Abazari,, M. F., Nejati,, F., Nasiri,, N., Khazeni,, Z. A. S., Nazari,, B., Enderami,, S. E., & Mohajerani,, H. (2019). Platelet‐rich plasma incorporated electrospun PVA‐chitosan‐HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene, 720, 144096. https://doi.org/10.1016/j.gene.2019.144096
Ahmadian,, E., Dizaj,, S. M., Sharifi,, S., Shahi,, S., Khalilov,, R., Eftekhari,, A., & Hasanzadeh,, M. (2019). The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. TrAC Trends in Analytical Chemistry, 116, 167–176. https://doi.org/10.1016/j.trac.2019.05.009
Akay,, C., Cevik,, P., Karakis,, D., & Sevim,, H. (2016). In vitro cytotoxicity of maxillofacial silicone elastomers: Effect of nano‐particles. Journal of Prosthodontics, 27, 584–587. https://doi.org/10.1111/jopr.12533
Albanese,, A., Tang,, P. S., & Chan,, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16.
Amaechi,, B. T., AbdulAzees,, P. A., Alshareif,, D. O., Shehata,, M. A., Lima,, P. P.d. C. S., Abdollahi,, A., … Evans,, V. (2019). Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open, 5, 18–18. https://doi.org/10.1038/s41405-019-0026-8
Ateyah,, N. (2013). Mechanical behavior of water‐aged nano‐filled hybrid composite restoratives. King Saud University Journal of Dental Sciences, 4(1), 21–25. https://doi.org/10.1016/j.ksujds.2012.11.004
Bao,, X., Zhao,, J., Sun,, J., Hu,, M., & Yang,, X. (2018). Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano, 12(9), 8882–8892. https://doi.org/10.1021/acsnano.8b04022
Batouli,, S., Miura,, M., Brahim,, J., Tsutsui,, T. W., Fisher,, L. W., Gronthos,, S., … Shi,, S. (2003). Comparison of stem‐cell‐mediated osteogenesis and dentinogenesis. Journal of Dental Research, 82(12), 976–981. https://doi.org/10.1177/154405910308201208
Berton,, F., Porrelli,, D., Di Lenarda,, R., & Turco,, G. (2019). A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. Nanomaterials, 10(1), 16. https://doi.org/10.3390/nano10010016
Besinis,, A., De Peralta,, T., Tredwin,, C. J., & Handy,, R. D. (2015). Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano, 9(3), 2255–2289. https://doi.org/10.1021/nn505015e
Besinis,, A., van Noort,, R., & Martin,, N. (2014). Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dental Materials, 30(3), 249–262. https://doi.org/10.1016/j.dental.2013.11.014
Bloom,, W., & Fawcett,, D. W. (1968). A textbook of histology. Philadelphia, PA: Saunders.
Boda,, S. K., Almoshari,, Y., Wang,, H., Wang,, X., Reinhardt,, R. A., Duan,, B., … Xie,, J. (2019). Mineralized nanofiber segments coupled with calcium‐binding BMP‐2 peptides for alveolar bone regeneration. Acta Biomaterialia, 85, 282–293. https://doi.org/10.1016/j.actbio.2018.12.051
Bottino,, M. C., Pankajakshan,, D., & Nor,, J. E. (2017). Advanced scaffolds for dental pulp and periodontal regeneration. Dental Clinics of North America, 61(4), 689–711. https://doi.org/10.1016/j.cden.2017.06.009
Bottino,, M. C., Thomas,, V., Schmidt,, G., Vohra,, Y. K., Chu,, T. M., Kowolik,, M. J., & Janowski,, G. M. (2012). Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dental Materials, 28(7), 703–721. https://doi.org/10.1016/j.dental.2012.04.022
Brannon‐Peppas,, L., & Blanchette,, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56(11), 1649–1659.
Cantara,, S. I., Soscia,, D. A., Sequeira,, S. J., Jean‐Gilles,, R. P., Castracane,, J., & Larsen,, M. (2012). Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials, 33(33), 8372–8382. https://doi.org/10.1016/j.biomaterials.2012.08.021
Cao,, J., Xiao,, Z., Jin,, W., Chen,, B., Meng,, D., Ding,, W., … Dai,, J. (2013). Induction of rat facial nerve regeneration by functional collagen scaffolds. Biomaterials, 34(4), 1302–1310. https://doi.org/10.1016/j.biomaterials.2012.10.031
Cao,, S., Liu,, B., Fan,, L., Yue,, Z., Liu,, B., & Cao,, B. (2014). Highly antibacterial activity of N‐doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Applied Surface Science, 309, 119–127. https://doi.org/10.1016/j.apsusc.2014.04.198
Cao,, S., Wang,, Y., Cao,, L., Wang,, Y., Lin,, B., Lan,, W., & Cao,, B. (2016). Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films. Korean Journal of Orthodontics, 46(3), 146–154. https://doi.org/10.4041/kjod.2016.46.3.146
Carvalho,, S. M., Oliveira,, A. A. R., Jardim,, C. A., Melo,, C. B. S., Gomes,, D. A., de Fátima Leite,, M., & Pereira,, M. M. (2012). Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. Journal of Tissue Engineering and Regenerative Medicine, 6(10), 813–821. https://doi.org/10.1002/term.488
Casarin,, M., Pazinatto,, J., Oliveira,, L. M., Souza,, M. E., Santos,, R. C. V., & Zanatta,, F. B. (2019). Anti‐biofilm and anti‐inflammatory effect of a herbal nanoparticle mouthwash: A randomized crossover trial. Brazilian Oral Research, 33, e062.
Chen,, X., Liu,, Y., Miao,, L., Wang,, Y., Ren,, S., Yang,, X., … Sun,, W. (2016). Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. International Journal of Nanomedicine, 11, 3145–3158. https://doi.org/10.2147/IJN.S104324
Chiang,, Y. C., Chen,, H. J., Liu,, H. C., Kang,, S. H., Lee,, B. S., Lin,, F. H., … Lin,, C. P. (2010). A novel mesoporous biomaterial for treating dentin hypersensitivity. Journal of Dental Research, 89(3), 236–240. https://doi.org/10.1177/0022034509357148
Choi,, S. G., Lee,, S.‐E., Kang,, B.‐S., Ng,, C. L., Davaa,, E., & Park,, J.‐S. (2014). Thermosensitive and mucoadhesive sol‐gel composites of paclitaxel/dimethyl‐β‐cyclodextrin for buccal delivery. PLoS One, 9(10), e109090. https://doi.org/10.1371/journal.pone.0109090
Clemente‐Napimoga,, J. T., Moreira,, J. A., Grillo,, R., de Melo,, N. F. S., Fraceto,, L. F., & Napimoga,, M. H. (2012). 15d‐PGJ2‐loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sciences, 90(23–24), 944–949. https://doi.org/10.1016/j.lfs.2012.04.035
Cohn,, S. A. (1965). Disuse atrophy of the periodontium in mice. Arch Oral Biol, 10(6), 909–919.
Dailing,, E. A., Lewis,, S. H., Barros,, M. D., & Stansbury,, J. W. (2014). Construction of monomer‐free, highly crosslinked, water‐compatible polymers. Journal of Dental Research, 93(12), 1326–1331. https://doi.org/10.1177/0022034514552490
Damascelli,, B., Patelli,, G. L., Lanocita,, R., Tolla,, G. D., Frigerio,, L. F., Marchianò,, A., & Cantu,, G. (2003). A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue. American Journal of Roentgenology, 181(1), 253–260.
Das,, A., Segar,, C. E., Hughley,, B. B., Bowers,, D. T., & Botchwey,, E. A. (2013). The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials, 34(38), 9853–9862. https://doi.org/10.1016/j.biomaterials.2013.08.015
de Leeuw,, N. H. (2004). Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. The Journal of Physical Chemistry B, 108(6), 1809–1811. https://doi.org/10.1021/jp036784v
Deshpande,, P. P., Biswas,, S., & Torchilin,, V. P. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine, 8(9), 1509–1528. https://doi.org/10.2217/nnm.13.118
Dong,, S., Chen,, Y., Yu,, L., Lin,, K., & Wang,, X. (2019). Magnetic hyperthermia–synergistic H2O2 self‐sufficient catalytic suppression of osteosarcoma with enhanced bone‐regeneration bioactivity by 3D‐printing composite scaffolds. Advanced Functional Materials, 30(4), 1907071. https://doi.org/10.1002/adfm.201907071
dos Santos,, V. E., Filho,, A. V., Ribeiro Targino,, A. G., Pelagio Flores,, M. A., Galembeck,, A., Caldas,, A. F., & Rosenblatt,, A. (2014). A new “silver‐bullet” to treat caries in children—Nano silver fluoride: A randomised clinical trial. Journal of Dentistry, 42(8), 945–951. https://doi.org/10.1016/j.jdent.2014.05.017
Du,, B., Liu,, W., Deng,, Y., Li,, S., Liu,, X., Gao,, Y., … Chen,, J. (2015). Angiogenesis and bone regeneration of porous nano‐hydroxyapatite/coralline blocks coated with rhVEGF165 in critical‐size alveolar bone defects in vivo. International Journal of Nanomedicine, 10, 2555–2565. https://doi.org/10.2147/IJN.S78331
Eap,, S., Becavin,, T., Keller,, L., Kokten,, T., Fioretti,, F., Weickert,, J. L., … Kuchler‐Bopp,, S. (2014). Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth. Advanced Healthcare Materials, 3(3), 386–391. https://doi.org/10.1002/adhm.201300281
Earl,, J., Wood,, D., & Milne,, S. (2006). Dentine infiltration a cure for sensitive teeth. American Ceramic Society Bulletin, 85, 22–25.
El‐Gendy,, R., Kirkham,, J., Newby,, P. J., Mohanram,, Y., Boccaccini,, A. R., & Yang,, X. B. (2015). Investigating the vascularization of tissue‐engineered bone constructs using dental pulp cells and 45S5 bioglass(R) scaffolds. Tissue Engineering Part A, 21(13–14), 2034–2043. https://doi.org/10.1089/ten.tea.2014.0485
Eramo,, S., Natali,, A., Pinna,, R., & Milia,, E. (2018). Dental pulp regeneration via cell homing. International Endodontic Journal, 51(4), 405–419. https://doi.org/10.1111/iej.12868
Fernandes,, G. L., Delbem,, A. C. B., do Amaral,, J. G., Gorup,, L. F., Fernandes,, R. A., de Souza Neto,, F. N., … Barbosa,, D. B. (2018). Nanosynthesis of silver‐calcium glycerophosphate: Promising association against oral pathogens. Antibiotics, 7(3), 52. https://doi.org/10.3390/antibiotics7030052
Ferraris,, S., Bobbio,, A., Miola,, M., & Spriano,, S. (2015). Micro‐ and nano‐textured, hydrophilic and bioactive titanium dental implants. Surface and Coating Technology, 276, 374–383. https://doi.org/10.1016/j.surfcoat.2015.06.042
Foraida,, Z. I., Kamaldinov,, T., Nelson,, D. A., Larsen,, M., & Castracane,, J. (2017). Elastin‐PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self‐organization and polarization. Acta Biomaterialia, 62, 116–127. https://doi.org/10.1016/j.actbio.2017.08.009
Forsback,, A. P., Areva,, S., & Salonen,, J. (2004). Mineralization of dentin induced by treatment with bioactive glass S53P4 in vitro. Acta Odontologica Scandinavica, 62(1), 14–20. https://doi.org/10.1080/00016350310008012
Fricain,, J. C., Schlaubitz,, S., Le Visage,, C., Arnault,, I., Derkaoui,, S. M., Siadous,, R., … Amédée,, J. (2013). A nano‐hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 34(12), 2947–2959. https://doi.org/10.1016/j.biomaterials.2013.01.049
Frohbergh,, M. E., Katsman,, A., Botta,, G. P., Lazarovici,, P., Schauer,, C. L., Wegst,, U. G., & Lelkes,, P. I. (2012). Electrospun hydroxyapatite‐containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33(36), 9167–9178. https://doi.org/10.1016/j.biomaterials.2012.09.009
Frohbergh,, M. E., Katsman,, A., Mondrinos,, M. J., Stabler,, C. T., Hankenson,, K. D., Oristaglio,, J. T., & Lelkes,, P. I. (2015). Osseointegrative properties of electrospun hydroxyapatite‐containing nanofibrous chitosan scaffolds. Tissue Engineering Part A, 21(5–6), 970–981. https://doi.org/10.1089/ten.TEA.2013.0789
Fu,, N., Liao,, J., Lin,, S., Sun,, K., Tian,, T., Zhu,, B., & Lin,, Y. (2016). PCL‐PEG‐PCL film promotes cartilage regeneration in vivo. Cell Proliferation, 49(6), 729–739. https://doi.org/10.1111/cpr.12295
Galler,, K. M., Hartgerink,, J. D., Cavender,, A. C., Schmalz,, G., & D`Souza,, R. N. (2012). A customized self‐assembling peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part A, 18(1–2), 176.
Garzon,, I., Martin‐Piedra,, M. A., Carriel,, V., Alaminos,, M., Liu,, X., & D`Souza,, R. N. (2018). Bioactive injectable aggregates with nanofibrous microspheres and human dental pulp stem cells: A translational strategy in dental endodontics. Journal of Tissue Engineering and Regenerative Medicine, 12(1), 204–216. https://doi.org/10.1002/term.2397
Geim,, A. K., & Novoselov,, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.
Gharat,, S. A., Momin,, M., & Bhavsar,, C. (2016). Oral squamous cell carcinoma: Current treatment strategies and nanotechnology‐based approaches for prevention and therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 33(4), 363–400. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016016272
Gosangari,, S. L., & Watkin,, K. L. (2012). Enhanced release of anticancer agents from nanoliposomes in response to diagnostic ultrasound energy levels. Pharmaceutical Development and Technology, 17(3), 383–388. https://doi.org/10.3109/10837450.2010.546407
Greene,, J. J., McClendon,, M. T., Stephanopoulos,, N., Alvarez,, Z., Stupp,, S. I., & Richter,, C. P. (2018). Electrophysiological assessment of a peptide amphiphile nanofiber nerve graft for facial nerve repair. Journal of Tissue Engineering and Regenerative Medicine, 12(6), 1389–1401. https://doi.org/10.1002/term.2669
Greenstein,, G., & Tarnow,, D. (2006). The mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature review. Journal of Periodontology, 77(12), 1933–1943.
Guasti,, L., Vagaska,, B., Bulstrode,, N. W., Seifalian,, A. M., & Ferretti,, P. (2014). Chondrogenic differentiation of adipose tissue‐derived stem cells within nanocaged POSS‐PCU scaffolds: A new tool for nanomedicine. Nanomedicine, 10(2), 279–289. https://doi.org/10.1016/j.nano.2013.08.006
Haen,, S. P., Pereira,, P. L., Salih,, H. R., Rammensee,, H. G., & Gouttefangeas,, C. (2011). More than just tumor destruction: Immunomodulation by thermal ablation of cancer. Clinical %26 Developmental Immunology, 2011(1), 160250.
Han,, J., Ma,, B., Liu,, H., Wang,, T., Wang,, F., Xie,, C., … Ge,, S. (2018). Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. Journal of Biomedical Materials Research. Part A, 106(12), 3099–3110. https://doi.org/10.1002/jbm.a.36502
Handler,, J. S. (1989). Overview of epithelial polarity. Annual Review of Physiology, 51, 729–740.
Haseeb,, R., Lau,, M., Sheah,, M., Montagner,, F., Quiram,, G., Palmer,, K., … Rodrigues,, D. C. (2016). Synthesis and characterization of new chlorhexidine‐containing nanoparticles for root canal disinfection. Materials, 9(6), pii:E452. https://doi.org/10.3390/ma9060452
He,, H., Chen,, S., Zhou,, J., Dou,, Y., Song,, L., Che,, L., … Li,, X. (2013). Cyclodextrin‐derived pH‐responsive nanoparticles for delivery of paclitaxel. Biomaterials, 34(21), 5344–5358. https://doi.org/10.1016/j.biomaterials.2013.03.068
He,, M., Jiang,, H., Wang,, R., Xie,, Y., & Zhao,, C. (2017). Fabrication of metronidazole loaded poly (epsilon‐caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. Journal of Colloid and Interface Science, 490, 270–278. https://doi.org/10.1016/j.jcis.2016.11.062
He,, W., Zhou,, Y. T., Wamer,, W. G., Boudreau,, M. D., & Yin,, J. J. (2012). Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials, 33(30), 7547–7555.
Helgeland,, E., Shanbhag,, S., Pedersen,, T. O., Mustafa,, K., & Rosén,, A. (2018). Scaffold‐based temporomandibular joint tissue regeneration in experimental animal models: A systematic review. The Bergen stem cell consortium (BSCC), annual meeting, Bergen, Norway, September 3–4, 2017. Tissue Engineering Part B: Reviews, 24(4), 300–316. https://doi.org/10.1089/ten.teb.2017.0429
Hernandez,, M., Cobb,, D., & Swift,, E. J., Jr. (2014). Current strategies in dentin remineralization. Journal of Esthetic and Restorative Dentistry, 26(2), 139–145. https://doi.org/10.1111/jerd.12095
Higuchi,, J., Fortunato,, G., Wozniak,, B., Chodara,, A., Domaschke,, S., Meczynska‐Wielgosz,, S., … Łojkowski,, W. (2019). Polymer membranes sonocoated and electrosprayed with nano‐hydroxyapatite for periodontal tissues regeneration. Nanomaterials, 9(11), 1625. https://doi.org/10.3390/nano9111625
Hilton,, T. J. (2002). Can modern restorative procedures and materials reliably seal cavities? in vitro investigations. Part 2. American Journal of Dentistry, 15(3), 198–210.
Ho,, M.‐H., Chang,, H.‐C., Chang,, Y.‐C., Claudia,, J., Lin,, T.‐C., & Chang,, P.‐C. (2017). PDGF‐metronidazole‐encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration. International Journal of Nanomedicine, 12, 5525–5535. https://doi.org/10.2147/ijn.S137342
Hoare,, T. R., & Kohane,, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007.
Hoshyar,, N., Gray,, S., Han,, H., & Bao,, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11, 673–692. https://doi.org/10.2217/nnm.16.5
Hosseinalipour,, M., Javadpour,, J., Fau‐Rezaie,, H., Rezaie,, H., Fau‐Dadras,, T., Dadras,, T., … Hayati,, A. N. (2010). Investigation of mechanical properties of experimental Bis‐GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. Journal of Prosthodontics, 19(2), 112–117.
Hu,, A., Zuo,, B., Zhang,, F., Zhang,, H., & Lan,, Q. (2013). Evaluation of electronspun silk fibroin‐based transplants used for facial nerve repair. Otology %26 Neurotology, 34(2), 311–318. https://doi.org/10.1097/MAO.0b013e31827b4bd4
Hu,, Z., Wang,, X., Xia,, W., Wang,, Z., Zhang,, P., Xia,, L., … Zhu,, M. (2019). Nano‐structure designing promotion osseointegration of hydroxyapatite coated Ti‐6Al‐4V alloy implants in diabetic model. Journal of Biomedical Nanotechnology, 15(8), 1701–1713. https://doi.org/10.1166/jbn.2019.2812
Huang,, Y., Ren,, J., Ren,, T., Gu,, S., Tan,, Q., Zhang,, L., … Jiang,, X. (2010). Bone marrow stromal cells cultured on poly (lactide‐co‐glycolide)/nano‐hydroxyapatite composites with chemical immobilization of Arg‐Gly‐Asp peptide and preliminary bone regeneration of mandibular defect thereof. Journal of Biomedical Materials Research. Part A, 95(4), 993–1003. https://doi.org/10.1002/jbm.a.32922
Huang,, Z., Sargeant,, T. D., Hulvat,, J. F., Mata,, A., Bringas,, J., Bringas,, P., … Snead,, M. L. (2008). Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. Journal of Bone and Mineral Research, 23(12), 1995–2006.
Huh,, A. J., & Kwon,, Y. J. (2011). Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002
Ignjatović,, N., Ajduković,, Z., Savić,, V., Najman,, S., Mihailović,, D., Vasiljević,, P., … Uskoković,, D. (2012). Nanoparticles of cobalt‐substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. Journal of Materials Science: Materials in Medicine, 24(2), 343–354. https://doi.org/10.1007/s10856-012-4793-1
Inanç,, B., Arslan,, Y. E., Seker,, S., Elçin,, A. E., & Elçin,, Y. M. (2009). Periodontal ligament cellular structures engineered with electrospun poly(DL‐lactide‐co‐glycolide) nanofibrous membrane scaffolds. Journal of Biomedical Materials Research. Part A, 90A(1), 186–195. https://doi.org/10.1002/jbm.a.32066
Jang,, C. H., Lee,, H., Kim,, M., & Kim,, G. (2016). Effect of polycaprolactone/collagen/hUCS microfiber nerve conduit on facial nerve regeneration. International Journal of Biological Macromolecules, 93(Pt B), 1575–1582. https://doi.org/10.1016/j.ijbiomac.2016.04.031
Jeong,, S. H., Hong,, S. J., Choi,, C. H., & Kim,, B. I. (2007). Effect of new dentifrice containing nano‐sized carbonated apatite on enamel remineralization. Key Engineering Materials, 330–332, 291–294. https://doi.org/10.4028/0-87849-422-7.291
Jerjes,, W., Upile,, T., Shah,, P., Nhembe,, F., Gudka,, D., Kafas,, P., … Hopper,, C. (2010). Risk factors associated with injury to the inferior alveolar and lingual nerves following third molar surgery—Revisited. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 109(3), 335–345.
Jiang,, W., Li,, L., Zhang,, D., Huang,, S., Jing,, Z., Wu,, Y., … Zhou,, S. (2015). Incorporation of aligned PCL‐PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomaterialia, 25, 240–252. https://doi.org/10.1016/j.actbio.2015.07.023
Jin,, B. Z., Dong,, X. Q., Xu,, X., & Zhang,, F. H. (2018). Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncology Letters, 15(2), 2541–2549. https://doi.org/10.3892/ol.2017.7613
Jin,, L., Wang,, Q., Chen,, J., Wang,, Z., Xin,, H., & Zhang,, D. (2019). Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics, 11(11), 615. https://doi.org/10.3390/pharmaceutics11110615
Jodat,, Y. A., Kiaee,, K., Vela Jarquin,, D., De la Garza Hernández,, R. L., Wang,, T., Joshi,, S., … Shin,, S. R. (2020). A 3D‐printed hybrid nasal cartilage with functional electronic olfaction. Advancement of Science, 7(5), 1901878. https://doi.org/10.1002/advs.201901878
Johnson,, C. R., Tran,, M. N., Michelitsch,, L.‐M., Abraham,, S., Hu,, J., Gray,, K. A., & Hartmann,, E. M. (2020). Nano‐enabled, antimicrobial toothbrushes—How physical and chemical properties relate to antibacterial capabilities. Journal of Hazardous Materials, 369(5), 122445. https://doi.org/10.1016/j.jhazmat.2020.122445
Kajiya,, H., Katsumata,, Y., Sasaki,, M., Tsutsumi,, T., Kawaguchi,, M., & Fukushima,, T. (2015). Photothermal stress triggered by near‐infrared‐irradiated carbon nanotubes up‐regulates osteogenesis and mineral deposition in tooth‐extracted sockets. International Journal of Hyperthermia, 31(6), 635–642. https://doi.org/10.3109/02656736.2015.1041430
Kakkar,, V., Verma,, M. K., Saini,, K., & Kaur,, I. P. (2019). Nano drug delivery in treatment of oral cancer: A review of the literature. Current Drug Targets, 20(10), 1008–1017. https://doi.org/10.2174/1389450120666190319125734
Keller,, L., Offner,, D., Schwinte,, P., Morand,, D., Wagner,, Q., Gros,, C., … Fioretti,, F. (2015). Active nanomaterials to meet the challenge of dental pulp regeneration. Materials (Basel), 8(11), 7461–7471. https://doi.org/10.3390/ma8115387
Kim,, B. S., Park,, K. E., Kim,, M. H., You,, H. K., Lee,, J., & Park,, W. H. (2015). Effect of nanofiber content on bone regeneration of silk fibroin/poly(epsilon‐caprolactone) nano/microfibrous composite scaffolds. International Journal of Nanomedicine, 10, 485–502. https://doi.org/10.2147/IJN.S72730
Kim,, G. H., Park,, Y. D., Lee,, S. Y., El‐Fiqi,, A., Kim,, J. J., Lee,, E. J., … Kim,, E.‐C. (2015). Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber. Journal of Biomaterials Applications, 29(6), 854–866. https://doi.org/10.1177/0885328214546884
Kim,, J. H., Kang,, M. S., Eltohamy,, M., Kim,, T. H., & Kim,, H. W. (2016). Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering. PLoS One, 11(3), e0149967. https://doi.org/10.1371/journal.pone.0149967
Kim,, J. J., Bae,, W. J., Kim,, J. M., Kim,, J. J., Lee,, E. J., Kim,, H. W., & Kim,, E. C. (2014). Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. Journal of Biomaterials Applications, 28(7), 1069–1078. https://doi.org/10.1177/0885328213495903
Kim,, J. Y., Xin,, X., Moioli,, E. K., Chung,, J., Lee,, C. H., Chen,, M., … Mao,, J. J. (2010). Regeneration of dental‐pulp‐like tissue by chemotaxis‐induced cell homing. Tissue Engineering Part A, 16(10), 3023–3031. https://doi.org/10.1089/ten.TEA.2010.0181
Kitagawa,, M., Kudo,, Y., Iizuka,, S., Ogawa,, I., Abiko,, Y., Miyauchi,, M., & Takata,, T. (2006). Effect of F‐spondin on cementoblastic differentiation of human periodontal ligament cells. Biochemical and Biophysical Research Communications, 349(3), 1050–1056. https://doi.org/10.1016/j.bbrc.2006.08.142
Kuang,, R., Zhang,, Z., Jin,, X., Hu,, J., Gupte,, M. J., Ni,, L., & Ma,, P. X. (2015). Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Advanced Healthcare Materials, 4(13), 1993–2000. https://doi.org/10.1002/adhm.201500308
Kuchler‐Bopp,, S., Larrea,, A., Petry,, L., Idoux‐Gillet,, Y., Sebastian,, V., Ferrandon,, A., … Benkirane‐Jessel,, N. (2017). Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomaterialia, 50, 493–501. https://doi.org/10.1016/j.actbio.2017.01.001
Laiteerapong,, A., Reichl,, F.‐X., Hickel,, R., & Högg,, C. (2019). Effect of eluates from zirconia‐modified glass ionomer cements on DNA double‐stranded breaks in human gingival fibroblast cells. Dental Materials, 35(3), 444–449 https://doi.org/10.1016/j.dental.2019.01.004
Legge,, C. J., Colley,, H. E., Lawson,, M. A., & Rawlings,, A. E. (2019). Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. Journal of Oral Pathology %26 Medicine, 48(9), 803–809. https://doi.org/10.1111/jop.12921
Li,, D., Zhang,, K., Shi,, C., Liu,, L., Yan,, G., Liu,, C., … Yang,, B. (2018). Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. International Journal of Nanomedicine, 13, 7167–7181. https://doi.org/10.2147/IJN.S174553
Li,, G., Fu,, N., Xie,, J., Fu,, Y., Deng,, S., Cun,, X., … Lin,, Y. (2015). Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) based electrospun 3D scaffolds for delivery of autogeneic chondrocytes and adipose‐derived stem cells: Evaluation of cartilage defects in rabbit. Journal of Biomedical Nanotechnology, 11(1), 105–116(112).
Li,, G., Zhou,, T., Lin,, S., Shi,, S., & Lin,, Y. (2017). Nanomaterials for craniofacial and dental tissue engineering. Journal of Dental Research, 96(7), 725–732. https://doi.org/10.1177/0022034517706678
Li,, J., Gong,, C., Feng,, X., Zhou,, X., Xu,, X., Xie,, L., … Chen,, Q. (2012). Biodegradable thermosensitive hydrogel for SAHA and DDP delivery: Therapeutic effects on oral squamous cell carcinoma xenografts. PLoS One, 7(4), e33860. https://doi.org/10.1371/journal.pone.0033860
Li,, J., Li,, Y., Ma,, S., Gao,, Y., Zuo,, Y., & Hu,, J. (2010). Enhancement of bone formation by BMP‐7 transduced MSCs on biomimetic nano‐hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. Journal of Biomedical Materials Research. Part A, 95(4), 973–981. https://doi.org/10.1002/jbm.a.32926
Li,, J., Zhang,, L., Lv,, S., Li,, S., Wang,, N., & Zhang,, Z. (2011). Fabrication of individual scaffolds based on a patient‐specific alveolar bone defect model. Journal of Biotechnology, 151(1), 87–93. https://doi.org/10.1016/j.jbiotec.2010.10.080
Li,, L., Mao,, C., Wang,, J., Xu,, X., Pan,, H., Deng,, Y., … Tang,, R. (2011). Bio‐inspired enamel repair via Glu‐directed assembly of apatite nanoparticles: An approach to biomaterials with optimal characteristics. Advanced Materials, 23(40), 4695–4701. https://doi.org/10.1002/adma.201102773
Li,, L., Pan,, H., Tao,, J., Xu,, X., Mao,, C., Gu,, X., & Tang,, R. (2008). Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry, 18(34), 4079–4084. https://doi.org/10.1039/b806090h
Li,, P., Zhou,, G., Zhu,, X., Li,, G., Yan,, P., Shen,, L., … Hamblin,, M. R. (2012). Photodynamic therapy with hyperbranched poly(ether‐ester) chlorin(e6) nanoparticles on human tongue carcinoma CAL‐27 cells. Photodiagnosis and Photodynamic Therapy, 9(1), 76–82. https://doi.org/10.1016/j.pdpdt.2011.08.001
Li,, X., Lin,, K., & Wang,, Z. (2017). Enhanced growth and osteogenic differentiation of MC3T3‐E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. RSC Advances, 7(24), 14430–14437. https://doi.org/10.1039/c6ra25832h
Li,, X., Ma,, C., Xie,, X., Sun,, H., & Liu,, X. (2016). Pulp regeneration in a full‐length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomaterialia, 35, 57–67. https://doi.org/10.1016/j.actbio.2016.02.040
Liao,, J., Qu,, Y., Chu,, B., Zhang,, X., & Qian,, Z. (2015). Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Scientific Reports, 5(1), 09879. https://doi.org/10.1038/srep09879
Liao,, S., Wang,, W., Uo,, M., Ohkawa,, S., Akasaka,, T., Tamura,, K., … Watari,, F. (2005). A three‐layered nano‐carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 26(36), 7564–7571. https://doi.org/10.1016/j.biomaterials.2005.05.050
Lim,, H. C., Nam,, O. H., Kim,, M. J., El‐Fiqi,, A., Yun,, H. M., Lee,, Y. M., … Kim,, E. C. (2016). Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. International Journal of Nanomedicine, 11, 2557–2567. https://doi.org/10.2147/IJN.S97846
Lin,, K., Xia,, L., Gan,, J., Zhang,, Z., Chen,, H., Jiang,, X., & Chang,, J. (2013). Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Applied Materials and Interfaces, 5(16), 8008–8017. https://doi.org/10.1021/am402089w
Liu,, H. C., E,, L. L., Wang,, D. S., Su,, F., Wu,, X., Shi,, Z. P., … Wang,, J. Z. (2011). Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano‐hydroxyapatite/collagen/poly(L‐lactide). Tissue Engineering Part A, 17(19–20), 2417–2433. https://doi.org/10.1089/ten.TEA.2010.0620
Liu,, J., Yan,, L., Yang,, W., Lan,, Y., Zhu,, Q., Xu,, H., … Guo,, R. (2019). Controlled‐release neurotensin‐loaded silk fibroin dressings improve wound healing in diabetic rat model. Bioactive Materials, 4, 151–159. https://doi.org/10.1016/j.bioactmat.2019.03.001
Liu,, Z., Yuan,, X., Fernandes,, G., Dziak,, R., Ionita,, C. N., Li,, C., … Yang,, S. (2017). The combination of nano‐calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene‐modified mesenchymal stem cells promotes bone regeneration in rat critical‐sized calvarial defects. Stem Cell Research %26 Therapy, 8(1), 122. https://doi.org/10.1186/s13287-017-0574-6
Longo,, J. P., Lozzi,, S. P., Simioni,, A. R., Morais,, P. C., Tedesco,, A. C., & Azevedo,, R. B. (2009). Photodynamic therapy with aluminum‐chloro‐phthalocyanine induces necrosis and vascular damage in mice tongue tumors. Journal of Photochemistry and Photobiology. B, 94(2), 143–146. https://doi.org/10.1016/j.jphotobiol.2008.11.003
Lu,, K. L., Zhang,, J. X., Meng,, X. C., Wei,, G. Z., & Zhou,, M. L. (2006). Effects of nano‐hydroxyapatite on the artificial caries. Materials Science and Technology, 14, 633–636.
Luna,, P., Martínez‐Castañon,, G.‐A., Zavala‐Alonso,, V., Patiño‐Marin,, N., Nino,, N., Moran,, J., & Ramírez‐González,, J.‐. H. (2016). Bactericide effect of silver nanoparticles as a final irrigation agent in endodontics on Enterococcus faecalis: An ex vivo study. Journal of Nanomaterials, 2016, 1–7. https://doi.org/10.1155/2016/7597295
Ma,, B., Han,, J., Zhang,, S., Liu,, F., Wang,, S., Duan,, J., … Liu,, H. (2018). Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomaterialia, 71, 108–117. https://doi.org/10.1016/j.actbio.2018.02.033
Maduraiveeran,, G., Sasidharan,, M., & Ganesan,, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors %26 Bioelectronics, 103, 113–129. https://doi.org/10.1016/j.bios.2017.12.031
Manju,, V., Anitha,, A., Menon,, D., Iyer,, S., Nair,, S. V., & Nair,, M. B. (2018). Nanofibrous yarn reinforced HA‐gelatin composite scaffolds promote bone formation in critical sized alveolar defects in rabbit model. Biomedical Materials, 13(6), 065011. https://doi.org/10.1088/1748-605X/aadf99
Manju,, V., Iyer,, S., Menon,, D., Nair,, S. V., & Nair,, M. B. (2019). Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. Materials Science %26 Engineering. C, Materials for Biological Applications, 104, 109864. https://doi.org/10.1016/j.msec.2019.109864
Mannoor,, M. S., Jiang,, Z., James,, T., Kong,, Y. L., Malatesta,, K. A., Soboyejo,, W. O., … McAlpine,, M. (2013). 3D printed bionic ears. Nano Letters, 13(6), 2634–2639. https://doi.org/10.1021/nl4007744
Mantri,, S. S., & Mantri,, S. P. (2013). The nano era in dentistry. Journal of Natural Science, Biology and Medicine, 4, 39–44.
Mao,, L., Liu,, J., Zhao,, J., Chang,, J., Xia,, L., Jiang,, L., … Fang,, B. (2015). Effect of micro‐nano‐hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. International Journal of Nanomedicine, 10, 7031–7044. https://doi.org/10.2147/IJN.S90343
Marcazzan,, S., Varoni,, E. M., Blanco,, E., Lodi,, G., & Ferrari,, M. (2018). Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncology, 76, 1–7. https://doi.org/10.1016/j.oraloncology.2017.11.014
Markstedt,, K., Mantas,, A., Tournier,, I., Martínez Ávila,, H., Hägg,, D., & Gatenholm,, P. (2015). 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16(5), 1489–1496. https://doi.org/10.1021/acs.biomac.5b00188
Marshall,, G. W., Jr., Marshall,, S., Fau‐Kinney,, J. H., Kinney,, J., Fau‐Balooch,, M., & Balooch,, M. (1997). The dentin substrate: Structure and properties related to bonding. Journal of Dentistry, 25(6), 441–458.
Martinez Avila,, H., Feldmann,, E. M., Pleumeekers,, M. M., Nimeskern,, L., Kuo,, W., de Jong,, W. C., … Gatenholm,, P. (2015). Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials, 44, 122–133. https://doi.org/10.1016/j.biomaterials.2014.12.025
Martins‐Junior,, P. A., Alcantara,, C. E., Resende,, R. R., & Ferreira,, A. J. (2013). Carbon nanotubes: Directions and perspectives in oral regenerative medicine. Journal of Dental Research, 92(7), 575–583. https://doi.org/10.1177/0022034513490957
Mas‐Moruno,, C. A.‐O., Su,, B., & Dalby,, M. J. (2019). Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Advanced Healthcare Materials, 8(1), e1801103.
Masoudi Rad,, M., Nouri Khorasani,, S., Ghasemi‐Mobarakeh,, L., Prabhakaran,, M. P., Foroughi,, M. R., Kharaziha,, M., … Ramakrishna,, S. (2017). Fabrication and characterization of two‐layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science %26 Engineering. C, Materials for Biological Applications, 80, 75–87. https://doi.org/10.1016/j.msec.2017.05.125
Mazzarino,, L., Loch‐Neckel,, G., Bubniak Ldos,, S., Mazzucco,, S., Santos‐Silva,, M. C., Borsali,, R., & Lemos‐Senna,, E. (2015). Curcumin‐loaded chitosan‐coated nanoparticles as a new approach for the local treatment of oral cavity cancer. Journal of Nanoscience and Nanotechnology, 15(1), 781–791. https://doi.org/10.1166/jnn.2015.9189
Mei,, F., Zhong,, J., Yang,, X., Ouyang,, X., Zhang,, S., Hu,, X., … Deng,, X. (2007). Improved biological characteristics of poly(L‐lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules, 8(12), 3729–3735. https://doi.org/10.1021/bm7006295
Mohan,, A., Narayanan,, S., Balasubramanian,, G., Sethuraman,, S., & Krishnan,, U. M. (2016). Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. European Journal of Pharmaceutics and Biopharmaceutics, 99, 73–83. https://doi.org/10.1016/j.ejpb.2015.11.017
Mohan,, A., Narayanan,, S., Sethuraman,, S., & Krishnan,, U. M. (2014). Novel resveratrol and 5‐fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Research International, 2014, 424239. https://doi.org/10.1155/2014/424239
Mohit,, M., Puneet,, U., & Subheet Kumar,, J. (2016). Paclitaxel loaded nanoliposomes in thermosensitive hydrogel: A dual approach for sustained and localized delivery. Anti‐Cancer Agents in Medicinal Chemistry, 16(3), 365–376. https://doi.org/10.2174/1871520615666150807103910
Moon,, C. Y., Nam,, O. H., Kim,, M., Lee,, H. S., Kaushik,, S. N., Cruz Walma,, D. A., … Choi,, S. C. (2018). Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp‐dentin regeneration: Pilot study. PLoS One, 13(10), e0205534. https://doi.org/10.1371/journal.pone.0205534
Moonesi Rad,, R., Atila,, D., Akgun,, E. E., Evis,, Z., Keskin,, D., & Tezcaner,, A. (2019). Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. Materials Science %26 Engineering. C, Materials for Biological Applications, 100, 928–948. https://doi.org/10.1016/j.msec.2019.03.022
Moosavi Nejad,, S., Takahashi,, H., Hosseini,, H., Watanabe,, A., Endo,, H., Narihira,, K., … Tachibana,, K. (2016). Acute effects of sono‐activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrasonics Sonochemistry, 32, 95–101. https://doi.org/10.1016/j.ultsonch.2016.02.026
Morães,, R. R., Garcia,, J. W., Wilson,, N. D., Lewis,, S. H., Barros,, M. D., Yang,, B., … Stansbury,, J. W. (2012). Improved dental adhesive formulations based on reactive nanogel additives. Journal of Dental Research, 91(2), 179–184. https://doi.org/10.1177/0022034511426573
Munchow,, E. A., Albuquerque,, M. T., Zero,, B., Kamocki,, K., Piva,, E., Gregory,, R. L., & Bottino,, M. C. (2015). Development and characterization of novel ZnO‐loaded electrospun membranes for periodontal regeneration. Dental Materials, 31(9), 1038–1051. https://doi.org/10.1016/j.dental.2015.06.004
Nanci,, A. (2012). Ten cate`s oral histology: development, structure, and function. St. Louis, MO; London, England: Mosby.
Nayyer,, L., Birchall,, M., Seifalian,, A. M., & Jell,, G. (2014). Design and development of nanocomposite scaffolds for auricular reconstruction. Nanomedicine, 10(1), 235–246. https://doi.org/10.1016/j.nano.2013.06.006
Norling,, L. V., Spite,, M., Yang,, R., Flower,, R. J., Perretti,, M., & Serhan,, C. N. (2011). Cutting edge: Humanized nano‐proresolving medicines mimic inflammation‐resolution and enhance wound healing. Journal of Immunology, 186(10), 5543–5547. https://doi.org/10.4049/jimmunol.1003865
Osorio,, R., Yamauti,, M., Sauro,, S., Watson,, T. F., & Toledano,, M. (2014). Zinc incorporation improves biological activity of beta‐tricalcium silicate resin–based cement. Journal of Endodontia, 40(11), 1840–1845. https://doi.org/10.1016/j.joen.2014.06.016
Ozak,, S. T., & Ozkan,, P. (2013). Nanotechnology and dentistry. European Journal of Dentistry, 7(1), 145–151.
Padovani,, G. C., Feitosa,, V. P., Sauro,, S., Tay,, F. R., Duran,, G., Paula,, A. J., & Durán,, N. (2015). Advances in dental materials through nanotechnology‐facts, perspectives and toxicological aspects. Trends in Biotechnology, 33(11), 621–636. https://doi.org/10.1016/j.tibtech.2015.09.005
Park,, C. H., Oh,, J. H., Jung,, H. M., Choi,, Y., Rahman,, S. U., Kim,, S., … Woo,, K. M. (2017). Effects of the incorporation of epsilon‐aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration. Acta Biomaterialia, 61, 134–143. https://doi.org/10.1016/j.actbio.2017.07.039
Park,, J. Y., Yang,, C., Jung,, I. H., Lim,, H. C., Lee,, J. S., Jung,, U. W., … Choi,, S. H. (2015). Regeneration of rabbit calvarial defects using cells‐implanted nano‐hydroxyapatite coated silk scaffolds. Biomaterials Research, 19, 7. https://doi.org/10.1186/s40824-015-0027-1
Patterson,, J., Martino,, M. L. M., & Hubbell,, J. A. (2010). Biomimetic materials in tissue engineering. Materials Today, 13, 14–22.
Piesco,, N. P. S. J. (2002). Histology of enamel. In J. K. Avery, (Ed.), Oral development and histology (pp. 153–171). Stuttgart: Georg Thieme Verlag, Stuttgart.
Prabha,, R. D., Kraft,, D. C. E., Harkness,, L., Melsen,, B., Varma,, H., Nair,, P. D., … Kassem,, M. (2018). Bioactive nano‐fibrous scaffold for vascularized craniofacial bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 12(3), e1537–e1548. https://doi.org/10.1002/term.2579
Qu,, T., Jing,, J., Jiang,, Y., Taylor,, R. J., Feng,, J. Q., Geiger,, B., & Liu,, X. (2014). Magnesium‐containing nanostructured hybrid scaffolds for enhanced dentin regeneration. Tissue Engineering Part A, 20(17–18), 2422–2433. https://doi.org/10.1089/ten.TEA.2013.0741
Qu,, T., Jing,, J., Ren,, Y., Ma,, C., Feng,, J. Q., Yu,, Q., & Liu,, X. (2015). Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomaterialia, 16, 60–70. https://doi.org/10.1016/j.actbio.2015.01.029
Rahman,, S. U., Nagrath,, M., Ponnusamy,, S., & Arany,, P. R. (2018). Nanoscale and macroscale scaffolds with controlled‐release polymeric systems for dental craniomaxillofacial tissue engineering. Materials (Basel), 11(8), 1478. https://doi.org/10.3390/ma11081478
Rakhmatia,, Y. D., Ayukawa,, Y., Furuhashi,, A., & Koyano,, K. (2013). Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. Journal of Prosthodontic Research, 57(1), 3–14. https://doi.org/10.1016/j.jpor.2012.12.001
Roveri,, N., Battistella,, E., Foltran,, I., Foresti,, E., Iafisco,, M., Lelli,, M., … Rimondini,, L. (2008). Synthetic biomimetic carbonate‐hydroxyapatite nanocrystals for enamel remineralization. Advanced Materials Research, 47, 821–824.
Sadat‐Shojai,, M., Atai,, M., Fau‐Nodehi,, A., Nodehi,, A., Fau‐Khanlar,, L. N., & Khanlar,, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26(5), 471–482.
Sah,, A. K., Vyas,, A., Suresh,, P. K., & Gidwani,, B. (2018). Application of nanocarrier‐based drug delivery system in treatment of oral cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 650–657. https://doi.org/10.1080/21691401.2017.1373284
Saifi,, M. A., Khan,, W., & Godugu,, C. (2018). Cytotoxicity of nanomaterials: Using nanotoxicology to address the safety concerns of nanoparticles. Pharmaceutical Nanotechnology, 6(1), 3–16.
Sánchez‐Sanhueza,, G., Fuentes‐Rodríguez,, D., & Bello‐Toledo,, H. (2016). Copper nanoparticles as potential antimicrobial agent in disinfecting root canals: A systematic review. International Journal of Odontostomatology, 10, 547–554. https://doi.org/10.4067/S0718-381X2016000300024
Saqaei,, M., Fathi,, M., Edris,, H., & Mortazavi,, V. (2015). Preparation and biocompatibility evaluation of bioactive glass‐forsterite nanocomposite powder for oral bone defects treatment applications. Materials Science %26 Engineering. C, Materials for Biological Applications, 56, 409–416. https://doi.org/10.1016/j.msec.2015.07.002
Sauro,, S., Osorio,, R., Watson,, T. F., & Toledano,, M. (2012). Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral‐depleted areas within the bonded‐dentine interface. Journal of Materials Science: Materials in Medicine, 23(6), 1521–1532. https://doi.org/10.1007/s10856-012-4606-6
Schmalz,, G., Hickel,, R., van Landuyt,, K. L., & Reichl,, F. X. (2018). Scientific update on nanoparticles in dentistry. International Dental Journal, 68(5), 299–305.
Selwitz,, R. H., Ismail,, A. I., & Pitts,, N. B. (2007). Dental caries. The Lancet, 369(9555), 51–59. https://doi.org/10.1016/S0140-6736(07)60031-2
Sfakis,, L., Kamaldinov,, T., Khmaladze,, A., Hosseini,, Z. F., Nelson,, D. A., Larsen,, M., & Castracane,, J. (2018). Mesenchymal cells affect salivary epithelial cell morphology on PGS/PLGA core/shell nanofibers. International Journal of Molecular Sciences, 19(4), 1031. https://doi.org/10.3390/ijms19041031
Shafiee,, A., Seyedjafari,, E., Sadat Taherzadeh,, E., Dinarvand,, P., Soleimani,, M., & Ai,, J. (2014). Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds. Materials Science %26 Engineering. C, Materials for Biological Applications, 40, 445–454. https://doi.org/10.1016/j.msec.2014.04.027
Shalumon,, K. T., Sowmya,, S., Sathish,, D., Chennazhi,, K. P., Nair,, S. V., & Jayakumar,, R. (2013). Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. Journal of Biomedical Nanotechnology, 9(3), 430–440. https://doi.org/10.1166/jbn.2013.1559
Shao,, C., Jin,, B., Mu,, Z., Lu,, H., Zhao,, Y., Wu,, Z., … Tang,, R. (2019). Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Science Advances, 5(8), eaaw9569. https://doi.org/10.1126/sciadv.aaw9569
Sheu,, M.‐T., Jhan,, H.‐J., Su,, C.‐Y., Chen,, L.‐C., Chang,, C.‐E., Liu,, D.‐Z., & Ho,, H.‐O. (2016). Codelivery of doxorubicin‐containing thermosensitive hydrogels incorporated with docetaxel‐loaded mixed micelles enhances local cancer therapy. Colloids and Surfaces. B, Biointerfaces, 143, 260–270. https://doi.org/10.1016/j.colsurfb.2016.03.054
Shi,, R., Ye,, J., Li,, W., Zhang,, J., Li,, J., Wu,, C., … Zhang,, L. (2019). Infection‐responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane. Materials Science %26 Engineering. C, Materials for Biological Applications, 100, 523–534. https://doi.org/10.1016/j.msec.2019.03.039
Shim,, J. H., Yoon,, M. C., Jeong,, C. M., Jang,, J., Jeong,, S. I., Cho,, D. W., & Huh,, J. B. (2014). Efficacy of rhBMP‐2 loaded PCL/PLGA/beta‐TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomedical Materials, 9(6), 065006. https://doi.org/10.1088/1748-6041/9/6/065006
Shin,, H. S., Kook,, Y. M., Hong,, H. J., Kim,, Y. M., Koh,, W. G., & Lim,, J. Y. (2016). Functional spheroid organization of human salivary gland cells cultured on hydrogel‐micropatterned nanofibrous microwells. Acta Biomaterialia, 45, 121–132. https://doi.org/10.1016/j.actbio.2016.08.058
Shin,, H. S., Lee,, S., Hong,, H. J., Lim,, Y. C., Koh,, W. G., & Lim,, J. Y. (2018). Stem cell properties of human clonal salivary gland stem cells are enhanced by three‐dimensional priming culture in nanofibrous microwells. Stem Cell Research %26 Therapy, 9(1), 74. https://doi.org/10.1186/s13287-018-0829-x
Shrestha,, A., & Kishen,, A. (2016). Antibacterial nanoparticles in endodontics: A review. Journal of Endodontia, 42(10), 1417–1426. https://doi.org/10.1016/j.joen.2016.05.021
Shubin,, A. D., Felong,, T. J., Graunke,, D., Ovitt,, C. E., & Benoit,, D. S. W. (2015). Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Engineering Part A, 21(11–12), 1733–1751.
Shubin,, A. D., Felong,, T. J., Schutrum,, B. E., Joe,, D. S. L., Ovitt,, C. E., & Benoit,, D. S. W. (2017). Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomaterialia, 50, 437–449. https://doi.org/10.1016/j.actbio.2016.12.049
Siddhartha,, R., Gautam,, R., Chand,, P., Aggarawal,, K., Singh,, R., & Singh,, B. P. (2015). Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study. Journal of Indian Prosthodontic Society, 15, 206–210. https://doi.org/10.4103/0972-4052.164906
Silva,, G. F., Guerreiro‐Tanomaru,, J. M., da Fonseca,, T. S., Bernardi,, M. I. B., Sasso‐Cerri,, E., Tanomaru‐Filho,, M., & Cerri,, P. S. (2017). Zirconium oxide and niobium oxide used as radiopacifiers in a calcium silicate‐based material stimulate fibroblast proliferation and collagen formation. International Endodontic Journal, 50(Suppl. 2), e95–e108.
Sloan,, A. J., & Waddington,, R. J. (2009). Dental pulp stem cells: What, where, how? International Journal of Paediatric Dentistry, 19(1), 61–70. https://doi.org/10.1111/j.1365-263X.2008.00964.x
Sprio,, S., Campodoni,, E., Sandri,, M., Preti,, L., Keppler,, T., Muller,, F. A., Pugno,, N. M., Tampieri,, A. (2018). A Graded Multifunctional Hybrid Scaffold with Superparamagnetic Ability for Periodontal Regeneration. International Journal of Molecular Sciences, 19(11), 3604.
Soltani Dehnavi,, S., Mehdikhani,, M., Rafienia,, M., & Bonakdar,, S. (2018). Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Materials Science %26 Engineering. C, Materials for Biological Applications, 90, 236–247. https://doi.org/10.1016/j.msec.2018.04.065
Soscia,, D. A., Sequeira,, S. J., Schramm,, R. A., Jayarathanam,, K., Cantara,, S. I., Larsen,, M., & Castracane,, J. (2013). Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials, 34(28), 6773–6784. https://doi.org/10.1016/j.biomaterials.2013.05.061
Sowmya,, S., Mony,, U., Jayachandran,, P., Reshma,, S., Kumar,, R. A., Arzate,, H., … Jayakumar,, R. (2017). Tri‐layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Advanced Healthcare Materials, 6(7), 1601251. https://doi.org/10.1002/adhm.201601251
Srakaew,, V., Ruangsri,, P., Suthin,, K., Thunyakitpisal,, P., & Tachaboonyakiat,, W. (2011). Sodium‐phosphorylated chitosan/zinc oxide complexes and evaluation of their cytocompatibility: An approach for periodontal dressing. Journal of Biomaterials Applications, 27(4), 403–412. https://doi.org/10.1177/0885328211408371
Su,, J., Xu,, H., Sun,, J., Gong,, X., & Zhao,, H. (2013). Dual delivery of BMP‐2 and bFGF from a new nano‐composite scaffold, loaded with vascular stents for large‐size mandibular defect regeneration. International Journal of Molecular Sciences, 14(6), 12714–12728. https://doi.org/10.3390/ijms140612714
Suganya,, S., Ahila,, S., Kumar,, B. M., & Kumar,, M. V. (2014). Evaluation and comparison of anti‐Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: An in vitro study. Indian Journal of Dental Research, 25(2), 204–207.
Sukhanova,, A., Bozrova,, S., Sokolov,, P., Berestovoy,, M., Karaulov,, A., & Nabiev,, I. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 13(1), 44. https://doi.org/10.1186/s11671-018-2457-x
Takeuchi,, T., Bizenjima,, T., Ishii,, Y., Imamura,, K., Suzuki,, E., Seshima,, F., & Saito,, A. (2016). Enhanced healing of surgical periodontal defects in rats following application of a self‐assembling peptide nanofibre hydrogel. Journal of Clinical Periodontology, 43(3), 279–288. https://doi.org/10.1111/jcpe.12515
Tan,, A., Rajadas,, J., & Seifalian,, A. M. (2012). Biochemical engineering nerve conduits using peptide amphiphiles. Journal of Controlled Release, 163(3), 342–352. https://doi.org/10.1016/j.jconrel.2012.08.009
Tang,, M. F., Lei,, L., Guo,, S. R., & Huang,, W. L. (2010). Recent progress in nanotechnology for cancer therapy. Chinese Journal of Cancer, 29(9), 775–780. https://doi.org/10.5732/cjc.010.10075
Tao,, J., Pan,, H., Zeng,, Y., Xu,, X., & Tang,, R. (2007). Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. The Journal of Physical Chemistry. B, 111(47), 13410–13418.
Tao,, O., Wu,, D., Pham,, H., Pandey,, N., & Tran,, S. (2019). Nanomaterials in craniofacial tissue regeneration: A review. Applied Sciences, 9(2), 317. https://doi.org/10.3390/app9020317
Tawfeeq,, S., Maaroof,, M., & Al‐Ogaidi,, I. (2017). Synergistic effect of biosynthesized silver nanoparticles with antibiotics against multi‐drug resistance bacteria isolated from children with diarrhoea under five years. Iraqi Journal of Science, 58, 14–52.
Tay,, F. R., & Pashley,, D. H. (2008). Guided tissue remineralisation of partially demineralised human dentine. Biomaterials, 29(8), 1127–1137. https://doi.org/10.1016/j.biomaterials.2007.11.001
Teh,, S. J., & Lai,, C. W. (2019). Carbon nanotubes for dental implants. In A. M. Asiri,, Inamuddin,, & A. Mohammad, (Eds.), Applications of nanocomposite materials in dentistry (pp. 93–105). Sawston: Woodhead Publishing, Sawston.
Toledano,, M., Cabello,, I., Osorio,, E., Aguilera,, F. S., Medina‐Castillo,, A. L., Toledano‐Osorio,, M., & Osorio,, R. (2019). Zn‐containing polymer nanogels promote cervical dentin remineralization. Clinical Oral Investigations, 23(3), 1197–1208. https://doi.org/10.1007/s00784-018-2548-1
Türkkan,, S., Pazarçeviren,, A. E., Keskin,, D., Machin,, N. E., Duygulu,, Ö., & Tezcaner,, A. (2017). Nanosized CaP‐silk fibroin‐PCL‐PEG‐PCL/PCL based bilayer membranes for guided bone regeneration. Materials Science and Engineering C: Materials for Biological Applications, 80, 484–493. https://doi.org/10.1016/j.msec.2017.06.016
Usai,, P., Campanella,, V., Sotgiu,, G., Spano,, G., Pinna,, R., Eramo,, S., … Milia,, E. (2019). Effectiveness of calcium phosphate desensitising agents in dental hypersensitivity over 24 weeks of clinical evaluation. Nanomaterials (Basel, Switzerland), 9(12), 1748. https://doi.org/10.3390/nano9121748
Van Landuyt,, K. L., Hellack,, B., Van Meerbeek,, B., Peumans,, M., Hoet,, P., Wiemann,, M., … Asbach,, C. (2014). Nanoparticle release from dental composites. Acta Biomaterialia, 10(1), 365–374. https://doi.org/10.1016/j.actbio.2013.09.044
Vargas‐Reus,, M. A., Memarzadeh,, K., Huang,, J., Ren,, G. G., & Allaker,, R. P. (2012). Antimicrobial activity of nanoparticulate metal oxides against peri‐implantitis pathogens. International Journal of Antimicrobial Agents, 40(2), 135–139. https://doi.org/10.1016/j.ijantimicag.2012.04.012
Vollenweider,, M., Brunner,, T. J., Knecht,, S., Grass,, R. N., Zehnder,, M., Imfeld,, T., & Stark,, W. J. (2007). Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomaterialia, 3(6), 936–943. https://doi.org/10.1016/j.actbio.2007.04.003
Wahl,, D. A., & Czernuszka,, J. T. (2006). Collagen‐hydroxyapatite composites for hard tissue repair. European Cells %26 Materials, 11, 43–56.
Wang,, H., Lin,, C., Zhang,, X., Lin,, K., Wang,, X., & Shen,, S. G. (2019). Mussel‐inspired polydopamine coating: A general strategy to enhance osteogenic differentiation and osseointegration for diverse implants. ACS Applied Materials and Interfaces, 11(7), 7615–7625. https://doi.org/10.1021/acsami.8b21558
Wang,, H., Liu,, J., Wang,, C., Shen,, S., Wang,, X., & Lin,, K. (2020). The synergistic effect of 3D‐printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration. Journal of Materials Science and Technology. https://doi.org/10.1016/j.jmst.2019.12.030
Wang,, H., Zhang,, X., Wang,, H., Zhang,, J., Li,, J., Ruan,, C., … Lin,, K. (2018). Enhancing the osteogenic differentiation and rapid osseointegration of 3D printed Ti6Al4V implants via nano‐topographic modification. Journal of Biomedical Nanotechnology, 14(4), 707–715. https://doi.org/10.1166/jbn.2018.2551
Wang,, J., Du,, L., Fu,, Y., Jiang,, P., & Wang,, X. (2019). ZnO nanoparticles inhibit the activity of porphyromonas gingivalis and actinomyces naeslundii and promote the mineralization of the cementum. BMC Oral Health, 19(1), 84. https://doi.org/10.1186/s12903-019-0780-y
Wang,, L., Cao,, J., Lei,, D. L., Cheng,, X. B., Yang,, Y. W., Hou,, R., … Cui,, F. Z. (2009). Effects of nerve growth factor delivery via a gel to inferior alveolar nerve in mandibular distraction osteogenesis. The Journal of Craniofacial Surgery, 20(6), 2188–2192. https://doi.org/10.1097/SCS.0b013e3181bf04c7
Wang,, X., Xing,, H., Zhang,, G., Wu,, X., Zou,, X., Feng,, L., … Liu,, H. (2016). Restoration of a critical mandibular bone defect using human alveolar bone‐derived stem cells and porous nano‐HA/collagen/PLA scaffold. Stem Cells International, 2016, 8741641. https://doi.org/10.1155/2016/8741641
Wang,, X., Zhou,, Y., Xia,, L., Zhao,, C., Chen,, L., Yi,, D., … Zhu,, H. (2015). Fabrication of nano‐structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids and Surfaces. B, Biointerfaces, 126, 358–366. https://doi.org/10.1016/j.colsurfb.2014.11.044
Wang,, Y. F., Wang,, C. Y., Wan,, P., Wang,, S. G., & Wang,, X. M. (2016). Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano‐hydroxyapatite and collagen. Regenerative Biomaterials, 3(1), 33–40. https://doi.org/10.1093/rb/rbv025
Wang,, Z.‐Q., Liu,, K., Huo,, Z.‐J., Li,, X.‐C., Wang,, M., Liu,, P., … Wang,, S. J. (2015). A cell‐targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. Journal of Nanbiotechnology, 13(1), 1–10. https://doi.org/10.1186/s12951-015-0116-2
Weatherell,, J. A. (1975). Composition of dental enamel. British Medical Bulletin, 31(2), 115–119.
Wu,, B., Yu,, P., Cui,, C., Wu,, M., Zhang,, Y., Liu,, L., … Huang,, S. W. (2015). Folate‐containing reduction‐sensitive lipid–polymer hybrid nanoparticles for targeted delivery of doxorubicin. Biomaterials Science, 3(4), 655–664. https://doi.org/10.1039/c4bm00462k
Wu,, X., Miao,, L., Yao,, Y., Sun,, W., Wu,, W., Liu,, Y., … Sun,, W. (2014). Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells. International Journal of Nanomedicine, 9, 4135–4143. https://doi.org/10.2147/ijn.S65272
Wu,, X., Zheng,, S., Ye,, Y., Wu,, Y., Lin,, K., & Su,, J. (2018). Enhanced osteogenic differentiation and bone regeneration of poly(lactic‐co‐glycolic acid) by graphene via activation of PI3K/Akt/GSK‐3beta/beta‐catenin signal circuit. Biomaterials Science, 6(5), 1147–1158. https://doi.org/10.1039/C8BM00127H
Wu,, Y.‐N., Chen,, D.‐H., Shi,, X.‐Y., Lian,, C.‐C., Wang,, T.‐Y., Yeh,, C.‐S., … Shieh,, D. B. (2011). Cancer‐cell‐specific cytotoxicity of non‐oxidized iron elements in iron core‐gold shell NPs. Nanomedicine, 7(4), 420–427. https://doi.org/10.1016/j.nano.2011.01.002
Wu,, Y.‐N., Yang,, L.‐X., Shi,, X.‐Y., Li,, I. C., Biazik,, J. M., Ratinac,, K. R., … Braet,, F. (2011). The selective growth inhibition of oral cancer by iron core‐gold shell nanoparticles through mitochondria‐mediated autophagy. Biomaterials, 32(20), 4565–4573. https://doi.org/10.1016/j.biomaterials.2011.03.006
Xia,, L., Lin,, K., Jiang,, X., Fang,, B., Xu,, Y., Liu,, J., … Zhang,, Z. (2014). Effect of nano‐structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials, 35(30), 8514–8527. https://doi.org/10.1016/j.biomaterials.2014.06.028
Xia,, L., Lin,, K., Jiang,, X., Xu,, Y., Zhang,, M., Chang,, J., & Zhang,, Z. (2013). Enhanced osteogenesis through nano‐structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. Journal of Materials Chemistry B, 1(40), 5403–5416. https://doi.org/10.1039/c3tb20945h
Xia,, L., Xie,, Y., Fang,, B., Wang,, X., & Lin,, K. (2018). In situ modulation of crystallinity and nano‐structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti‐6Al‐4V implants. Chemical Engineering Journal, 347, 711–720. https://doi.org/10.1016/j.cej.2018.04.045
Xia,, L., Zhang,, N., Wang,, X., Zhou,, Y., Mao,, L., Liu,, J., … Fang,, B. (2016). The synergetic effect of nano‐structures and silicon‐substitution on the properties of hydroxyapatite scaffolds for bone regeneration. Journal of Materials Chemistry B, 4(19), 3313–3323. https://doi.org/10.1039/c6tb00187d
Xue,, J., Feng,, B., Zheng,, R., Lu,, Y., Zhou,, G., Liu,, W., … Zhang,, W. J. (2013). Engineering ear‐shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials, 34(11), 2624–2631. https://doi.org/10.1016/j.biomaterials.2012.12.011
Xue,, J., He,, M., Liu,, H., Niu,, Y., Crawford,, A., Coates,, P. D., … Zhang,, L. (2014). Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti‐infective tissue regeneration membranes. Biomaterials, 35(34), 9395–9405. https://doi.org/10.1016/j.biomaterials.2014.07.060
Yahia,, S., Khalil,, I. A., & El‐Sherbiny,, I. M. (2019). Sandwich‐like nanofibrous scaffolds for bone tissue regeneration. ACS Applied Materials and Interfaces, 11(32), 28610–28620. https://doi.org/10.1021/acsami.9b06359
Yan,, X., Yang,, W., Shao,, Z., Yang,, S., & Liu,, X. (2016). Graphene/single‐walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway. International Journal of Nanomedicine, 11, 5473–5484. https://doi.org/10.2147/IJN.S115468
Yang,, C., Lee,, J.‐S., Jung,, U.‐W., Seo,, Y.‐K., Park,, J.‐K., & Choi,, S.‐H. (2013). Periodontal regeneration with nano‐hyroxyapatite‐coated silk scaffolds in dogs. Journal of Periodontal %26 Implant Science, 43(6), 315–322. https://doi.org/10.5051/jpis.2013.43.6.315
Yang,, E.‐J., Kim,, S., Kim,, J., & Choi,, I.‐H. (2012). Inflammasome formation and IL‐1β release by human blood monocytes in response to silver nanoparticles. Biomaterials, 33, 6858–6867. https://doi.org/10.1016/j.biomaterials.2012.06.016
Yang,, F., Both,, S. K., Yang,, X., Walboomers,, X. F., & Jansen,, J. A. (2009). Development of an electrospun nano‐apatite/PCL composite membrane for GTR/GBR application. Acta Biomaterialia, 5(9), 3295–3304. https://doi.org/10.1016/j.actbio.2009.05.023
Yang,, T. L., Hsiao,, Y. C., Lin,, S. J., Lee,, H. W., Lou,, P. J., Ko,, J. Y., & Young,, T. H. (2010). Biomaterial mediated epithelial‐mesenchymal interaction of salivary tissue under serum free condition. Biomaterials, 31(2), 288–295. https://doi.org/10.1016/j.biomaterials.2009.09.052
Yu,, N., Prodanov,, L., te Riet,, J., Yang,, F., Walboomers,, X. F., & Jansen,, J. A. (2013). Regulation of periodontal ligament cell behavior by cyclic mechanical loading and substrate nanotexture. Journal of Periodontology, 84(10), 1504–1513. https://doi.org/10.1902/jop.2012.120513
Yun,, H. M., Kang,, S. K., Singh,, R. K., Lee,, J. H., Lee,, H. H., Park,, K. R., … Kim,, E. C. (2016). Magnetic nanofiber scaffold‐induced stimulation of odontogenesis and pro‐angiogenesis of human dental pulp cells through Wnt/MAPK/NF‐kappaB pathways. Dental Materials, 32(11), 1301–1311. https://doi.org/10.1016/j.dental.2016.06.016
Yun,, H. M., Lee,, E. S., Kim,, M. J., Kim,, J. J., Lee,, J. H., Lee,, H. H., … Kim,, E. C. (2015). Magnetic nanocomposite scaffold‐induced stimulation of migration and odontogenesis of human dental pulp cells through integrin signaling pathways. PLoS One, 10(9), e0138614. https://doi.org/10.1371/journal.pone.0138614
Zand,, V., Lotfi,, M., Aghbali,, A., Mesgari Abbasi,, M., Janani,, M., Mokhtari,, H., … Pakde,, S. M. V. (2016). Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model. Iranian Endodontic Journal, 11, 13–16. https://doi.org/10.7508/iej.2016.01.003
Zhang,, J., Liu,, J., Wang,, C., Chen,, F., Wang,, X., & Lin,, K. (2020). A comparative study of the osteogenic performance between the hierarchical micro/submicro‐textured 3D‐printed Ti6Al4V surface and the SLA surface. Bioactive Materials, 5(1), 9–16. https://doi.org/10.1016/j.bioactmat.2019.12.008
Zhang,, J., Zhou,, W., Wang,, H., Lin,, K., & Chen,, F. (2019). 3D‐printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo. Journal of Materials Science and Technology, 35(2), 336–343. https://doi.org/10.1016/j.jmst.2018.09.063
Zhang,, J. C., Lu,, H. Y., Lv,, G. Y., Mo,, A. C., Yan,, Y. G., & Huang,, C. (2010). The repair of critical‐size defects with porous hydroxyapatite/polyamide nanocomposite: An experimental study in rabbit mandibles. International Journal of Oral and Maxillofacial Surgery, 39(5), 469–477. https://doi.org/10.1016/j.ijom.2010.01.013
Zhang,, K., Melo,, M. A. S., Cheng,, L., Weir,, M. D., Bai,, Y., & Xu,, H. H. K. (2012). Effect of quaternary ammonium and silver nanoparticle‐containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dental Materials, 28(8), 842–852. https://doi.org/10.1016/j.dental.2012.04.027
Zhang,, R., Li,, X., Liu,, Y., Gao,, X., Zhu,, T., & Lu,, L. (2019). Acceleration of bone regeneration in critical‐size defect using BMP‐9‐loaded nHA/ColI/MWCNTs scaffolds seeded with bone marrow mesenchymal stem cells. BioMed Research International, 2019, 7343957. https://doi.org/10.1155/2019/7343957
Zhang,, T., Wang,, L., Chen,, Q., & Chen,, C. (2014). Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal, 55(2), 283–291.
Zhang,, W., Zheng,, Y., Liu,, H., Zhu,, X., Gu,, Y., Lan,, Y., … Guo,, R. (2019). A non‐invasive monitoring of USPIO labeled silk fibroin/hydroxyapatite scaffold loaded DPSCs for dental pulp regeneration. Materials Science %26 Engineering. C, Materials for Biological Applications, 103, 109736. https://doi.org/10.1016/j.msec.2019.05.021
Zhang,, X., Li,, H., Liu,, J., Wang,, H., Sun,, W., Lin,, K., … Shen,, S. G. (2019). Amorphous carbon modification on implant surface: A general strategy to enhance osteogenic differentiation for diverse biomaterials via FAK/ERK1/2 signaling pathways. Journal of Materials Chemistry B, 7(15), 2518–2533. https://doi.org/10.1039/c8tb02850h
Zhang,, Y., Kohler,, N., & Zhang,, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561. https://doi.org/10.1016/S0142-9612(01)00267-8
Zhang,, Y., Wang,, C., Fu,, L., Ye,, S., Wang,, M., & Zhou,, Y. (2019). Fabrication and application of novel porous scaffold in situ‐loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical‐sized bone defect. Molecules, 24(9), 1669. https://doi.org/10.3390/molecules24091669
Zhao,, J., Liu,, Y., Sun,, W.‐B., & Zhang,, H. (2011). Amorphous calcium phosphate and its application in dentistry. Chemistry Central Journal, 5, 40–40. https://doi.org/10.1186/1752-153X-5-40
Zhao,, Q., Wang,, L., Cheng,, R., Mao,, L., Arnold,, R. D., Howerth,, E. W., … Platt,, S. (2012). Magnetic nanoparticle‐based hyperthermia for head %26 neck cancer in mouse models. Theranostics, 2, 113–121. https://doi.org/10.7150/thno.3854
Zhao,, Y., Chen,, X., Bai,, S., Li,, B., Liu,, H., Wu,, G., … Zhao,, Y. (2016). Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. International Journal of Nanomedicine, 11, 4707–4718. https://doi.org/10.2147/ijn.S111701
Zhou,, J., Guo,, X., Zheng,, Q., Wu,, Y., Cui,, F., & Wu,, B. (2017). Improving osteogenesis of three‐dimensional porous scaffold based on mineralized recombinant human‐like collagen via mussel‐inspired polydopamine and effective immobilization of BMP‐2‐derived peptide. Colloids and Surfaces. B, Biointerfaces, 152, 124–132. https://doi.org/10.1016/j.colsurfb.2016.12.041
Zhou,, L. L., Liu,, W., Wu,, Y. M., Sun,, W. L., Dorfer,, C. E., & Fawzy El‐Sayed,, K. M. (2020). Oral mesenchymal stem/progenitor cells: The immunomodulatory masters. Stem Cells International, 2020, 1327405. https://doi.org/10.1155/2020/1327405
Zhou,, T., Liu,, X., Sui,, B., Liu,, C., Mo,, X., & Sun,, J. (2017). Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomedical Materials, 12(5), 055004. https://doi.org/10.1088/1748-605X/aa7b55
Zhu,, F., Li,, D., Ding,, Q., Lei,, C., Ren,, L., Ding,, X., & Sun,, X. (2020). 2D magnetic MoS2–Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR sensor. Biosensors %26 Bioelectronics, 147, 111787. https://doi.org/10.1016/j.bios.2019.111787
Zhu,, W., Castro,, N. J., Cheng,, X., Keidar,, M., & Zhang,, L. G. (2015). Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration. PLoS One, 10(7), e0134729. https://doi.org/10.1371/journal.pone.0134729
Zhu,, W., Li,, Y., Liu,, L., Chen,, Y., & Xi,, F. (2010). Supramolecular hydrogels from cisplatin‐loaded block copolymer nanoparticles and α‐cyclodextrins with a stepwise delivery property. Biomacromolecules, 11(11), 3086–3092.
Zhuang,, Y., Lin,, K., & Yu,, H. (2019). Advance of nano‐composite electrospun fibers in periodontal regeneration. Frontiers in Chemistry, 7, 495. https://doi.org/10.3389/fchem.2019.00495