Agoro,, R., Taleb,, M., Quesniaux,, V. F. J., & Mura,, C. (2018). Cell iron status influences macrophage polarization. PLoS One, 13(5), e0196921. https://doi.org/10.1371/journal.pone.0196921
Alkhateeb,, A. A., Han,, B., & Connor,, J. R. (2013). Ferritin stimulates breast cancer cells through an iron‐independent mechanism and is localized within tumor‐associated macrophages. Breast Cancer Research and Treatment, 137(3), 733–744. https://doi.org/10.1007/s10549-012-2405-x
Ambroszkiewicz,, J., Klemarczyk,, W., Mazur,, J., Gajewska,, J., Rowicka,, G., Strucinska,, M., & Chelchowska,, M. (2017). Serum hepcidin and soluble transferrin receptor in the assessment of iron metabolism in children on a vegetarian diet. Biological Trace Element Research, 180(2), 182–190. https://doi.org/10.1007/s12011-017-1003-5
Andrews,, S. C., Robinson,, A. K., & Rodriguez‐Quinones,, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3), 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X
Angeli,, J. P. F., Shah,, R., Pratt,, D. A., & Conrad,, M. (2017). Ferroptosis inhibition: Mechanisms and opportunities. Trends in Pharmacological Sciences, 38(5), 489–498. https://doi.org/10.1016/j.tips.2017.02.005
Bao,, W., Liu,, X., Lv,, Y., Lu,, G.‐H., Li,, F., Zhang,, F., … Li,, Y. (2019). Nanolongan with multiple on‐demand conversions for ferroptosis–apoptosis combined anticancer therapy. ACS Nano, 13(1), 260–273. https://doi.org/10.1021/acsnano.8b05602
Bulbul,, G., Liu,, G., Vithalapur,, N. R., Atilgan,, C., Sayers,, Z., & Pourmand,, N. (2018). Employment of iron‐binding protein from Haemophilus influenzae in functional nanopipettes for iron monitoring. ACS Chemical Neuroscience, 10(4), 1970–1977. https://doi.org/10.1021/acschemneuro.8b00263
Cai,, D., Ren,, L., Zhao,, H., Xu,, C., Zhang,, L., Yu,, Y., … Chiles,, T. C. (2010). A molecular‐imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology, 5(8), 597–601. https://doi.org/10.1038/nnano.2010.114
Camacho,, A., Simão,, M., Ea,, H.‐K., Cohen‐Solal,, M., Richette,, P., Branco,, J., & Cancela,, M. (2016). Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress. Osteoarthritis and Cartilage, 24(3), 494–502. https://doi.org/10.1016/j.joca.2015.09.007
Camaschella,, C., & Nai,, A. (2016). Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. British Journal of Haematology, 172(4), 512–523. https://doi.org/10.1111/bjh.13820
Cenci,, L., Andreetto,, E., Vestri,, A., Bovi,, M., Barozzi,, M., Iacob,, E., … Bossi,, A. M. (2015). Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin‐25. Journal of Nanobiotechnology, 13, 51. https://doi.org/10.1186/s12951-015-0115-3
Cenci,, L., Piotto,, C., Bettotti,, P., & Maria Bossi,, A. (2018). Study on molecularly imprinted nanoparticle modified microplates for pseudo‐ELISA assays. Talanta, 178, 772–779. https://doi.org/10.1016/j.talanta.2017.10.018
Chen,, H. J., Attieh,, Z. K., Syed,, B. A., Kuo,, Y. M., Stevens,, V., Fuqua,, B. K., … McArdle,, H. J. (2010). Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. Journal of Nutrition, 140(10), 1728–1735. https://doi.org/10.3945/jn.109.117531
Chung,, I.‐H., Wu,, T.‐I., Liao,, C.‐J., Hu,, J.‐Y., Lin,, Y.‐H., Tai,, P.‐J., … Lin,, K.‐H. (2016). Overexpression of lipocalin 2 in human cervical cancer enhances tumor invasion. Oncotarget, 7(10), 11113. https://doi.org/10.18632/oncotarget.7096
Cook,, J. D., Finch,, C. A., & Smith,, N. J. (1976). Evaluation of the iron status of a population. Blood, 48(3), 449–455. https://doi.org/10.1182/blood.V48.3.449.bloodjournal483449
Cook,, J. D., Flowers,, C. H., & Skikne,, B. S. (2003). The quantitative assessment of body iron. Blood, 101(9), 3359–3364. https://doi.org/10.1182/blood-2002-10-3071
Core,, A. B., Canali,, S., & Babitt,, J. L. (2014). Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Frontiers in Pharmacology, 5, 104. https://doi.org/10.3389/fphar.2014.00104
Costa da Silva,, M., Breckwoldt,, M. O., Vinchi,, F., Correia,, M. P., Stojanovic,, A., Thielmann,, C. M., … Platten,, M. (2017). Iron induces anti‐tumor activity in tumor‐associated macrophages. Frontiers in Immunology, 8, 1479. https://doi.org/10.3389/fimmu.2017.01479
Crielaard,, B. J., Lammers,, T., & Rivella,, S. (2017). Targeting iron metabolism in drug discovery and delivery. Nature Reviews Drug Discovery, 16(6), 400–423. https://doi.org/10.1038/nrd.2016.248
Dewey,, K. G., & Oaks,, B. M. (2017). U‐shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. American Journal of Clinical Nutrition, 106(6), 1694s–1702s. https://doi.org/10.3945/ajcn.117.156075
Dixon,, S. J., Lemberg,, K. M., Lamprecht,, M. R., Skouta,, R., Zaitsev,, E. M., Gleason,, C. E., … Stockwell,, B. R. (2012). Ferroptosis: An iron‐dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Dong,, D., Zhang,, G., Yang,, J., Zhao,, B., Wang,, S., Wang,, L., … Shang,, P. (2019). The role of iron metabolism in cancer therapy focusing on tumor‐associated macrophages. Journal of Cellular Physiology, 234(6), 8028–8039. https://doi.org/10.1002/jcp.27569
Donovan,, A., Brownlie,, A., Zhou,, Y., Shepard,, J., Pratt,, S. J., Moynihan,, J., … Zon,, L. I. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 403(6771), 776–781. https://doi.org/10.1038/35001596
Donovan,, A., Lima,, C. A., Pinkus,, J. L., Pinkus,, G. S., Zon,, L. I., Robine,, S., & Andrews,, N. C. (2005). The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 1(3), 191–200. https://doi.org/10.1016/j.cmet.2005.01.003
Drakesmith,, H., Nemeth,, E., & Ganz,, T. (2015). Ironing out ferroportin. Cell Metabolism, 22(5), 777–787. https://doi.org/10.1016/j.cmet.2015.09.006
Dunaief,, J. L., Richa,, C., Franks,, E. P., Schultze,, R. L., Aleman,, T. S., Schenck,, J. F., … Brooks,, D. G. (2005). Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology, 112(6), 1062–1065. https://doi.org/10.1016/j.ophtha.2004.12.029
Ermakova,, A., Pramanik,, G., Cai,, J.‐M., Algara‐Siller,, G., Kaiser,, U., Weil,, T., … Plenio,, M. B. (2013). Detection of a few metallo‐protein molecules using color centers in nanodiamonds. Nano Letters, 13(7), 3305–3309. https://doi.org/10.1021/nl4015233
Fernández‐Real,, J. M., McClain,, D., & Manco,, M. (2015). Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care, 38(11), 2169–2176. https://doi.org/10.2337/dc14-3082
Fracasso,, G., Falvo,, E., Colotti,, G., Fazi,, F., Ingegnere,, T., Amalfitano,, A., … Morea,, V. (2016). Selective delivery of doxorubicin by novel stimuli‐sensitive nano‐ferritins overcomes tumor refractoriness. Journal of Controlled Release, 239, 10–18. https://doi.org/10.1016/j.jconrel.2016.08.010
Fuqua,, B. K., Lu,, Y., Darshan,, D., Frazer,, D. M., Wilkins,, S. J., Wolkow,, N., … Vulpe,, C. D. (2014). The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One, 9(6), e98792. https://doi.org/10.1371/journal.pone.0098792
Ganz,, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741. https://doi.org/10.1152/physrev.00008.2013
Ganz,, T., & Nemeth,, E. (2012). Hepcidin and iron homeostasis. Biochimica et Biophysica Acta‐Molecular Cell Research, 1823(9), 1434–1443. https://doi.org/10.1016/j.bbamcr.2012.01.014
Girelli,, D., Nemeth,, E., & Swinkels,, D. W. (2016). Hepcidin in the diagnosis of iron disorders. Blood, 127(23), 2809–2813. https://doi.org/10.1182/blood-2015-12-639112
Go,, Y.‐M., & Jones,, D. P. (2010). Redox control systems in the nucleus: Mechanisms and functions. Antioxidants %26 Redox Signaling, 13(4), 489–509. https://doi.org/10.1089/ars.2009.3021
Goswami,, T., & Andrews,, N. C. (2006). Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. Journal of Biological Chemistry, 281(39), 28494–28498. https://doi.org/10.1074/jbc.C600197200
Goswami,, U., Dutta,, A., Raza,, A., Kandimalla,, R., Kalita,, S., Ghosh,, S. S., & Chattopadhyay,, A. (2018). Transferrin–copper nanocluster–doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Applied Materials %26 Interfaces, 10(4), 3282–3294. https://doi.org/10.1021/acsami.7b15165
Green,, R., Charlton,, R., Seftel,, H., Bothwell,, T., Mayet,, F., Adams,, B., … Layrisse,, M. (1968). Body iron excretion in man: A collaborative study. American Journal of Medicine, 45(3), 336–353. https://doi.org/10.1016/0002-9343(68)90069-7
Gregory,, A., & Hayflick,, S. J. (2005). Neurodegeneration with brain iron accumulation. Folia Neuropathologica, 43(4), 286–296.
Gunshin,, H., Mackenzie,, B., Berger,, U. V., Gunshin,, Y., Romero,, M. F., Boron,, W. F., … Hediger,, M. A. (1997). Cloning and characterization of a mammalian proton‐coupled metal‐ion transporter. Nature, 388(6641), 482–488. https://doi.org/10.1038/41343
Han,, C., Wang,, R., Wang,, K., Xu,, H., Sui,, M., Li,, J., & Xu,, K. (2016). Highly fluorescent carbon dots as selective and sensitive “on‐off‐on” probes for iron (III) ion and apoferritin detection and imaging in living cells. Biosensors and Bioelectronics, 83, 229–236. https://doi.org/10.1016/j.bios.2016.04.066
Hentze,, M. W., Muckenthaler,, M. U., Galy,, B., & Camaschella,, C. (2010). Two to tango: Regulation of mammalian iron metabolism. Cell, 142(1), 24–38. https://doi.org/10.1016/j.cell.2010.06.028
Hercberg,, S., Chauliac,, M., Devanlay,, M., Galan,, P., Pureur,, J. L., Soustre,, Y., … Dupin,, H. (1986). Evaluation of the iron status of a rural‐population in South Benin. Nutrition Research, 6(6), 627–634. https://doi.org/10.1016/S0271-5317(86)80004-5
Hershko,, C. (2018). Assessment of iron deficiency. Haematologica, 103(12), 1939–1942. https://doi.org/10.3324/haematol.2018.205575
Hoshi,, K., Matsumoto,, Y., Ito,, H., Saito,, K., Honda,, T., Yamaguchi,, Y., & Hashimoto,, Y. (2017). A unique glycan‐isoform of transferrin in cerebrospinal fluid: A potential diagnostic marker for neurological diseases. Biochimica et Biophysica Acta‐General Subjects, 1861(10), 2473–2478. https://doi.org/10.1016/j.bbagen.2017.07.005
Hu,, S. W., Qiao,, S., Xu,, B. Y., Peng,, X., Xu,, J. J., & Chen,, H. Y. (2017). Dual‐functional carbon dots pattern on paper chips for Fe(3+) and ferritin analysis in whole blood. Analytical Chemistry, 89(3), 2131–2137. https://doi.org/10.1021/acs.analchem.6b04891
Jiang,, L., Kon,, N., Li,, T. Y., Wang,, S. J., Su,, T., Hibshoosh,, H., … Gu,, W. (2015). Ferroptosis as a p53‐mediated activity during tumour suppression. Nature, 520(7545), 57–62. https://doi.org/10.1038/nature14344
Kim,, B. J., Ahn,, S. H., Bae,, S. J., Kim,, E. H., Lee,, S. H., Kim,, H. K., … Kim,, G. S. (2012). Iron overload accelerates bone loss in healthy postmenopausal women and middle‐aged men: A 3‐year retrospective longitudinal study. Journal of Bone and Mineral Research, 27(11), 2279–2290. https://doi.org/10.1002/jbmr.1692
Kim,, K. S., Son,, H. G., Hong,, N. S., & Lee,, D. H. (2012). Associations of serum ferritin and transferrin % saturation with all‐cause, cancer, and cardiovascular disease mortality: Third National Health and Nutrition Examination Survey follow‐up study. Journal of Preventive Medicine and Public Health, 45(3), 196–203. https://doi.org/10.3961/jpmph.2012.45.3.196
Kim,, S. E., Zhang,, L., Ma,, K., Riegman,, M., Chen,, F., Ingold,, I., … Jiang,, X. (2016). Ultrasmall nanoparticles induce ferroptosis in nutrient‐deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 11(11), 977–985. https://doi.org/10.1038/nnano.2016.164
Kraml,, P. (2017). The role of iron in the pathogenesis of atherosclerosis. Physiological Research, 66, S55–S67. https://doi.org/10.33549/physiolres.933589
Krishnamurthy,, P., Xie,, T., & Schuetz,, J. D. (2007). The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology %26 Therapeutics, 114(3), 345–358. https://doi.org/10.1016/j.pharmthera.2007.02.001
Lee,, S., Song,, A., & Eo,, W. (2016). Serum ferritin as a prognostic biomarker for survival in relapsed or refractory metastatic colorectal cancer. Journal of Cancer, 7(8), 957–964. https://doi.org/10.7150/jca.14797
Liang,, C., Zhang,, X. L., Yang,, M. S., & Dong,, X. C. (2019). Recent progress in ferroptosis inducers for cancer therapy. Advanced Materials, 31(51), e1904197. https://doi.org/10.1002/adma.201904197
Liu,, L., Zhong,, T., Xu,, Q., & Chen,, Y. (2015). Efficient molecular imprinting strategy for quantitative targeted proteomics of human transferrin receptor in depleted human serum. Analytical Chemistry, 87(21), 10910–10919. https://doi.org/10.1021/acs.analchem.5b02633
Liu,, T., Liu,, W., Zhang,, M., Yu,, W., Gao,, F., Li,, C., … Zhang,, X.‐Z. (2018). Ferrous‐supply‐regeneration nanoengineering for cancer‐cell‐specific ferroptosis in combination with imaging‐guided photodynamic therapy. ACS Nano, 12(12), 12181–12192. https://doi.org/10.1021/acsnano.8b05860
Liu,, Y., Zhang,, N., Li,, P., Yu,, L., Chen,, S., Zhang,, Y., … Peng,, W. (2019). Low‐cost localized surface plasmon resonance biosensing platform with a response enhancement for protein detection. Nanomaterials (Basel), 9(7), 1019. https://doi.org/10.3390/nano9071019
Liuzzi,, J. P., Aydemir,, F., Nam,, H., Knutson,, M. D., & Cousins,, R. J. (2006). Zip14 (Slc39a14) mediates non‐transferrin‐bound iron uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13612–13617. https://doi.org/10.1073/pnas.0606424103
Lu,, M., Cohen,, M. H., Rieves,, D., & Pazdur,, R. (2010). FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. American Journal of Hematology, 85(5), 315–319. https://doi.org/10.1002/ajh.21656
Ma,, P. a., Xiao,, H., Yu,, C., Liu,, J., Cheng,, Z., Song,, H., … Gu,, Z. (2017). Enhanced cisplatin chemotherapy by iron oxide nanocarrier‐mediated generation of highly toxic reactive oxygen species. Nano Letters, 17(2), 928–937. https://doi.org/10.1021/acs.nanolett.6b04269
Masaldan,, S., Bush,, A. I., Devos,, D., Rolland,, A. S., & Moreau,, C. (2019). Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine, 133, 221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033
Mazzone,, M., Menga,, A., & Castegna,, A. (2018). Metabolism and TAM functions—It takes two to tango. The FEBS Journal, 285(4), 700–716. https://doi.org/10.1111/febs.14295
McKie,, A. T., Barrow,, D., Latunde‐Dada,, G. O., Rolfs,, A., Sager,, G., Mudaly,, E., … Simpson,, R. J. (2001). An iron‐regulated ferric reductase associated with the absorption of dietary iron. Science, 291(5509), 1755–1759. https://doi.org/10.1126/science.1057206
Mertens,, C., Mora,, J., Ören,, B., Grein,, S., Winslow,, S., Scholich,, K., … Fernö,, M. (2018). Macrophage‐derived lipocalin‐2 transports iron in the tumor microenvironment. Oncoimmunology, 7(3), e1408751. https://doi.org/10.1080/2162402X.2017.1408751
Mu,, X. Y., Qi,, L., Dong,, P., Qiao,, J., Hou,, J., Nie,, Z. X., & Ma,, H. M. (2013). Facile one‐pot synthesis of L‐proline‐stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosensors %26 Bioelectronics, 49, 249–255. https://doi.org/10.1016/j.bios.2013.05.019
Muckenthaler,, M. U., Rivella,, S., Hentze,, M. W., & Galy,, B. (2017). A red carpet for iron metabolism. Cell, 168(3), 344–361. https://doi.org/10.1016/j.cell.2016.12.034
Müller,, K., Skepper,, J. N., Posfai,, M., Trivedi,, R., Howarth,, S., Corot,, C., … Gillard,, J. H. (2007). Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran‐10) on human monocyte‐macrophages in vitro. Biomaterials, 28(9), 1629–1642. https://doi.org/10.1016/j.biomaterials.2006.12.003
Nairz,, M., Haschka,, D., Demetz,, E., & Weiss,, G. (2014). Iron at the interface of immunity and infection. Frontiers in Pharmacology, 5, 152. https://doi.org/10.3389/fphar.2014.00152
Nemeth,, E., Tuttle,, M. S., Powelson,, J., Vaughn,, M. B., Donovan,, A., Ward,, D. M., … Kaplan,, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 306(5704), 2090–2093. https://doi.org/10.1126/science.1104742
Ohgami,, R. S., Campagna,, D. R., Greer,, E. L., Antiochos,, B., McDonald,, A., Chen,, J., … Fleming,, M. D. (2005). Identification of a ferrireductase required for efficient transferrin‐dependent iron uptake in erythroid cells. Nature Genetics, 37(11), 1264–1269. https://doi.org/10.1038/ng1658
Ohgami,, R. S., Campagna,, D. R., McDonald,, A., & Fleming,, M. D. (2006). The Steap proteins are metalloreductases. Blood, 108(4), 1388–1394. https://doi.org/10.1182/blood-2006-02-003681
Ou,, W., Mulik,, R. S., Anwar,, A., McDonald,, J. G., He,, X., & Corbin,, I. R. (2017). Low‐density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radical Biology and Medicine, 112, 597–607. https://doi.org/10.1016/j.freeradbiomed.2017.09.002
Pagani,, A., Nai,, A., Corna,, G., Bosurgi,, L., Rovere‐Querini,, P., Camaschella,, C., & Silvestri,, L. (2011). Low hepcidin accounts for the proinflammatory status associated with iron deficiency. Blood, 118(3), 736–746. https://doi.org/10.1182/blood-2011-02-337212
Park,, S., Kosmider,, O., Maloisel,, F., Drenou,, B., Chapuis,, N., Lefebvre,, T., … Fontenay,, M. (2019). Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower‐risk myelodysplastic syndromes. Haematologica, 104(3), 497–504. https://doi.org/10.3324/haematol.2018.203158
Pereira,, D. I., Mohammed,, N. I., Ofordile,, O., Camara,, F., Baldeh,, B., Mendy,, T., … Wason,, J. (2018). A novel nano‐iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT‐GUT double‐blind, randomised, placebo‐controlled trial protocol. Gates Open Research, 2, 48–48. https://doi.org/10.12688/gatesopenres.12866.2
Pereira,, D. I. A., Bruggraber,, S. F. A., Faria,, N., Poots,, L. K., Tagmount,, M. A., Aslam,, M. F., … Powell,, J. J. (2014). Nanoparticulate iron(III) oxo‐hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine‐Nanotechnology Biology and Medicine, 10(8), 1877–1886. https://doi.org/10.1016/j.nano.2014.06.012
Peterson,, R. D., Chen,, W. L., Cunningham,, B. T., & Andrade,, J. E. (2015). Enhanced sandwich immunoassay using antibody‐functionalized magnetic iron‐oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosensors %26 Bioelectronics, 74, 815–822. https://doi.org/10.1016/j.bios.2015.07.050
Peterson,, R. D., Cunningham,, B. T., & Andrade,, J. E. (2014). A photonic crystal biosensor assay for ferritin utilizing iron‐oxide nanoparticles. Biosensors %26 Bioelectronics, 56, 320–327. https://doi.org/10.1016/j.bios.2014.01.022
Pinnix,, Z. K., Miller,, L. D., Wang,, W., D`Agostino,, R., Kute,, T., Willingham,, M. C., … Di,, X. (2010). Ferroportin and iron regulation in breast cancer progression and prognosis. Science Translational Medicine, 2(43), 43ra56. https://doi.org/10.1126/scisignal.3001127
Priyadarshini,, E., Rawat,, K., Bohidar,, H. B., & Rajamani,, P. (2019). Dual‐probe (colorimetric and fluorometric) detection of ferritin using antibody‐modified gold@carbon dot nanoconjugates. Microchimica Acta, 186(11), 687. https://doi.org/10.1007/s00604-019-3802-1
Puntarulo,, S. (2005). Iron, oxidative stress and human health. Molecular Aspects of Medicine, 26(4–5), 299–312. https://doi.org/10.1016/j.mam.2005.07.001
Recalcati,, S., Locati,, M., Gammella,, E., Invernizzi,, P., & Cairo,, G. (2012). Iron levels in polarized macrophages: Regulation of immunity and autoimmunity. Autoimmunity Reviews, 11(12), 883–889. https://doi.org/10.1016/j.autrev.2012.03.003
Reichel,, D., Tripathi,, M., & Perez,, J. M. (2019). Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nanotheranostics, 3(1), 66–88. https://doi.org/10.7150/ntno.30052
Rojas,, J. M., Sanz‐Ortega,, L., Mulens‐Arias,, V., Gutiérrez,, L., Pérez‐Yagüe,, S., & Barber,, D. F. (2016). Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine: Nanotechnology, Biology and Medicine, 12(4), 1127–1138. https://doi.org/10.1016/j.nano.2015.11.020
R`zik,, S., Loo,, M., & Beguin,, Y. (2001). Reticulocyte transferrin receptor (TfR) expression and contribution to soluble TfR levels. Haematologica, 86(3), 244–251. https://doi.org/10.1016/S0301-472X(00)00674-3
Salvati,, A., Pitek,, A. S., Monopoli,, M. P., Prapainop,, K., Bombelli,, F. B., Hristov,, D. R., … Dawson,, K. A. (2013). Transferrin‐functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 8(2), 137–143. https://doi.org/10.1038/NNANO.2012.237
Schreiber,, R. D., Old,, L. J., & Smyth,, M. J. (2011). Cancer immunoediting: Integrating immunity`s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. https://doi.org/10.1126/science.1203486
Shaw,, G. C., Cope,, J. J., Li,, L. T., Corson,, K., Hersey,, C., Ackermann,, G. E., … Paw,, B. H. (2006). Mitoferrin is essential for erythroid iron assimilation. Nature, 440(7080), 96–100. https://doi.org/10.1038/nature04512
Shen,, Z., Liu,, T., Li,, Y., Lau,, J., Yang,, Z., Fan,, W., … Bregadze,, V. I. (2018). Fenton‐reaction‐acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 12(11), 11355–11365. https://doi.org/10.1021/acsnano.8b06201
Sindrilaru,, A., Peters,, T., Wieschalka,, S., Baican,, C., Baican,, A., Peter,, H., … Scharffetter‐Kochanek,, K. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. Journal of Clinical Investigation, 121(3), 985–997. https://doi.org/10.1172/Jci44490
Singh,, Y. P., Pandey,, A., Vishwakarma,, S., & Modi,, G. (2019). A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer`s and Parkinson`s diseases. Molecular Diversity, 23(2), 509–526. https://doi.org/10.1007/s11030-018-9878-4
Sposi,, N. M., Cianetti,, L., Tritarelli,, E., Pelosi,, E., Militi,, S., Barberi,, T., … Testa,, U. (2000). Mechanisms of differential transferrin receptor expression in normal hematopoiesis. European Journal of Biochemistry, 267(23), 6762–6774. https://doi.org/10.1046/j.1432-1033.2000.01769.x
Srinivasan,, B., Finkelstein,, J. L., O`Dell,, D., Erickson,, D., & Mehta,, S. (2019). Rapid diagnostics for point‐of‐care quantification of soluble transferrin receptor. eBioMedicine, 42, 504–510. https://doi.org/10.1016/j.ebiom.2019.03.017
Srinivasan,, B., O`Dell,, D., Finkelstein,, J. L., Lee,, S., Erickson,, D., & Mehta,, S. (2018). ironPhone: Mobile device‐coupled point‐of‐care diagnostics for assessment of iron status by quantification of serum ferritin. Biosensors %26 Bioelectronics, 99, 115–121. https://doi.org/10.1016/j.bios.2017.07.038
Stockwell,, B. R., Angeli,, J. P. F., Bayir,, H., Bush,, A. I., Conrad,, M., Dixon,, S. J., … Zhang,, D. D. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2), 273–285. https://doi.org/10.1016/j.cell.2017.09.021
Sun,, X., Ou,, Z., Xie,, M., Kang,, R., Fan,, Y., Niu,, X., … Tang,, D. (2015). HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 34(45), 5617–5625. https://doi.org/10.1038/onc.2015.32
Tarangelo,, A., & Dixon,, S. J. (2016). Nanomedicine: An iron age for cancer therapy. Nature Nanotechnology, 11(11), 921–922. https://doi.org/10.1038/nnano.2016.199
Theurl,, I., Aigner,, E., Theurl,, M., Nairz,, M., Seifert,, M., Schroll,, A., … Weiss,, G. (2009). Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications. Blood, 113(21), 5277–5286. https://doi.org/10.1182/blood-2008-12-195651
Torti,, S. V., & Torti,, F. M. (2013). Iron and cancer: More ore to be mined. Nature Reviews Cancer, 13(5), 342–355. https://doi.org/10.1038/nrc3495
Toyokuni,, S., Ito,, F., Yamashita,, K., Okazaki,, Y., & Akatsuka,, S. (2017). Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radical Biology and Medicine, 108, 610–626. https://doi.org/10.1016/j.freeradbiomed.2017.04.024
Treffry,, A., & Harrison,, P. M. (1979). The binding of ferric iron by ferritin. Biochemical Journal, 181(3), 709–716. https://doi.org/10.1042/bj1810709
Tripathi,, A. K., Haldar,, S., Qian,, J., Beserra,, A., Suda,, S., Singh,, A., … Singh,, N. (2015). Prion protein functions as a ferrireductase partner for ZIP14 and DMT1. Free Radical Biology and Medicine, 84, 322–330. https://doi.org/10.1016/j.freeradbiomed.2015.03.037
Trujillo‐Alonso,, V., Pratt,, E. C., Zong,, H. L., Lara‐Martinez,, A., Kaittanis,, C., Rabie,, M. O., … Guzman,, M. L. (2019). FDA‐approved ferumoxytol displays anti‐leukaemia efficacy against cells with low ferroportin levels. Nature Nanotechnology, 14(6), 616–622. https://doi.org/10.1038/s41565-019-0406-1
Truman‐Rosentsvit,, M., Berenbaum,, D., Spektor,, L., Cohen,, L. A., Belizowsky‐Moshe,, S., Lifshitz,, L., … Meyron‐Holtz,, E. G. (2018). Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood, 131(3), 342–352. https://doi.org/10.1182/blood-2017-02-768580
Vinchi,, F., Porto,, G., Simmelbauer,, A., Altamura,, S., Passos,, S. T., Garbowski,, M., … Sparla,, R. (2019). Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 41, 2681–2695. https://doi.org/10.1093/eurheartj/ehz112
Vinchi,, F., Sparla,, R., Simmelbauer,, A., Altamura,, S., Speich,, S., Galy,, B., … Muckenthaler,, M. U. (2017). Low‐iron diet and chelation therapy rescue severe atherosclerosis associated with high circulating iron levels. Atherosclerosis, 263, E15–E16. https://doi.org/10.1016/j.atherosclerosis.2017.06.076
Walden,, W. E., Selezneva,, A. I., Dupuy,, J., Volbeda,, A., Fontecilla‐Camps,, J. C., Theil,, E. C., & Volz,, K. (2006). Structure of dual function iron regulatory protein 1 complexed with ferritin IRE‐RNA. Science, 314(5807), 1903–1908. https://doi.org/10.1126/science.1133116
Wang,, C., Graham,, D. J., Kane,, R. C., Xie,, D., Wernecke,, M., Levenson,, M., … Wong,, S. (2015). Comparative risk of anaphylactic reactions associated with intravenous iron products. JAMA, 314(19), 2062–2068. https://doi.org/10.1001/jama.2015.15572
Wang,, C. Y., Jenkitkasemwong,, S., Duarte,, S., Sparkman,, B. K., Shawki,, A., Mackenzie,, B., & Knutson,, M. D. (2012). ZIP8 is an iron and zinc transporter whose cell‐surface expression is up‐regulated by cellular iron loading. Journal of Biological Chemistry, 287(41), 34032–34043. https://doi.org/10.1074/jbc.M112.367284
Wang,, K., Zhang,, Y., Wang,, J., Yuan,, A., Sun,, M., Wu,, J., & Hu,, Y. (2016). Self‐assembled IR780‐loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 6, 27421. https://doi.org/10.1038/srep27421
Wang,, N., Jin,, X., Guo,, D., Tong,, G., & Zhu,, X. (2016). Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromolecules, 18(2), 461–474. https://doi.org/10.1021/acs.biomac.6b01547
Wang,, Y., Chen,, J.‐T., & Yan,, X.‐P. (2013). Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn‐on near‐infrared fluorescent bioimaging of cancer cells and small animals. Analytical Chemistry, 85(4), 2529–2535. https://doi.org/10.1021/ac303747t
Wang,, Z., Huang,, P., Jacobson,, O., Wang,, Z., Liu,, Y., Lin,, L., … Tian,, R. (2016). Biomineralization‐inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano, 10(3), 3453–3460. https://doi.org/10.1021/acsnano.5b07521
Weerathunge,, P., Pooja,, D., Singh,, M., Kulhari,, H., Mayes,, E. L., Bansal,, V., & Ramanathan,, R. (2019). Transferrin‐conjugated quasi‐cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sensors and Actuators B: Chemical, 297, 126737. https://doi.org/10.1016/j.snb.2019.126737
Weinberg,, E. D. (2009). Iron availability and infection. Biochimica et Biophysica Acta‐General Subjects, 1790(7), 600–605. https://doi.org/10.1016/j.bbagen.2008.07.002
Wilkinson,, N., & Pantopoulos,, K. (2014). The IRP/IRE system in vivo: Insights from mouse models. Frontiers in Pharmacology, 5, 176. https://doi.org/10.3389/fphar.2014.00176
Wish,, J. B. (2006). Assessing iron status: Beyond serum ferritin and transferrin saturation. Clinical Journal of the American Society of Nephrology, 1, S4–S8. https://doi.org/10.2215/CJN.01490506
Wu,, J., Minikes,, A. M., Gao,, M. H., Bian,, H. J., Li,, Y., Stockwell,, B. R., … Jiang,, X. J. (2019). Intercellular interaction dictates cancer cell ferroptosis via NF2‐YAP signalling. Nature, 572(7769), 402–406. https://doi.org/10.1038/s41586-019-1426-6
Yang,, J., Bielenberg,, D. R., Rodig,, S. J., Doiron,, R., Clifton,, M. C., Kung,, A. L., … Moses,, M. A. (2009). Lipocalin 2 promotes breast cancer progression. Proceedings of the National Academy of Sciences, 106(10), 3913–3918. https://doi.org/10.1073/pnas.0810617106
Yang,, R., Li,, Y., Wang,, X., Yan,, J., Pan,, D., Xu,, Y., … Yang,, M. (2019). Doxorubicin loaded ferritin nanoparticles for ferroptosis enhanced targeted killing of cancer cells. RSC Advances, 9(49), 28548–28553. https://doi.org/10.1039/C9RA04478G
Yang,, W. S., SriRamaratnam,, R., Welsch,, M. E., Shimada,, K., Skouta,, R., Viswanathan,, V. S., … Clish,, C. B. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Yen,, L.‐C., Pan,, T.‐M., Lee,, C.‐H., & Chao,, T.‐S. (2016). Label‐free and real‐time detection of ferritin using a horn‐like polycrystalline‐silicon nanowire field‐effect transistor biosensor. Sensors and Actuators B: Chemical, 230, 398–404. https://doi.org/10.1016/j.snb.2016.02.095
You,, L., Wang,, J., Liu,, T., Zhang,, Y., Han,, X., Wang,, T., … Anderson,, G. J. (2018). Targeted brain delivery of rabies virus glycoprotein 29‐modified deferoxamine‐loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano, 12(5), 4123–4139. https://doi.org/10.1021/acsnano.7b08172
Zanganeh,, S., Hutter,, G., Spitler,, R., Lenkov,, O., Mahmoudi,, M., Shaw,, A., … Moseley,, M. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro‐inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), 986–994. https://doi.org/10.1038/nnano.2016.168
Zecca,, L., Youdim,, M. B. H., Riederer,, P., Connor,, J. R., & Crichton,, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5(11), 863–873. https://doi.org/10.1038/nrn1537
Zhang,, W., Wang,, R., Li,, P., Zhang,, W., Pang,, X., Wang,, H., & Tang,, B. (2019). Fluorescence biosensor for Fe (III) in cells based on Fe (III) catalyze Au‐nanocomposites release Au NPs. Sensors and Actuators B: Chemical, 286, 16–21. https://doi.org/10.1016/j.snb.2019.01.106
Zhang,, Y. D., Huang,, Q. W., Ma,, C., Liu,, X. Y., & Zhang,, H. X. (2018). Magnetic fluorescent molecularly imprinted nanoparticles for detection and separation of transferrin in human serum. Talanta, 188, 540–545. https://doi.org/10.1016/j.talanta.2018.06.002
Zhou,, Z., Song,, J., Tian,, R., Yang,, Z., Yu,, G., Lin,, L., … Niu,, G. (2017). Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angewandte Chemie International Edition, 56(23), 6492–6496. https://doi.org/10.1002/ange.201701181
Ziem,, F. C., Götz,, N. S., Zappe,, A., Steinert,, S., & Wrachtrup,, J. r. (2013). Highly sensitive detection of physiological spins in a microfluidic device. Nano Letters, 13(9), 4093–4098. https://doi.org/10.1021/nl401522a