H., Jiang,, C., Qiu,, X., Wang,, K., Huan,, W., … Hu,, Y. (2015). Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nature Communications, 6, 8785. https://doi.org/10.1038/ncomms9785
Chu,, C., Lin,, H., Liu,, H., Wang,, X., Wang,, J., Zhang,, P., … Chen,, X. (2017). Tumor microenvironment‐triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 29(23), 1605928. https://doi.org/10.1002/adma.201605928
Cline,, B., Delahunty,, I., & Xie,, J. (2019). Nanoparticles to mediate X‐ray‐induced photodynamic therapy and cherenkov radiation photodynamic therapy. WIREs Nanomedicine and Nanobiotechnology, 11(2), 1541. https://doi.org/10.1002/wnan.1541
Cui,, X., Han,, X., Yu,, L., Zhang,, B., & Chen,, Y. (2019). Intrinsic chemistry and design principle of ultrasound‐responsive nanomedicine. Nano Today, 28, 100773. https://doi.org/10.1016/j.nantod.2019.100773
Dai,, C., Zhang,, S. J., Liu,, Z., Wu,, R., & Chen,, Y. (2017). Two‐dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 11(9), 9467–9480. https://doi.org/10.1021/acsnano.7b05215
Deng,, X., Liang,, S., Cai,, X., Huang,, S., Cheng,, Z., Shi,, Y., … Lin,, J. (2019). Yolk‐shell structured au nanostar@metal‐organic framework for synergistic chemo‐photothermal therapy in the second near‐infrared window. Nano Letters, 19(10), 6772–6780. https://doi.org/10.1021/acs.nanolett.9b01716
Detappe,, A., Thomas,, E., Tibbitt,, M. W., Kunjachan,, S., Zavidij,, O., Parnandi,, N., … Berbeco,, R. (2017). Ultrasmall silica‐based bismuth gadolinium nanoparticles for dual magnetic resonance‐computed tomography image guided radiation therapy. Nano Letters, 17(3), 1733–1740. https://doi.org/10.1021/acs.nanolett.6b05055
Dibaba,, S. T., Caputo,, R., Xi,, W., Zhang,, J. Z., Wei,, R., Zhang,, Q., … Sun,, L. (2019). NIR light‐degradable antimony nanoparticle‐based drug‐delivery nanosystem for synergistic chemo‐photothermal therapy in vitro. ACS Applied Materials %26 Interfaces, 11(51), 48290–48299. https://doi.org/10.1021/acsami.9b20249
Ding,, B., Shao,, S., Yu,, C., Teng,, B., Wang,, M., Cheng,, Z., … Lin,, J. (2018). Large‐pore mesoporous‐silica‐coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Advanced Materials, 30(52), 1802479. https://doi.org/10.1002/adma.201802479
Dong,, C., Jiang,, Q., Qian,, X., Wu,, W., Wang,, W., Yu,, L., & Chen,, Y. (2020). A self‐assembled carrier‐free nanosonosensitizer for photoacoustic imaging‐guided synergistic chemo‐sonodynamic cancer therapy. Nanoscale, 12(9), 5587–5600. https://doi.org/10.1039/c9nr10735e
Dong,, L., Ji,, G., Liu,, Y., Xu,, X., Lei,, P., Du,, K., … Zhang,, H. (2018). Multifunctional Cu‐Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging‐guided photothermal therapy in vivo. Nanoscale, 10(2), 825–831. https://doi.org/10.1039/c7nr07263e
Dong,, L., Zhang,, P., Liu,, X., Deng,, R., Du,, K., Feng,, J., & Zhang,, H. (2019). Renal clearable Bi‐Bi2S3 heterostructure nanoparticles for targeting cancer theranostics. ACS Applied Materials %26 Interfaces, 11(8), 7774–7781. https://doi.org/10.1021/acsami.8b21280
Dong,, S., Chen,, Y., Yu,, L., Lin,, K., & Wang,, X. (2019). Magnetic hyperthermia–synergistic H2O2 self‐sufficient catalytic suppression of osteosarcoma with enhanced bone‐regeneration bioactivity by 3d‐printing composite scaffolds. Advanced Functional Materials, 30(4), 1907071. https://doi.org/10.1002/adfm.201907071
Dou,, Y., Guo,, Y., Li,, X., Li,, X., Wang,, S., Wang,, L., … Chang,, J. (2016). Size‐tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano, 10(2), 2536–2548. https://doi.org/10.1021/acsnano.5b07473
Du,, J., Gu,, Z., Yan,, L., Yong,, Y., Yi,, X., Zhang,, X., … Zhao,, Y. (2017). Poly(vinylpyrollidone)‐and selenocysteine‐modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Advanced Materials, 29(34), 1701268. https://doi.org/10.1002/adma.201701268
Du,, Y., Jiang,, Q., Beziere,, N., Song,, L., Zhang,, Q., Peng,, D., … Tian,, J. (2016). DNA‐nanostructure‐gold‐nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Advanced Materials, 28(45), 10000–10007. https://doi.org/10.1002/adma.201601710
Du,, Z., Zhang,, X., Guo,, Z., Xie,, J., Dong,, X., Zhu,, S., … Zhao,, Y. (2018). X‐ray‐controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization. Advanced Materials, 30(43), 1804046. https://doi.org/10.1002/adma.201804046
DuRoss,, A. N., Neufeld,, M. J., Rana,, S., Thomas,, C. R., Jr., & Sun,, C. (2019). Integrating nanomedicine into clinical radiotherapy regimens. Advanced Drug Delivery Reviews, 144, 35–56. https://doi.org/10.1016/j.addr.2019.07.002
Espinosa,, A., Kolosnjaj‐Tabi,, J., Abou‐Hassan,, A., Plan Sangnier,, A., Curcio,, A., Silva,, A. K. A., … Wilhelm,, C. (2018). Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Advanced Functional Materials, 28(37), 1803660. https://doi.org/10.1002/adfm.201803660
Fan,, H., Yan,, G., Zhao,, Z., Hu,, X., Zhang,, W., Liu,, H., … Tan,, W. (2016). A smart photosensitizer‐manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angewandte Chemie International Edition, 55(18), 5477–5482. https://doi.org/10.1002/anie.201510748
Fan,, J., Peng,, M., Wang,, H., Zheng,, H., Liu,, Z., Li,, C., … Zhang,, X. (2019). Engineered bacterial bioreactor for tumor therapy via Fenton‐like reaction with localized H2O2 generation. Advanced Materials, 31(16), 1808278. https://doi.org/10.1002/adma.201808278
Fan,, W., Bu,, W., Shen,, B., He,, Q., Cui,, Z., Liu,, Y., … Shi,, J. (2015). Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH‐/H2O2‐responsive UCL imaging and oxygen‐elevated synergetic therapy. Advanced Materials, 27(28), 4155–4161. https://doi.org/10.1002/adma.201405141
Fan,, W., Bu,, W., & Shi,, J. (2016). On the latest three‐stage development of nanomedicines based on upconversion nanoparticles. Advanced Materials, 28(21), 3987–4011. https://doi.org/10.1002/adma.201505678
Fan,, W., Tang,, W., Lau,, J., Shen,, Z., Xie,, J., Shi,, J., & Chen,, X. (2019). Breaking the depth dependence by nanotechnology‐enhanced X‐ray‐excited deep cancer theranostics. Advanced Materials, 31(12), 1806381. https://doi.org/10.1002/adma.201806381
Fan,, W., Yung,, B., Huang,, P., & Chen,, X. (2017). Nanotechnology for multimodal synergistic cancer therapy. Chemical Reviews, 117(22), 13566–13638. https://doi.org/10.1021/acs.chemrev.7b00258
Fang,, C., Deng,, Z., Cao,, G., Chu,, Q., Wu,, Y., Li,, X., … Han,, G. (2020). Co–ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Advanced Functional Materials, 30(16), 1910085. https://doi.org/10.1002/adfm.201910085
Feng,, W., Han,, X., Wang,, R., Gao,, X., Hu,, P., Yue,, W., … Shi,, J. (2019). Nanocatalysts‐augmented and photothermal‐enhanced tumor‐specific sequential nanocatalytic therapy in both NIR‐I and NIR‐I biowindows. Advanced Materials, 31(5), 1805919. https://doi.org/10.1002/adma.201805919
Feng,, W., Wang,, R., Zhou,, Y., Ding,, L., Gao,, X., Zhou,, B., … Chen,, Y. (2019). Ultrathin molybdenum carbide Mxene with fast biodegradability for highly efficient theory‐oriented photonic tumor hyperthermia. Advanced Functional Materials, 29(22), 1901942. https://doi.org/10.1002/adfm.201901942
Ferreira,, C. A., Ni,, D., Rosenkrans,, Z. T., & Cai,, W. (2019). Radionuclide‐activated nanomaterials and their biomedical applications. Angewandte Chemie International Edition, 58(38), 13232–13252. https://doi.org/10.1002/anie.201900594
Fu,, J., Li,, T., Zhu,, Y., & Hao,, Y. (2019). Ultrasound‐activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors. Advanced Functional Materials, 29(51), 1906195. https://doi.org/10.1002/adfm.201906195
Gandia,, D., Gandarias,, L., Rodrigo,, I., Robles‐Garcia,, J., Das,, R., Garaio,, E., … Fdez‐Gubieda,, M. L. (2019). Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small, 15(41), 1902626. https://doi.org/10.1002/smll.201902626
Gao,, S., Li,, T., Guo,, Y., Sun,, C., Xianyu,, B., & Xu,, H. (2020). Selenium‐containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Advanced Materials, 32(12), 1907568. https://doi.org/10.1002/adma.201907568
Gao,, S., Lin,, H., Zhang,, H., Yao,, H., Chen,, Y., & Shi,, J. (2019). Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme‐catalyzed cascade reaction. Advanced Science, 6(3), 1801733. https://doi.org/10.1002/advs.201801733
Gao,, S., Lu,, X., Zhu,, P., Lin,, H., Yu,, L., Yao,, H., … Shi,, J. (2019). Self‐evolved hydrogen peroxide boosts photothermal‐promoted tumor‐specific nanocatalytic therapy. Journal of Materials Chemistry B, 7(22), 3599–3609. https://doi.org/10.1039/c9tb00525k
Gao,, S., Zhang,, W., Wang,, R., Hopkins,, S. P., Spagnoli,, J. C., Racin,, M., … Kumar,, A. (2020). Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. ACS Nano, 14(2), 1468–1481. https://doi.org/10.1021/acsnano.9b05976
Gao,, X., Cui,, Y., Levenson,, R. M., Leland,, W. K. C., & Nie,, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976. https://doi.org/10.1038/nbt994
Gilson,, R. C., Black,, K. C. L., Lane,, D. D., & Achilefu,, S. (2017). Hybrid TiO2‐ruthenium nano‐photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angewandte Chemie International Edition, 56(36), 10717–10720. https://doi.org/10.1002/anie.201704458
Gong,, F., Cheng,, L., Yang,, N., Betzer,, O., Feng,, L., Zhou,, Q., … Liu,, Z. (2019). Ultrasmall oxygen‐deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Advanced Materials, 31(23), 1900730. https://doi.org/10.1002/adma.201900730
Gong,, T., Li,, Y., Lv,, B., Wang,, H., Liu,, Y., Yang,, W., … Bu,, W. (2020). Full‐process radiosensitization based on nanoscale metal‐organic frameworks. ACS Nano, 14(3), 3032–3040. https://doi.org/10.1021/acsnano.9b07898
Gulzar,, A., Xu,, J., Wang,, C., He,, F., Yang,, D., Gai,, S., … Xing,, B. (2019). Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 26, 16–56. https://doi.org/10.1016/j.nantod.2019.03.007
Guo,, Z., Zhu,, S., Yong,, Y., Zhang,, X., Dong,, X., Du,, J., … Zhao,, Y. (2017). Synthesis of bsa‐coated BiOI@Bi2Se3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Advanced Materials, 29(44), 1704136. https://doi.org/10.1002/adma.201704136
Han,, X., Huang,, J., Jing,, X., Yang,, D., Lin,, H., Wang,, Z., … Chen,, Y. (2018). Oxygen‐deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared‐II biowindow. ACS Nano, 12(5), 4545–4555. https://doi.org/10.1021/acsnano.8b00899
He,, C., Duan,, X., Guo,, N., Chan,, C., Poon,, C., Weichselbaum,, R. R., & Lin,, W. (2016). Core‐shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nature Communications, 7, 12499. https://doi.org/10.1038/ncomms12499
He,, S., Jiang,, Y., Li,, J., & Pu,, K. (2020). Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angewandte Chemie International Edition, 59, 2–8. https://doi.org/10.1002/anie.202003004
Hou,, J., Wang,, H., Ge,, Z., Zuo,, T., Chen,, Q., Liu,, X., … Wang,, L. (2020). Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Letters, 20(2), 1447–1454. https://doi.org/10.1021/acs.nanolett.9b05218
Hsu,, C., Lin,, S., & Chang,, C. (2018). Lanthanide‐doped core‐shell‐shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X‐ray excitation source. ACS Applied Materials %26 Interfaces, 10(9), 7859–7870. https://doi.org/10.1021/acsami.8b00015
Hu,, D., Zhong,, L., Wang,, M., Li,, H., Qu,, Y., Liu,, Q., … Qian,, Z. (2019). Perfluorocarbon‐loaded and redox‐activatable photosensitizing agent with oxygen supply for enhancement of fluorescence/photoacoustic imaging guided tumor photodynamic therapy. Advanced Functional Materials, 29(9), 1806199. https://doi.org/10.1002/adfm.201806199
Hu,, P., Fu,, Z., Liu,, G., Tan,, H., Xiao,, J., Shi,, H., & Cheng,, D. (2019). Gadolinium‐based nanoparticles for theranostic MRI‐guided radiosensitization in hepatocellular carcinoma. Frontiers in Bioengineering and Biotechnology, 7, 368. https://doi.org/10.3389/fbioe.2019.00368
Hu,, R., Fang,, Y., Huo,, M., Yao,, H., Wang,, C., Chen,, Y., & Wu,, R. (2019). Ultrasmall Cu2‐xS nanodots as photothermal‐enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR‐II biowindow. Biomaterials, 206, 101–114. https://doi.org/10.1016/j.biomaterials.2019.03.014
Hu,, Y., Lv,, T., Ma,, Y., Xu,, J., Zhang,, Y., Hou,, Y., … Ding,, Y. (2019). Nanoscale coordination polymers for synergistic no and chemodynamic therapy of liver cancer. Nano Letters, 19(4), 2731–2738. https://doi.org/10.1021/acs.nanolett.9b01093
Huang,, P., Qian,, X., Chen,, Y., Yu,, L., Lin,, H., Wang,, L., … Shi,, J. (2017). Metalloporphyrin‐encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging‐guided sonodynamic cancer therapy. Journal of the American Chemical Society, 139(3), 1275–1284. https://doi.org/10.1021/jacs.6b11846
Huo,, M., Wang,, L., Chen,, Y., & Shi,, J. (2017). Tumor‐selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 8(1), 357. https://doi.org/10.1038/s41467-017-00424-8
Jang,, B., Kwon,, H., Katila,, P., Lee,, S. J., & Lee,, H. (2016). Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Advanced Drug Delivery Reviews, 98, 113–133. https://doi.org/10.1016/j.addr.2015.10.023
Jia,, Q., Ge,, J., Liu,, W., Zheng,, X., Chen,, S., Wen,, Y., … Wang,, P. (2018). A magnetofluorescent carbon dot assembly as an acidic H2O2‐driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Advanced Materials, 30(13), 1706090. https://doi.org/10.1002/adma.201706090
Jiang,, L., Bai,, H., Liu,, L., Lv,, F., Ren,, X., & Wang,, S. (2019). Luminescent, oxygen‐supplying, hemoglobin‐linked conjugated polymer nanoparticles for photodynamic therapy. Angewandte Chemie International Edition, 58(31), 10660–10665. https://doi.org/10.1002/anie.201905884
Jiang,, W., Li,, Q., Xiao,, L., Dou,, J., Liu,, Y., Yu,, W., … Wang,, J. (2018). Hierarchical multiplexing nanodroplets for imaging‐guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano, 12(6), 5684–5698. https://doi.org/10.1021/acsnano.8b01508
Jiang,, X., Du,, B., Huang,, Y., & Zheng,, J. (2018). Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today, 21, 106–125. https://doi.org/10.1016/j.nantod.2018.06.006
Jiang,, Y., Li,, J., Zeng,, Z., Xie,, C., Lyu,, Y., & Pu,, K. (2019). Organic photodynamic nanoinhibitor for synergistic cancer therapy. Angewandte Chemie International Edition, 58(24), 8161–8165. https://doi.org/10.1002/anie.201903968
Jiang,, Y., Li,, J., Zhen,, X., Xie,, C., & Pu,, K. (2018). Dual‐peak absorbing semiconducting copolymer nanoparticles for first and second near‐infrared window photothermal therapy: A comparative study. Advanced Materials, 30(14), 1705980. https://doi.org/10.1002/adma.201705980
Ju,, Y., Dong,, B., Yu,, J., & Hou,, Y. (2019). Inherent multifunctional inorganic nanomaterials for imaging‐guided cancer therapy. Nano Today, 26, 108–122. https://doi.org/10.1016/j.nantod.2019.03.006
Kalluru,, P., Vankayala,, R., Chiang,, C. S., & Hwang,, K. C. (2016). Nano‐graphene oxide‐mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 95, 1–10. https://doi.org/10.1016/j.biomaterials.2016.04.006
Kang,, H., Hu,, S., Cho,, M. H., Hong,, S. H., Choi,, Y., & Choi,, H. S. (2018). Theranostic nanosystems for targeted cancer therapy. Nano Today, 23, 59–72. https://doi.org/10.1016/j.nantod.2018.11.001
Karges,, J., Yempala,, T., Tharaud,, M., Gibson,, D., & Gasser,, G. (2020). A multi‐action and multi‐target Ru(II)‐Pt(IV) conjugate combining cancer‐activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angewandte Chemie International Edition, 59(18), 7069–7075. https://doi.org/10.1002/anie.201916400
Kato,, S., & Kurzrock,, R. (2018). An avatar for precision cancer therapy. Nature Biotechnology, 36, 1053–1055. https://doi.org/10.1038/nbt.4293
Kim,, J., Cho,, H. R., Jeon,, H., Kim,, D., Song,, C., Lee,, N., … Hyeon,, T. (2017). Continuous O2‐evolving MnFe2O4 nanoparticle‐anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society, 139(32), 10992–10995. https://doi.org/10.1021/jacs.7b05559
Kim,, M., Lee,, J. H., & Nam,, J. M. (2019). Plasmonic photothermal nanoparticles for biomedical applications. Advanced Science, 6(17), 1900471. https://doi.org/10.1002/advs.201900471
Knezevic,, N. Z., & Kaluderovic,, G. N. (2017). Silicon‐based nanotheranostics. Nanoscale, 9(35), 12821–12829. https://doi.org/10.1039/c7nr04445c
Kotb,, S., Detappe,, A., Lux,, F., Appaix,, F., Barbier,, E. L., Tran,, V. L., … Sancey,, L. (2016). Gadolinium‐based nanoparticles and radiation therapy for multiple brain melanoma metastases: Proof of concept before phase I trial. Theranostics, 6(3), 418–427. https://doi.org/10.7150/thno.14018
Lak,, A., Cassani,, M., Mai,, B. T., Winckelmans,, N., Cabrera,, D., Sadrollahi,, E., … Pellegrino,, T. (2018). Fe2+ deficiencies, FeO subdomains, and structural defects favor magnetic hyperthermia performance of iron oxide nanocubes into intracellular environment. Nano Letters, 18(11), 6856–6866. https://doi.org/10.1021/acs.nanolett.8b02722
Lan,, G., Ni,, K., Xu,, Z., Veroneau,, S. S., Song,, Y., & Lin,, W. (2018). Nanoscale metal‐organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. Journal of the American Chemical Society, 140(17), 5670–5673. https://doi.org/10.1021/jacs.8b01072
Lee,, A. L., Gee,, C. T., Weegman,, B. P., Einstein,, S. A., Juelfs,, A. R., Ring,, H. L., … Haynes,, C. L. (2017). Oxygen sensing with perfluorocarbon‐loaded ultraporous mesostructured silica nanoparticles. ACS Nano, 11(6), 5623–5632. https://doi.org/10.1021/acsnano.7b01006
Lee,, C., Hwang,, H., Lee,, S., Kim,, B., Kim,, J. O., Oh,, K. T., … Youn,, Y. (2017). Rabies virus‐inspired silica‐coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Advanced Materials, 29(13), 1605563. https://doi.org/10.1002/adma.201605563
Lei,, Z., Zhang,, X., Zheng,, X., Liu,, S., & Xie,, Z. (2018). Porphyrin‐ferrocene conjugates for photodynamic and chemodynamic therapy. Organic %26 Biomolecular Chemistry, 16(44), 8613–8619. https://doi.org/10.1039/c8ob02391c
Li,, B., Wang,, X., Wu,, X., He,, G., Xu,, R., Lu,, X., … Parkin,, I. P. (2017). Phase and morphological control of MoO3‐x nanostructures for efficient cancer theragnosis therapy. Nanoscale, 9(31), 11012–11016. https://doi.org/10.1039/c7nr03469e
Li,, F., Du,, Y., Liu,, J., Sun,, H., Wang,, J., Li,, R., … Ling,, D. (2018). Responsive assembly of upconversion nanoparticles for ph‐activated and near‐infrared‐triggered photodynamic therapy of deep tumors. Advanced Materials, 30(35), 1802808. https://doi.org/10.1002/adma.201802808
Li,, G., Wang,, S., Deng,, D., Xiao,, Z., Dong,, Z., Wang,, Z., … Liu,, Z. (2020). Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer‐conjugated catalase for sonodynamic bladder cancer treatment post‐intravesical instillation. ACS Nano, 14(2), 1586–1599. https://doi.org/10.1021/acsnano.9b06689
Li,, G., Yuan,, S., Deng,, D., Ou,, T., Li,, Y., Sun,, R., … Wu,, S. (2019). Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer‐conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Advanced Functional Materials, 29(40), 1901932. https://doi.org/10.1002/adfm.201901932
Li,, J., Cui,, D., Jiang,, Y., Huang,, J., Cheng,, P., & Pu,, K. (2019). Near‐infrared photoactivatable semiconducting polymer nanoblockaders for metastasis‐inhibited combination cancer therapy. Advanced Materials, 31(46), 1905091. https://doi.org/10.1002/adma.201905091
Li,, J., Xie,, C., Huang,, J., Jiang,, Y., Miao,, Q., & Pu,, K. (2018). Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angewandte Chemie International Edition, 57(15), 3995–3998. https://doi.org/10.1002/anie.201800511
Li,, L., Yang,, Z., Fan,, W., He,, L., Cui,, C., Zou,, J., … Chen,, X. (2019). In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS‐mediated anticancer therapy. Advanced Functional Materials, 30(4), 1907716. https://doi.org/10.1002/adfm.201907716
Li,, M., Shao,, Y., Kim,, J. H., Pu,, Z., Zhao,, X., Huang,, H., … Peng,, X. (2020). Unimolecular photodynamic O2‐economizer to overcome hypoxia resistance in phototherapeutics. Journal of the American Chemical Society, 142(11), 5380–5388. https://doi.org/10.1021/jacs.0c00734
Li,, S., Cheng,, H., Xie,, B., Qiu,, W., Zeng,, J., Li,, C., … Zhang,, X. (2017). Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano, 11(7), 7006–7018. https://doi.org/10.1021/acsnano.7b02533
Li,, S., Gu,, K., Wang,, H., Xu,, B., Li,, H., Shi,, X., … Liu,, H. (2020). Degradable holey palladium nanosheets with highly active 1d nanoholes for synergetic phototherapy of hypoxic tumors. Journal of the American Chemical Society, 142(12), 5649–5656. https://doi.org/10.1021/jacs.9b12929
Li,, X., Kwon,, N., Guo,, T., Liu,, Z., & Yoon,, J. (2018). Innovative strategies for hypoxic‐tumor photodynamic therapy. Angewandte Chemie International Edition, 57(36), 11522–11531. https://doi.org/10.1002/anie.201805138
Li,, X., Liu,, F., Huang,, D., Xue,, N., Dang,, Y., Zhang,, M., … Tao,, X. (2020). Nonoxidized Mxene quantum dots prepared by microexplosion method for cancer catalytic therapy. Advanced Functional Materials, 30, 2000308. https://doi.org/10.1002/adfm.202000308
Li,, X., Liu,, L., Li,, S., Wan,, Y., Chen,, J., Tian,, S., … Lee,, C. (2019). Biodegradable pi‐conjugated oligomer nanoparticles with high photothermal conversion efficiency for cancer theranostics. ACS Nano, 13(11), 12901–12911. https://doi.org/10.1021/acsnano.9b05383
Li,, Y., Di,, Z., Gao,, J., Cheng,, P., Di,, C., Zhang,, G., … Yan,, C. H. (2017). Heterodimers made of upconversion nanoparticles and metal‐organic frameworks. Journal of the American Chemical Society, 139(39), 13804–13810. https://doi.org/10.1021/jacs.7b07302
Li,, Y., Qi,, Y., Zhang,, H., Xia,, Z., Xie,, T., Li,, W., … Zhou,, M. (2020). Gram‐scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials, 226, 119538. https://doi.org/10.1016/j.biomaterials.2019.119538
Li,, Z., Han,, J., Yu,, L., Qian,, X., Xing,, H., Lin,, H., … Chen,, Y. (2018). Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers. Advanced Functional Materials, 28(26), 1800145. https://doi.org/10.1002/adfm.201800145
Liang,, S., Deng,, X., Chang,, Y., Sun,, C., Shao,, S., Xie,, Z., … Lin,, J. (2019). Intelligent hollow Pt‐CuS janus architecture for synergistic catalysis‐enhanced sonodynamic and photothermal cancer therapy. Nano Letters, 19(6), 4134–4145. https://doi.org/10.1021/acs.nanolett.9b01595
Liang,, S., Deng,, X., Xu,, G., Xiao,, X., Wang,, M., Guo,, X., … Lin,, J. (2020). A novel Pt‐TiO2 heterostructure with oxygen‐deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo‐sonodynamic cancer therapy. Advanced Functional Materials, 30(13), 1908598. https://doi.org/10.1002/adfm.201908598
Liang,, S., Sun,, C., Yang,, P., Ma,, P., Huang,, S., Cheng,, Z., … Lin,, J. (2020). Core‐shell structured upconversion nanocrystal‐dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti‐cancer photodynamic therapy. Biomaterials, 240, 119850. https://doi.org/10.1016/j.biomaterials.2020.119850
Lin,, H., Chen,, Y., & Shi,, J. (2018). Nanoparticle‐triggered in situ catalytic chemical reactions for tumour‐specific therapy. Chemical Society Reviews, 47(6), 1938–1958. https://doi.org/10.1039/c7cs00471k
Lin,, H., Gao,, S., Dai,, C., Chen,, Y., & Shi,, J. (2017). A two‐dimensional biodegradable niobium carbide (Mxene) for photothermal tumor eradication in NIR‐I and NIR‐II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247. https://doi.org/10.1021/jacs.7b07818
Lin,, H., Wang,, X., Yu,, L., Chen,, Y., & Shi,, J. (2017). Two‐dimensional ultrathin Mxene ceramic nanosheets for photothermal conversion. Nano Letters, 17(1), 384–391. https://doi.org/10.1021/acs.nanolett.6b04339
Lin,, H., Wang,, Y., Gao,, S., Chen,, Y., & Shi,, J. (2018). Theranostic 2d tantalum carbide (Mxene). Advanced Materials, 30(4), 1703284. https://doi.org/10.1002/adma.201703284
Lin,, L., Huang,, T., Song,, J., Ou,, X., Wang,, Z., Deng,, H., … Chen,, X. (2019). Synthesis of copper peroxide nanodots for H2O2 self‐supplying chemodynamic therapy. Journal of the American Chemical Society, 141(25), 9937–9945. https://doi.org/10.1021/jacs.9b03457
Lin,, L., Song,, J., Song,, L., Ke,, K., Liu,, Y., Zhou,, Z., … Chen,, X. (2018). Simultaneous Fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 57(18), 4902–4906. https://doi.org/10.1002/anie.201712027
Lin,, X., Qiu,, Y., Song,, L., Chen,, S., Chen,, X., Huang,, G., … Yang,, H. (2019). Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanoscale Horizons, 4(3), 747–756. https://doi.org/10.1039/c8nh00340h
Liu,, C., Liu,, B., Zhao,, J., Di,, Z., Chen,, D., Gu,, Z., … Zhao,, Y. (2020). Nd3+‐sensitized upconversion metal‐organic frameworks for mitochondria‐targeted amplified photodynamic therapy. Angewandte Chemie International Edition, 59(7), 2634–2638. https://doi.org/10.1002/anie.201911508
Liu,, C., Wang,, D., Zhang,, S., Cheng,, Y., Yang,, F., Xing,, Y., … Zhang,, X. (2019). Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano, 13(4), 4267–4277. https://doi.org/10.1021/acsnano.8b09387
Liu,, C., Xing,, J., Akakuru,, O. U., Luo,, L., Sun,, S., Zou,, R., … Wu,, A. (2019). Nanozymes‐engineered metal‐organic frameworks for catalytic cascades‐enhanced synergistic cancer therapy. Nano Letters, 19(8), 5674–5682. https://doi.org/10.1021/acs.nanolett.9b02253
Liu,, H., Cheng,, R., Dong,, X., Zhu,, S., Zhou,, R., Yan,, L., … Zhao,, Y. (2020). BiO2‐x nanosheets as radiosensitizers with catalase‐like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorganic Chemistry, 59(6), 3482–3493. https://doi.org/10.1021/acs.inorgchem.9b03280
Liu,, J., Jin,, L., Wang,, Y., Ding,, X., Zhang,, S., Song,, S., … Zhang,, H. (2018). A new co‐P nanocomposite with ultrahigh relaxivity for in vivo magnetic resonance imaging‐guided tumor eradication by chemo/photothermal synergistic therapy. Small, 14(7), 1702431. https://doi.org/10.1002/smll.201702431
Liu,, J., Wu,, M., Pan,, Y., Duan,, Y., Dong,, Z., Chao,, Y., … Liu,, B. (2020). Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification. Advanced Functional Materials, 30(13), 1908865. https://doi.org/10.1002/adfm.201908865
Liu,, S., Pan,, X., & Liu,, H. (2020). Two‐dimensional nanomaterials for photothermal therapy. Angewandte Chemie International Edition, 59(15), 5890–5900. https://doi.org/10.1002/anie.201911477
Liu,, W., Liu,, T., Zou,, M., Yu,, W., Li,, C., He,, Z., … Zhang,, X. (2018). Aggressive man‐made red blood cells for hypoxia‐resistant photodynamic therapy. Advanced Materials, 30(35), 1802006. https://doi.org/10.1002/adma.201802006
Liu,, X., Yan,, B., Li,, Y., Ma,, X., Jiao,, W., Shi,, K., … Fan,, H. (2020). Graphene oxide‐grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species‐related immune response for enhanced antitumor efficacy. ACS Nano, 14(2), 1936–1950. https://doi.org/10.1021/acsnano.9b08320
Liu,, Y., Bhattarai,, P., Dai,, Z., & Chen,, X. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 48(7), 2053–2108. https://doi.org/10.1039/c8cs00618k
Liu,, Y., Jiang,, Y., Zhang,, M., Tang,, Z., He,, M., & Bu,, W. (2018). Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Accounts of Chemical Research, 51(10), 2502–2511. https://doi.org/10.1021/acs.accounts.8b00214
Liu,, Y., Li,, M., Yang,, F., & Gu,, N. (2017). Magnetic drug delivery systems. Science China Materials, 60(6), 471–486. https://doi.org/10.1007/s40843-017-9049-0
Liu,, Y., Wang,, H., Li,, S., Chen,, C., Xu,, L., Huang,, P., … Zhou,, Y. (2020). In situ supramolecular polymerization‐enhanced self‐assembly of polymer vesicles for highly efficient photothermal therapy. Nature Communications, 11(1), 1724. https://doi.org/10.1038/s41467-020-15427-1
Liu,, Y., Wu,, J., Jin,, Y., Zhen,, W., Wang,, Y., Liu,, J., … Zhang,, H. (2019). Copper(I) phosphide nanocrystals for in situ self‐generation magnetic resonance imaging‐guided photothermal‐enhanced chemodynamic synergetic therapy resisting deep‐seated tumor. Advanced Functional Materials, 29(50), 1904678. https://doi.org/10.1002/adfm.201904678
Liu,, Y., Zhen,, W., Jin,, L., Zhang,, S., Sun,, G., Zhang,, T., … Zhang,, H. (2018). All‐in‐one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano, 12(5), 4886–4893. https://doi.org/10.1021/acsnano.8b01893
Liu,, Y., Zhen,, W., Wang,, Y., Liu,, J., Jin,, L., Zhang,, T., … Zhang,, H. (2019a). One‐dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angewandte Chemie International Edition, 58(8), 2407–2412. https://doi.org/10.1002/anie.201813702
Liu,, Y., Zhen,, W., Wang,, Y., Liu,, J., Jin,, L., Zhang,, T., … Zhang,, H. (2019b). Double switch biodegradable porous hollow trinickel monophosphide nanospheres for multimodal imaging guided photothermal therapy. Nano Letters, 19(8), 5093–5101. https://doi.org/10.1021/acs.nanolett.9b01370
Lucky,, S. S., Soo,, K. C., & Zhang,, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990–2042. https://doi.org/10.1021/cr5004198
Luo,, D., Wang,, X., Zeng,, S., Ramamurthy,, G., Burda,, C., & Basilion,, J. P. (2019). Targeted gold nanocluster‐enhanced radiotherapy of prostate cancer. Small, 15(34), 1900968. https://doi.org/10.1002/smll.201900968
Lv,, S., Long,, W., Chen,, J., Ren,, Q., Wang,, J., Mu,, X., … Zhang,, R. (2020). Dual pH‐triggered catalytic selective Mn clusters for cancer radiosensitization and radioprotection. Nanoscale, 12(2), 548–557. https://doi.org/10.1039/c9nr08192e
Ma,, B., Wang,, S., Liu,, F., Zhang,, S., Duan,, J., Li,, Z., … Li,, L. (2019). Self‐assembled copper amino acid nanoparticles for in situ glutathione "and" H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 141(2), 849–857. https://doi.org/10.1021/jacs.8b08714
Ma,, X., Wang,, Y., Liu,, X., Ma,, H., Li,, G., Li,, Y., … Liang,, X. (2019). Fe3O4‐Pd janus nanoparticles with amplified dual‐mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horizons, 4(6), 1450–1459. https://doi.org/10.1039/c9nh00233b
Ma,, Y., Li,, X., Li,, A., Yang,, P., Zhang,, C., & Tang,, B. (2017). H2S‐activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet‐oxygen release. Angewandte Chemie International Edition, 56(44), 13752–13756. https://doi.org/10.1002/anie.201708005
Mao,, F., Wen,, L., Sun,, C., Zhang,, S., Wang,, G., Zeng,, J., … Li,, Z. (2016). Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging‐guided synergistic radiophotothermal therapy against cancer. ACS Nano, 10(12), 11145–11155. https://doi.org/10.1021/acsnano.6b06067
Mitchell,, C. A., Roussel,, M. F., Walsh,, L., & Weeraratna,, A. T. (2019). Women in cancer research. Nature Reviews Cancer, 19, 547–552. https://doi.org/10.1038/s41568-019-0176-y
Mora,, M., Gimeno,, M. C., & Visbal,, R. (2019). Recent advances in gold‐NHC complexes with biological properties. Chemical Society Reviews, 48(2), 447–462. https://doi.org/10.1039/c8cs00570b
Mu,, J., Lin,, J., Huang,, P., & Chen,, X. (2018). Development of endogenous enzyme‐responsive nanomaterials for theranostics. Chemical Society Reviews, 47(15), 5554–5573. https://doi.org/10.1039/c7cs00663b
Naatz,, H., Manshian,, B. B., Rios Luci,, C., Tsikourkitoudi,, V., Deligiannakis,, Y., Birkenstock,, J., … Soenen,, S. J. (2020). Model‐based nanoengineered pharmacokinetics of iron‐doped copper oxide for nanomedical applications. Angewandte Chemie International Edition, 59(5), 1828–1836. https://doi.org/10.1002/anie.201912312
Nakamura,, H., Jun,, F., & Maeda,, H. (2015). Development of next‐generation macromolecular drugs based on the EPR effect: Challenges and pitfalls. Expert Opinion on Drug Delivery, 12(1), 53–64. https://doi.org/10.1517/17425247.2014.955011
Niculaes,, D., Lak,, A., Anyfantis,, G. C., Marras,, S., Laslett,, O., Avugadda,, S. K., … Pellegrino,, T. (2017). Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano, 11(12), 12121–12133. https://doi.org/10.1021/acsnano.7b05182
Ouyang,, J., Feng,, C., Ji,, X., Li,, L., Gutti,, H. K., Kim,, N. Y., … Farokhzad,, O. C. (2019). 2d monoelemental germanene quantum dots: Synthesis as robust photothermal agents for photonic cancer nanomedicine. Angewandte Chemie International Edition, 58(38), 13405–13410. https://doi.org/10.1002/anie.201908377
Pan,, H., Li,, S., Kan,, J., Gong,, L., Lin,, C., Liu,, W., … Jiang,, J. (2019). A cruciform phthalocyanine pentad‐based NIR‐II photothermal agent for highly efficient tumor ablation. Chemical Science, 10(35), 8246–8252. https://doi.org/10.1039/c9sc02674f
Pan,, J., Hu,, P., Guo,, Y., Hao,, J., Ni,, D., Xu,, Y., … Shi,, J. (2020). Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano, 14(1), 1033–1044. https://doi.org/10.1021/acsnano.9b08550
Pan,, L., Liu,, J., & Shi,, J. (2018). Cancer cell nucleus‐targeting nanocomposites for advanced tumor therapeutics. Chemical Society Reviews, 47(18), 6930–6946. https://doi.org/10.1039/c8cs00081f
Pan,, M., Jiang,, Q., Sun,, J., Xu,, Z., Zhou,, Y., Zhang,, L., & Liu,, X. (2020). Programming DNA nanoassembly for enhanced photodynamic therapy. Angewandte Chemie International Edition, 59(5), 1897–1905. https://doi.org/10.1002/anie.201912574
Pan,, X., Bai,, L., Wang,, H., Wu,, Q., Wang,, H., Liu,, S., … Liu,, H. (2018). Metal‐organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Advanced Materials, 30(23), 1800180. https://doi.org/10.1002/adma.201800180
Pan,, X., Li,, P., Bai,, L., Ma,, J., Li,, S., Zhang,, F., … Liu,, H. (2020). Biodegradable nanocomposite with dual cell‐tissue penetration for deep tumor chemo‐phototherapy. Small, 16, 2000809. https://doi.org/10.1002/smll.202000809
Pandit,, S., Dutta,, D., & Nie,, S. (2020). Active transcytosis and new opportunities for cancer nanomedicine. Nature Materials, 19, 478–480. https://doi.org/10.1038/s41563-020-0672-1
Parchur,, A. K., Sharma,, G., Jagtap,, J. M., Gogineni,, V. R., LaViolette,, P. S., Flister,, M. J., … Joshi,, A. (2018). Vascular interventional radiology‐guided photothermal therapy of colorectal cancer liver metastasis with theranostic gold nanorods. ACS Nano, 12(7), 6597–6611. https://doi.org/10.1021/acsnano.8b01424
Paris,, J. L., & Vallet‐Regí,, M. (2020). Ultrasound‐activated nanomaterials for therapeutics. Bulletin of the Chemical Society of Japan, 93(2), 220–229. https://doi.org/10.1246/bcsj.20190346
Park,, J., Jiang,, Q., Feng,, D., & Zhou,, H. (2016). Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal‐organic frameworks. Angewandte Chemie International Edition, 55(25), 7188–7193. https://doi.org/10.1002/anie.201602417
Park,, J., Kim,, M., Hwang,, J., & Nam,, J. (2017). Golden opportunities: Plasmonic gold nanostructures for biomedical applications based on the second near‐infrared window. Small Methods, 1(3), 1600032. https://doi.org/10.1002/smtd.201600032
Payne,, M., Bossmann,, S. H., & Basel,, M. T. (2020). Direct treatment versus indirect: Thermo‐ablative and mild hyperthermia effects. WIREs Nanomedicine and Nanobiotechnology, e1638. https://doi.org/10.1002/wnan.1638
Peng,, C., Liang,, Y., Chen,, Y., Qian,, X., Luo,, W., Chen,, S., … Li,, Y. (2020). Hollow mesoporous tantalum oxide based nanospheres for triple sensitization of radiotherapy. ACS Applied Materials %26 Interfaces, 12(5), 5520–5530. https://doi.org/10.1021/acsami.9b20053
Phua,, S. Z. F., Yang,, G., Lim,, W. Q., Verma,, A., Chen,, H., Thanabalu,, T., & Zhao,, Y. (2019). Catalase‐integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor. ACS Nano, 13(4), 4742–4751. https://doi.org/10.1021/acsnano.9b01087
Qian,, X., Han,, X., & Chen,, Y. (2017). Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 142, 13–30. https://doi.org/10.1016/j.biomaterials.2017.07.016
Qian,, X., Han,, X., Yu,, L., Xu,, T., & Chen,, Y. (2020). Manganese‐based functional nanoplatforms: Nanosynthetic construction, physiochemical property, and theranostic applicability. Advanced Functional Materials, 30(3), 1907066. https://doi.org/10.1002/adfm.201907066
Qian,, X., Zhang,, J., Gu,, Z., & Chen,, Y. (2019). Nanocatalysts‐augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials, 211, 1–13. https://doi.org/10.1016/j.biomaterials.2019.04.023
Qian,, X., Zheng,, Y., & Chen,, Y. (2016). Micro/nanoparticle‐augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Advanced Materials, 28(37), 8097–8129. https://doi.org/10.1002/adma.201602012
Qiao,, Y., He,, J., Chen,, W., Yu,, Y., Li,, W., Du,, Z., … Zhou,, M. (2020). Light‐activatable synergistic therapy of drug‐resistant bacteria‐infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano, 14(3), 3299–3315. https://doi.org/10.1021/acsnano.9b08930
Qin,, Y., Chen,, L., Dong,, F., Jiang,, S., Yin,, G., Li,, X., … Yang,, H. (2019). Light‐controlled generation of singlet oxygen within a discrete dual‐stage metallacycle for cancer therapy. Journal of the American Chemical Society, 141(22), 8943–8950. https://doi.org/10.1021/jacs.9b02726
Ren,, X., Hao,, X., Li,, H., Ke,, M., Zheng,, B., & Huang,, J. (2018). Progress in the development of nanosensitizers for X‐ray‐induced photodynamic therapy. Drug Discovery Today, 23(10), 1791–1800. https://doi.org/10.1016/j.drudis.2018.05.029
Ren,, Z., Sun,, S., Sun,, R., Cui,, G., Hong,, L., Rao,, B., … Mao,, Z. (2020). A metal‐polyphenol‐coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Advanced Materials, 32(6), 1906024. https://doi.org/10.1002/adma.201906024
Russell,, L. M., Liu,, C., & Grodzinski,, P. (2020). Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials, 242, 119926. https://doi.org/10.1016/j.biomaterials.2020.119926
Sahu,, A., Kwon,, I., & Tae,, G. (2020). Improving cancer therapy through the nanomaterials‐assisted alleviation of hypoxia. Biomaterials, 228, 119578. https://doi.org/10.1016/j.biomaterials.2019.119578
Sang,, W., Zhang,, Z., Dai,, Y., & Chen,, X. (2019). Recent advances in nanomaterial‐based synergistic combination cancer immunotherapy. Chemical Society Reviews, 48(14), 3771–3810. https://doi.org/10.1039/c8cs00896e
Sang,, Y., Cao,, F., Li,, W., Zhang,, L., You,, Y., Deng,, Q., … Qu,, X. (2020). Bioinspired construction of a nanozyme‐based H2O2 homeostasis disruptor for intensive chemodynamic therapy. Journal of the American Chemical Society, 142(11), 5177–5183. https://doi.org/10.1021/jacs.9b12873
Shahbazi,, M. A., Faghfouri,, L., Ferreira,, M. P. A., Figueiredo,, P., Maleki,, H., Sefat,, F., … Santos,, H. A. (2020). The versatile biomedical applications of bismuth‐based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 49(4), 1253–1321. https://doi.org/10.1039/c9cs00283a
Shan,, W., Chen,, R., Zhang,, Q., Zhao,, J., Chen,, B., Zhou,, X., … Ren,, L. (2018). Improved stable indocyanine green (ICG)‐mediated cancer optotheranostics with naturalized hepatitis B core particles. Advanced Materials, 30(28), 1707567. https://doi.org/10.1002/adma.201707567
Shao,, J., Xie,, H., Huang,, H., Li,, Z., Sun,, Z., Xu,, Y., … Chu,, P. (2016). Biodegradable black phosphorus‐based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 7, 12967. https://doi.org/10.1038/ncomms12967
Sharma,, S. K., Shrivastava,, N., Rossi,, F., Tung,, L. D., & Thanh,, N. T. K. (2019). Nanoparticles‐based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29, 100795. https://doi.org/10.1016/j.nantod.2019.100795
Sharma,, V. K., Mahammed,, A., Soll,, M., Tumanskii,, B., & Gross,, Z. (2019). Corroles and corrole/transferrin nanoconjugates as candidates for sonodynamic therapy. Chemical Communications, 55(85), 12789–12792. https://doi.org/10.1039/c9cc06494j
Shen,, J., Rees,, T. W., Zhou,, Z., Yang,, S., Ji,, L., & Chao,, H. (2020). A mitochondria‐targeting magnetothermogenic nanozyme for magnet‐induced synergistic cancer therapy. Biomaterials, 251, 120079. https://doi.org/10.1016/j.biomaterials.2020.120079
Shen,, S., Chao,, Y., Dong,, Z., Wang,, G., Yi,, X., Song,, G., … Cheng,, L. (2017). Bottom‐up preparation of uniform ultrathin rhenium disulfide nanosheets for image‐guided photothermal radiotherapy. Advanced Functional Materials, 27(28), 1700250. https://doi.org/10.1002/adfm.201700250
Shi,, H., Sun,, Y., Yan,, R., Liu,, S., Zhu,, L., Liu,, S., … Ye,, D. (2019). Magnetic semiconductor Gd‐doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Letters, 19(2), 937–947. https://doi.org/10.1021/acs.nanolett.8b04179
Shimomura,, K., Kai,, H., Nakamura,, Y., Hong,, Y., Mori,, S., Miki,, K., … Furuta,, H. (2020). Bis‐metal complexes of doubly N‐confused dioxohexaphyrins as potential near‐infrared‐II photoacoustic dyes. Journal of the American Chemical Society, 142(9), 4429–4437. https://doi.org/10.1021/jacs.9b13475
Sindhwani,, S., Syed,, A. M., Ngai,, J., Kingston,, B. R., Maiorino,, L., Rothschild,, J., … Chan,, W. (2020). The entry of nanoparticles into solid tumours. Nature Materials, 19, 566–575. https://doi.org/10.1038/s41563-019-0566-2
Song,, G., Chen,, Y., Liang,, C., Yi,, X., Liu,, J., Sun,, X., … Liu,, Z. (2016). Catalase‐loaded TaOx nanoshells as bio‐nanoreactors combining high‐Z element and enzyme delivery for enhancing radiotherapy. Advanced Materials, 28(33), 7143–7148. https://doi.org/10.1002/adma.201602111
Song,, G., Cheng,, L., Chao,, Y., Yang,, K., & Liu,, Z. (2017). Emerging nanotechnology and advanced materials for cancer radiation therapy. Advanced Materials, 29(32), 1700996. https://doi.org/10.1002/adma.201700996
Song,, G., Liang,, C., Gong,, H., Li,, M., Zheng,, X., Cheng,, L., … Liu,, Z. (2015). Core‐shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Advanced Materials, 27(40), 6110–6117. https://doi.org/10.1002/adma.201503006
Su,, K., Tan,, L., Liu,, X., Cui,, Z., Zheng,, Y., Li,, B., … Wu,, S. (2020). Rapid photo‐sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano, 14(2), 2077–2089. https://doi.org/10.1021/acsnano.9b08686
Sun,, D., Pang,, X., Cheng,, Y., Ming,, J., Xiang,, S., Zhang,, C., … Zheng,, N. (2020). Ultrasound‐switchable nanozyme augments sonodynamic therapy against multidrug‐resistant bacterial infection. ACS Nano, 14(2), 2063–2076. https://doi.org/10.1021/acsnano.9b08667
Sun,, H., Wang,, X., & Zhai,, S. (2020). The rational design and biological mechanisms of nanoradiosensitizers. Nanomaterials, 10(3), 504. https://doi.org/10.3390/nano10030504
Sun,, L., Wei,, R., Feng,, J., & Zhang,, H. (2018). Tailored lanthanide‐doped upconversion nanoparticles and their promising bioapplication prospects. Coordination Chemistry Reviews, 364, 10–32. https://doi.org/10.1016/j.ccr.2018.03.007
Sun,, T., Han,, J., Liu,, S., Wang,, X., Wang,, Z. Y., & Xie,, Z. (2019). Tailor‐made semiconducting polymers for second near‐infrared photothermal therapy of orthotopic liver cancer. ACS Nano, 13(6), 7345–7354. https://doi.org/10.1021/acsnano.9b03910
Sun,, W., Luo,, L., Feng,, Y., Cai,, Y., Zhuang,, Y., Xie,, R., … Chen,, H. (2019). Aggregation‐induced emission gold clustoluminogens for enhanced low‐dose X‐ray‐induced photodynamic therapy. Angewandte Chemie International Edition, 58, 1–8. https://doi.org/10.1002/anie.201908712
Sun,, W., Zhou,, Z., Pratx,, G., Chen,, Y., & Chen,, H. (2020). Nanoscintillator‐mediated X‐ray induced photodynamic therapy for deep‐seated tumors: From concept to biomedical applications. Theranostics, 10(3), 1296–1318. https://doi.org/10.7150/thno.41578
Tang,, W., Dong,, Z., Zhang,, R., Yi,, X., Yang,, K., Jin,, M., … Cheng,, L. (2019). Multifunctional two‐dimensional core‐shell mxene@gold nanocomposites for enhanced photo‐radio combined therapy in the second biological window. ACS Nano, 13(1), 284–294. https://doi.org/10.1021/acsnano.8b05982
Tang,, Z., Liu,, Y., He,, M., & Bu,, W. (2019). Chemodynamic therapy: Tumour microenvironment‐mediated Fenton and Fenton‐like reactions. Angewandte Chemie International Edition, 58(4), 946–956. https://doi.org/10.1002/anie.201805664
Tseng,, S. J., Liao,, Z., Kao,, S., Zeng,, Y., Huang,, K., Li,, H., … Kempson,, I. M. (2015). Highly specific in vivo gene delivery for p53‐mediated apoptosis and genetic photodynamic therapies of tumour. Nature Communications, 6, 6456. https://doi.org/10.1038/ncomms7456
Wang,, D., Wu,, H., Phua,, S. Z. F., Yang,, G., Lim,, W., Gu,, L., … Zhao,, Y. (2020). Self‐assembled single‐atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 11(1), 357. https://doi.org/10.1038/s41467-019-14199-7
Wang,, J., Sun,, J., Wang,, Y., Chou,, T., Zhang,, Q., Zhang,, B., … Wang,, H. (2020). Gold nanoframeworks with mesopores for raman‐photoacoustic imaging and photo‐chemo tumor therapy in the second near‐infrared biowindow. Advanced Functional Materials, 30(9), 1908825. https://doi.org/10.1002/adfm.201908825
Wang,, J., Yao,, C., Shen,, B., Zhu,, X., Li,, Y., Shi,, L., … Sun,, L. (2019). Upconversion‐magnetic carbon sphere for near infrared light‐triggered bioimaging and photothermal therapy. Theranostics, 9(2), 608–619. https://doi.org/10.7150/thno.27952
Wang,, Q., Wang,, H., Yang,, Y., Jin,, L., Liu,, Y., Wang,, Y., … Zhang,, H. (2019). Plasmonic Pt superstructures with boosted near‐infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy. Advanced Materials, 31(46), 1904836. https://doi.org/10.1002/adma.201904836
Wang,, T., Zhang,, H., Liu,, H., Yuan,, Q., Ren,, F., Han,, Y., … Gao,, M. (2019). Boosting H2O2‐guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near‐infrared light irradiation. Advanced Functional Materials, 30(3), 1906128. https://doi.org/10.1002/adfm.201906128
Wang,, X., Guo,, Z., Zhang,, C., Zhu,, S., Li,, L., Gu,, Z., & Zhao,, Y. (2020). Ultrasmall BiOI quantum dots with efficient renal clearance for enhanced radiotherapy of cancer. Advanced Science, 7(6), 1902561. https://doi.org/10.1002/advs.201902561
Wang,, X., Ma,, Y., Sheng,, X., Wang,, Y., & Xu,, H. (2018). Ultrathin polypyrrole nanosheets via space‐confined synthesis for efficient photothermal therapy in the second near‐infrared window. Nano Letters, 18(4), 2217–2225. https://doi.org/10.1021/acs.nanolett.7b04675
Wang,, X., Zhang,, C., Du,, J., Dong,, X., Jian,, S., Yan,, L., … Zhao,, Y. (2019). Enhanced generation of non‐oxygen dependent free radicals by schottky‐type heterostructures of au‐Bi2S3 nanoparticles via X‐ray‐induced catalytic reaction for radiosensitization. ACS Nano, 13(5), 5947–5958. https://doi.org/10.1021/acsnano.9b01818
Wang,, X., Zhong,, X., Bai,, L., Xu,, J., Gong,, F., Dong,, Z., … Cheng,, L. (2020). Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. Journal of the American Chemical Society, 142(14), 6527–6537. https://doi.org/10.1021/jacs.9b10228
Wang,, Y., An,, L., Lin,, J., Tian,, Q., & Yang,, S. (2020). A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 385, 123925. https://doi.org/10.1016/j.cej.2019.123925
Wang,, Y., Gong,, N., Li,, Y., Lu,, Q., Wang,, X., & Li,, J. (2020). Atomic‐level nanorings (A‐NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. Journal of the American Chemical Society, 142(4), 1735–1739. https://doi.org/10.1021/jacs.9b11553
Wang,, Y., Liu,, Y., Wu,, H., Zhang,, J., Tian,, Q., & Yang,, S. (2019). Functionalized holmium‐doped hollow silica nanospheres for combined sonodynamic and hypoxia‐activated therapy. Advanced Functional Materials, 29(3), 1805764. https://doi.org/10.1002/adfm.201805764
Wang,, Y., Shi,, L., Ye,, Z., Guan,, K., Teng,, L., Wu,, J., … Zhang,, X. (2020). Reactive oxygen correlated chemiluminescent imaging of a semiconducting polymer nanoplatform for monitoring chemodynamic therapy. Nano Letters, 20(1), 176–183. https://doi.org/10.1021/acs.nanolett.9b03556
Wang,, Y., Song,, S., Lu,, T., Cheng,, Y., Song,, Y., Wang,, S., … Li,, N. (2019). Oxygen‐supplementing mesoporous polydopamine nanosponges with WS2 QDs‐embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer. Biomaterials, 220, 119405. https://doi.org/10.1016/j.biomaterials.2019.119405
Wang,, Y., Song,, S., Zhang,, S., & Zhang,, H. (2019). Stimuli‐responsive nanotheranostics based on lanthanide‐doped upconversion nanoparticles for cancer imaging and therapy: Current advances and future challenges. Nano Today, 25, 38–67. https://doi.org/10.1016/j.nantod.2019.02.007
Wang,, Z., Liu,, B., Sun,, Q., Dong,, S., Kuang,, Y., Dong,, Y., … Yang,, P. (2020). Fusiform‐like copper(II)‐based metal‐organic framework through relief hypoxia and GSH‐depletion co‐enhanced starvation and chemodynamic synergetic cancer therapy. ACS Applied Materials %26 Interfaces, 12(15), 17254–17267. https://doi.org/10.1021/acsami.0c01539
Wen,, L., Chen,, L., Zheng,, S., Zeng,, J., Duan,, G., Wang,, Y., … Gao,, M. (2016). Ultrasmall biocompatible WO3‐x nanodots for multi‐modality imaging and combined therapy of cancers. Advanced Materials, 28(25), 5072–5079. https://doi.org/10.1002/adma.201506428
Wu,, F., Zhang,, Q., Zhang,, M., Sun,, B., She,, Z., Ge,, M., … Li,, A. (2020). Hollow porous carbon coated FeS2‐based nanocatalysts for multimodal imaging‐guided photothermal, starvation, and triple‐enhanced chemodynamic therapy of cancer. ACS Applied Materials %26 Interfaces, 12(9), 10142–10155. https://doi.org/10.1021/acsami.0c00170
Wu,, M., Ding,, Y., & Li,, L. (2019). Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale, 11(42), 19658–19683. https://doi.org/10.1039/c9nr06651a
Wu,, Q., Yu,, J., Li,, M., Tan,, L., Ren,, X., Fu,, C., … Meng,, X. (2018). Nanoengineering of nanorattles for tumor treatment by CT imaging‐guided simultaneous enhanced microwave thermal therapy and managing inflammation. Biomaterials, 179, 122–133. https://doi.org/10.1016/j.biomaterials.2018.06.041
Wu,, W., Yu,, L., Jiang,, Q., Huo,, M., Lin,, H., Wang,, L., … Shi,, J. (2019). Enhanced tumor‐specific disulfiram chemotherapy by in situ Cu2+ chelation‐initiated nontoxicity‐to‐toxicity transition. Journal of the American Chemical Society, 141(29), 11531–11539. https://doi.org/10.1021/jacs.9b03503
Xiang,, H., & Chen,, Y. (2019). Energy‐converting nanomedicine. Small, 15(13), 1805339. https://doi.org/10.1002/smll.201805339
Xiang,, H., Feng,, W., & Chen,, Y. (2020). Single‐atom catalysts in catalytic biomedicine. Advanced Materials, 32(8), 1905994. https://doi.org/10.1002/adma.201905994
Xie,, C., Zhen,, X., Miao,, Q., Lyu,, Y., & Pu,, K. (2018). Self‐assembled semiconducting polymer nanoparticles for ultrasensitive near‐infrared afterglow imaging of metastatic tumors. Advanced Materials, 30(21), 1801331. https://doi.org/10.1002/adma.201801331
Xie,, J., Gong,, L., Zhu,, S., Yong,, Y., Gu,, Z., & Zhao,, Y. (2019). Emerging strategies of nanomaterial‐mediated tumor radiosensitization. Advanced Materials, 31(3), 1802244. https://doi.org/10.1002/adma.201802244
Xu,, C., Teng,, Z., Zhang,, Y., Yuwen,, L., Zhang,, Q., Su,, X., … Zhu,, J. (2018). Flexible MoS2‐embedded human serum albumin hollow nanocapsules with long circulation times and high targeting ability for efficient tumor ablation. Advanced Functional Materials, 28(45), 1804081. https://doi.org/10.1002/adfm.201804081
Xuan,, W., Xia,, Y., Li,, T., Wang,, L., Liu,, Y., & Tan,, W. (2020). Molecular self‐assembly of bioorthogonal aptamer‐prodrug conjugate micelles for hydrogen peroxide and pH‐independent cancer chemodynamic therapy. Journal of the American Chemical Society, 142(2), 937–944. https://doi.org/10.1021/jacs.9b10755
Yan,, H., Shang,, W., Sun,, X., Zhao,, L., Wang,, J., Xiong,, Z., … Feng,, S. (2018). “All‐in‐one” nanoparticles for trimodality imaging‐guided intracellular photo‐magnetic hyperthermia therapy under intravenous administration. Advanced Functional Materials, 28(9), 1705710. https://doi.org/10.1002/adfm.201705710
Yang,, B., Chen,, Y., & Shi,, J. (2019a). Reactive oxygen species (ROS)‐based nanomedicine. Chemical Society Reviews, 119(8), 4881–4985. https://doi.org/10.1021/acs.chemrev.8b00626
Yang,, B., Chen,, Y., & Shi,, J. (2019b). Nanocatalytic medicine. Advanced Materials, 31(39), 1901778. https://doi.org/10.1002/adma.201901778
Yang,, B., Liu,, Q., Yao,, X., Zhang,, D., Dai,, Z., Cui,, P., … Yu,, D. (2019). FePt@MnO‐based nanotheranostic platform with acidity‐triggered dual‐ions release for enhanced MR imaging‐guided ferroptosis chemodynamic therapy. ACS Applied Materials %26 Interfaces, 11(42), 38395–38404. https://doi.org/10.1021/acsami.9b11353
Yang,, D., Yang,, G., Yang,, P., Lv,, R., Gai,, S., Li,, C., … Lin,, J. (2017). Assembly of au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Advanced Functional Materials, 27(18), 1700371. https://doi.org/10.1002/adfm.201700371
Yang,, G., Xu,, L., Xu,, J., Zhang,, R., Song,, G., Chao,, Y., … Liu,, Z. (2018). Smart nanoreactors for pH‐responsive tumor homing, mitochondria‐targeting, and enhanced photodynamic‐immunotherapy of cancer. Nano Letters, 18(4), 2475–2484. https://doi.org/10.1021/acs.nanolett.8b00040
Yang,, L., Zhou,, Z., Song,, J., & Chen,, X. (2019). Anisotropic nanomaterials for shape‐dependent physicochemical and biomedical applications. Chemical Society Reviews, 48(19), 5140–5176. https://doi.org/10.1039/c9cs00011a
Yang,, M., Ho,, C., Ruta,, S., Chantrell,, R., Krycka,, K., Hovorka,, O., … Lai,, C. (2018). Magnetic interaction of multifunctional core‐shell nanoparticles for highly effective theranostics. Advanced Materials, 30(50), 1802444. https://doi.org/10.1002/adma.201802444
Yang,, X., Gao,, L., Guo,, Q., Li,, Y., Ma,, Y., Yang,, J., … Yi,, C. (2020). Nanomaterials for radiotherapeutics‐based multimodal synergistic cancer therapy. Nano Research. https://doi.org/10.1007/s12274-020-2722-z
Yang,, Y., Chen,, M., Wang,, B., Wang,, P., Liu,, Y., Zhao,, Y., … Tan,, W. (2019). NIR‐II driven plasmon‐enhanced catalysis for a timely supply of oxygen to overcome hypoxia‐induced radiotherapy tolerance. Angewandte Chemie International Edition, 58(42), 15069–15075. https://doi.org/10.1002/anie.201906758
Yang,, Y., Fan,, X., Li,, L., Yang,, Y., Nuernisha,, A., Xue,, D., … Huang,, W. (2020). Semiconducting polymer nanoparticles as theranostic system for near‐infrared‐II fluorescence imaging and photothermal therapy under safe laser fluence. ACS Nano, 14(2), 2509–2521. https://doi.org/10.1021/acsnano.0c00043
Yang,, Y., Wang,, L., Cao,, H., Li,, Q., Li,, Y., Han,, M., … Li,, J. (2019). Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation‐induced emission. Nano Letters, 19(3), 1821–1826. https://doi.org/10.1021/acs.nanolett.8b04875
Yang,, Y., Zhu,, W., Dong,, Z., Chao,, Y., Xu,, L., Chen,, M., & Liu,, Z. (2017). 1d coordination polymer nanofibers for low‐temperature photothermal therapy. Advanced Materials, 29(40), 1703588. https://doi.org/10.1002/adma.201703588
Yang,, Z., Fan,, W., Zou,, J., Tang,, W., Li,, L., He,, L., … Chen,, X. (2019). Precision cancer theranostic platform by in situ polymerization in perylene diimide‐hybridized hollow mesoporous organosilica nanoparticles. Journal of the American Chemical Society, 141(37), 14687–14698. https://doi.org/10.1021/jacs.9b06086
Yao,, C., Wang,, W., Wang,, P., Zhao,, M., Li,, X., & Zhang,, F. (2018). Near‐infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH‐/H2O2‐responsive O2‐evolving synergetic cancer therapy. Advanced Materials, 30(7), 1704833. https://doi.org/10.1002/adma.201704833
Yin,, H., Guan,, X., Lin,, H., Pu,, Y., Fang,, Y., Yue,, W., … Xu,, H. (2020). Nanomedicine‐enabled photonic thermogaseous cancer therapy. Advanced Science, 7(2), 1901954. https://doi.org/10.1002/advs.201901954
Yu,, B., Ni,, D., Rosenkrans,, Z. T., Barnhart,, T. E., Wei,, H., Ferreira,, C. A., … Cai,, W. (2019). A "missile‐detonation" strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics. Advanced Materials, 31(52), 1904894. https://doi.org/10.1002/adma.201904894
Yu,, G., Yu,, S., Saha,, M. L., Zhou,, J., Cook,, T. R., Yung,, B., … Chen,, X. (2018). A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 9, 4335. https://doi.org/10.1038/s41467-018-06574-7
Yu,, X., Li,, A., Zhao,, C., Yang,, K., Chen,, X., & Li,, W. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual‐modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 11(4), 3990–4001. https://doi.org/10.1021/acsnano.7b00476
Yu,, X., Liu,, X., Wu,, W., Yang,, K., Mao,, R., Ahmad,, F., … Li,, W. (2019). CT/MRI‐guided synergistic radiotherapy and X‐ray inducible photodynamic therapy using Tb‐doped Gd‐W‐nanoscintillators. Angewandte Chemie International Edition, 58(7), 2017–2022. https://doi.org/10.1002/anie.201812272
Yuan,, Z., Lin,, C., He,, Y., Tao,, B., Chen,, M., Zhang,, J., … Cai,, K. (2020). Near‐infrared light‐triggered nitric‐oxide‐enhanced photodynamic therapy and low‐temperature photothermal therapy for biofilm elimination. ACS Nano, 14(3), 3546–3562. https://doi.org/10.1021/acsnano.9b09871
Yue,, W., Chen,, L., Yu,, L., Zhou,, B., Yin,, H., Ren,, W., … Chen,, Y. (2019). Checkpoint blockade and nanosonosensitizer‐augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nature Communications, 10, 15. https://doi.org/10.1038/s41467-019-09760-3
Zada,, S., Dai,, W., Kai,, Z., Lu,, H., Meng,, X., Zhang,, Y., … Dong,, H. (2020). Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near‐infrared photothermal performance. Angewandte Chemie International Edition, 59(16), 6601–6606. https://doi.org/10.1002/anie.201916748
Zeng,, X., Luo,, M., Liu,, G., Wang,, X., Tao,, W., Lin,, Y., … Mei,, L. (2018). Polydopamine‐modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Advanced Science, 5(10), 1800510. https://doi.org/10.1002/advs.201800510
Zhang,, C., Bu,, W., Ni,, D., Zhang,, S., Li,, Q., Yao,, Z., … Shi,, J. (2016). Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angewandte Chemie International Edition, 55(6), 2101–2106. https://doi.org/10.1002/anie.201510031
Zhang,, C., Li,, D., Pei,, P., Wang,, W., Chen,, B., Chu,, Z., … Qian,, H. (2020). Rod‐based urchin‐like hollow microspheres of Bi2S3: Facile synthesis, photo‐controlled drug release for photoacoustic imaging and chemo‐photothermal therapy of tumor ablation. Biomaterials, 237, 119835. https://doi.org/10.1016/j.biomaterials.2020.119835
Zhang,, C., Zhao,, K., Bu,, W., Ni,, D., Liu,, Y., Feng,, J., & Shi,, J. (2015). Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angewandte Chemie International Edition, 54(6), 1770–1774. https://doi.org/10.1002/anie.201408472
Zhang,, L., Li,, S., Chen,, X., Wang,, T., Li,, L., Su,, Z., & Wang,, C. (2018). Tailored surfaces on 2d material: UFO‐like cyclodextrin‐Pd nanosheet/metal organic framework janus nanoparticles for synergistic cancer therapy. Advanced Functional Materials, 28(51), 1803815. https://doi.org/10.1002/adfm.201803815
Zhang,, L., Liu,, Z., Liu,, Y., Wang,, Y., Tang,, P., Wu,, Y., … Wu,, D. (2020). Ultrathin surface coated water‐soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance. Biomaterials, 230, 119655. https://doi.org/10.1016/j.biomaterials.2019.119655
Zhang,, L., Wan,, S., Li,, C., Xu,, L., Cheng,, H., & Zhang,, X. (2018). An adenosine triphosphate‐responsive autocatalytic Fenton nanoparticle for tumor ablation with self‐supplied H2O2 and acceleration of Fe(iii)/Fe(ii) conversion. Nano Letters, 18(12), 7609–7618. https://doi.org/10.1021/acs.nanolett.8b03178
Zhang,, L., Wang,, S., Zhou,, Y., Wang,, C., Zhang,, X., & Deng,, H. (2019). Covalent organic frameworks as favorable constructs for photodynamic therapy. Angewandte Chemie International Edition, 58(40), 14213–14218. https://doi.org/10.1002/anie.201909020
Zhang,, L., Yi,, H., Song,, J., Huang,, J., Yang,, K., Tan,, B., … Li,, X. (2019). Mitochondria‐targeted and ultrasound‐activated nanodroplets for enhanced deep‐penetration sonodynamic cancer therapy. ACS Applied Materials %26 Interfaces, 11(9), 9355–9366. https://doi.org/10.1021/acsami.8b21968
Zhang,, Q., Guo,, Q., Chen,, Q., Zhao,, X., Pennycook,, S. J., & Chen,, H. (2020). Highly efficient 2D NIR‐II photothermal agent with Fenton catalytic activity for cancer synergistic photothermal‐chemodynamic therapy. Advanced Science, 7(7), 1902576. https://doi.org/10.1002/advs.201902576
Zhang,, R., Yan,, F., & Chen,, Y. (2018). Exogenous physical irradiation on titania semiconductors: Materials chemistry and tumor‐specific nanomedicine. Advanced Science, 5(12), 1801175. https://doi.org/10.1002/advs.201801175
Zhang,, W., Cai,, K., Li,, X., Zhang,, J., Ma,, Z., Foda,, M. F., … Han,, H. (2019). Au hollow nanorods‐chimeric peptide nanocarrier for NIR‐II photothermal therapy and real‐time apoptosis imaging for tumor theranostics. Theranostics, 9(17), 4971–4981. https://doi.org/10.7150/thno.35560
Zhang,, X., Lan,, B., Wang,, S., Gao,, P., Liu,, T., Rong,, J., … Lu,, H. (2019). Low‐dose X‐ray excited photodynamic therapy based on NaLuF4:Tb3+‐rose bengal nanocomposite. Bioconjugate Chemistry, 30(8), 2191–2200. https://doi.org/10.1021/acs.bioconjchem.9b00429
Zhang,, X., Luo,, Z., Chen,, J., Shen,, X., Song,, S., Sun,, Y., … Xie,, J. (2014). Ultrasmall au(10‐12)(SG)(10‐12) nanomolecules for high tumor specificity and cancer radiotherapy. Advanced Materials, 26(26), 4565–4568. https://doi.org/10.1002/adma.201400866
Zhang,, Y., Yang,, L., Yang,, C., & Liu,, J. (2020). Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WIREs Nanomedicine and Nanobiotechnology, 12, e1619. https://doi.org/10.1002/wnan.1619
Zhao,, J., Duan,, L., Wang,, A., Fei,, J., & Li,, J. (2020). Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. WIREs Nanomedicine and Nanobiotechnology, 12(1), e1583. https://doi.org/10.1002/wnan.1583
Zhao,, Z., Wang,, W., Li,, C., Zhang,, Y., Yu,, T., Wu,, R., … Yu,, H. (2019). Reactive oxygen species‐activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies. Advanced Functional Materials, 29(44), 1905013. https://doi.org/10.1002/adfm.201905013
Zhen,, W., Liu,, Y., Lin,, L., Bai,, J., Jia,, X., Tian,, H., & Jiang,, X. (2018). BSA‐IrO2: Catalase‐like nanoparticles with high photothermal conversion efficiency and a high x‐ray absorption coefficient for anti‐inflammation and antitumor theranostics. Angewandte Chemie International Edition, 57(32), 10309–10313. https://doi.org/10.1002/anie.201804466
Zhong,, X., Wang,, X., Cheng,, L., Tang,, Y., Zhan,, G., Gong,, F., … Yang,, X. (2019). GSH‐depleted PtCu3 nanocages for chemodynamic‐enhanced sonodynamic cancer therapy. Advanced Functional Materials, 30(4), 1907954. https://doi.org/10.1002/adfm.201907954
Zhong,, X., Wang,, X., Zhan,, G., Tang,, Y., Yao,, Y., Dong,, Z., … Yang,, X. (2019). NaCeF4:Gd,Tb scintillator as an X‐ray responsive photosensitizer for multimodal imaging‐guided synchronous radio/radiodynamic therapy. Nano Letters, 19(11), 8234–8244. https://doi.org/10.1021/acs.nanolett.9b03682
Zhou,, H., Ge,, J., Miao,, Q., Zhu,, R., Wen,, L., Zeng,, J., & Gao,, M. (2020). Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior. Bioconjugate Chemistry, 31(2), 315–331. https://doi.org/10.1021/acs.bioconjchem.9b00699
Zhou,, J., Yang,, T., Chen,, J., Wang,, C., Zhang,, H., & Shao,, Y. (2020). Two‐dimensional nanomaterial‐based plasmonic sensing applications: Advances and challenges. Coordination Chemistry Reviews, 410, 213218. https://doi.org/10.1016/j.ccr.2020.213218
Zhou,, Z., Song,, J., Nie,, L., & Chen,, X. (2016). Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 45(23), 6597–6626. https://doi.org/10.1039/c6cs00271d
Zhu,, H., Fang,, Y., Miao,, Q., Qi,, X., Ding,, D., Chen,, P., & Pu,, K. (2017). Regulating near‐infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano, 11(9), 8998–9009. https://doi.org/10.1021/acsnano.7b03507
Zhu,, P., Chen,, Y., & Shi,, J. (2018). Nanoenzyme‐augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano, 12(4), 3780–3795. https://doi.org/10.1021/acsnano.8b00999
Zhu,, S., Tian,, R., Antaris,, A. L., Chen,, X., & Dai,, H. (2019). Near‐infrared‐II molecular dyes for cancer imaging and surgery. Advanced Materials, 31(24), 1900321. https://doi.org/10.1002/adma.201900321
Zhu,, X., Gong,, Y., Liu,, Y., Yang,, C., Wu,, S., Yuan,, G., … Qin,, X. (2020). Ru@CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials, 242, 119923. https://doi.org/10.1016/j.biomaterials.2020.119923
Zhuang,, J., Ying,, M., Spiekermann,, K., Holay,, M., Zhang,, Y., Chen,, F., … Zhang,, L. (2018). Biomimetic nanoemulsions for oxygen delivery in vivo. Advanced Materials, 30(49), 1804693. https://doi.org/10.1002/adma.201804693