Zarbin, MA, Montemagno, C, Leary, JF, Ritch, R. Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 2010, 150:144.e2–162.e2.
Zarbin, MA, Montemagno, C, Leary, JF, Ritch, R. Nanotechnology in ophthalmology. Can J Ophthalmol 2010, 45:457–476.
Leary, JF. Nanotechnology: what is it and why is small so big? Can J Ophthalmol 2010, 45: 449–456.
Silva, GA, Czeisler, C, Niece, KL, Beniash, E, Harrington, DA, Kessler, JA, Stupp, SI. Selective differentiation of neural progenitor cells by high‐epitope density nanofibers. Science 2004, 303: 1352–1355.
Silva, GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 2006, 7:65–74.
Patolsky, F, Timko, BP, Yu, G, Fang, Y, Greytak, AB, Zheng, G, Lieber, CM. Detection, stimulation, and inhibition of neuronal signals with high‐density nanowire transistor arrays. Science 2006, 313:1100–1104.
Kotov, NA, Winter, JO, Clements, IP, Kotov, NA, Winter, JO, Clements, IP, Jan, E, Timko, BP, Campidelli, S, Pathak, S, Mazzatenta, A, Lieber, CM, Prato, M, et al. Nanomaterials for neural interfaces. Adv Mater 2009, 21: 3970–4004.
Petros, RA, DeSimone, JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9:615–627.
Rejman, J, Oberle, V, Zuhorn, IS, Hoekstra, D. Size‐dependent internalization of particles via the pathways of clathrin‐ and caveolae‐mediated endocytosis. Biochem J 2004, 377:159–169.
Chen, X, Kube, DM, Cooper, MJ, Davis, PB. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol Ther 2008, 16:333–342.
Moghimi, SM, Hamad, I, Andresen, TL, Jorgensen, K, Szebeni, J. Methylation of the phosphate oxygen moiety of phospholipid‐methoxy(polyethylene glycol) conjugate prevents PEGylated liposome‐mediated complement activation and anaphylatoxin production. FASEB J 2006, 20:2591–2593.
Hamad, I, Christy Hunter, A, Rutt, KJ, Liu, Z, Dai, H, Moein Moghimi, S. Complement activation by PEGylated single‐walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol Immunol 2008, 45:3797–3803.
Yokoe, J, Sakuragi, S, Yamamoto, K, Teragaki, T, Ogawara, K, Higaki, K, Katayama, N, Kai, T, Sato, M, Kimura, T. Albumin‐conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats. Int J Pharm 2008, 353:28–34.
Furumoto, K, Yokoe, J, Ogawara, K, Amano, S, Takaguchi, M, Higaki, K, Kai, T, Kimura, T. Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition. Int J Pharm 2007, 329:110–116.
Renschler, MF, Bhatt, RR, Dower, WJ, Levy, R. Synthetic peptide ligands of the antigen binding receptor induce programmed cell death in a human B‐cell lymphoma. Proc Natl Acad Sci U S A 1994, 91: 3623–3627.
Bareford, LM, Swaan, PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 2007, 59: 748–758.
Torchilin, VP. Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008, 90:604–610.
Kirpotin, D, Hong, K, Mullah, N, Papahadjopoulos, D, Zalipsky, S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface‐grafted poly(ethylene glycol). FEBS Lett 1996, 388:115–118.
Saito, G, Swanson, JA, Lee, KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 2003, 55:199–215.
Boddapati, SV, D`Souza, GG, Erdogan, S, Torchilin, VP, Weissig, V. Organelle‐targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 2008, 8:2559–2563.
Wagstaff, KM, Jans, DA. Importins and beyond: non‐conventional nuclear transport mechanisms. Traffic 2009, 10:1188–1198.
Ferreira, L, Park, H, Choe, H, Kohane, D, Langer, R. Human embryoid bodies containing nano‐ and micro‐particulate delivery vehicles. Adv Mat 2008, 20: 2285–2291.
Sakai, T, Kuno, N, Takamatsu, F, Kimura, E, Kohno, H, Okano, K, Kitahara, K. Prolonged protective effect of basic fibroblast growth factor‐impregnated nanoparticles in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 2007, 48: 3381–3387.
Vollrath, D, Feng, W, Duncan, JL, Yasumura, D, D`Cruz, PM, Chappelow, A, Matthes, MT, Kay, MA, LaVail, MM. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 2001, 98:12584–12589.
Gal, A, Li, Y, Thompson, DA, Weir, J, Orth, U, Jacobson, SG, Apfelstedt‐Sylla, E, Vollrath, D. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000, 26:270–271.
Charbel Issa, P, Bolz, HJ, Ebermann, I, Domeier, E, Holz, FG, Scholl, HP. Characterisation of severe rod‐cone dystrophy in a consanguineous family with a splice site mutation in the MERTK gene. Br J Ophthalmol 2009, 93:920–925.
Mackay, DS, Henderson, RH, Sergouniotis, PI, Li, Z, Moradi, P, Holder, GE, Waseem, N, Bhattacharya, SS, Aldahmesh, MA, Alkuraya, FS, et al. Novel mutations in MERTK associated with childhood onset rod‐cone dystrophy. Mol Vis 2010, 16:369–377.
Quigley, HA, Broman, AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006, 90:262–267.
Jiang, C, Moore, MJ, Zhang, X, Klassen, H, Langer, R, Young, M. Intravitreal injections of GDNF‐loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 2007, 13:1783–1792.
Fu, K, Harrell, R, Zinski, K, Um, C, Jaklenec, A, Frazier, J, Lotan, N, Burke, P, Klibanov, AM, Langer, R. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J Pharm Sci 2003, 92:1582–1591.
Dalkara, D, Kolstad, KD, Guerin, KI, Hoffmann, NV, Visel, M, Klimczak, RR, Schaffer, DV, Flannery, JG. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol Ther 2011, 19:1602–1608.
Brownlee, M. A radical explanation for glucose‐induced beta cell dysfunction. J Clin Invest 2003, 112:1788–1790.
Yorek, MA. The role of oxidative stress in diabetic vascular and neural disease. Free Radic Res 2003, 37:471–480.
Dugan, LL, Lovett, EG, Quick, KL, Lotharius, J, Lin, TT, O`Malley, KL. Fullerene‐based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 2001, 7:243–246.
Shen, JK, Dong, A, Hackett, SF, Bell, WR, Green, WR, Campochiaro, PA. Oxidative damage in age‐related macular degeneration. Histol Histopathol 2007, 22: 1301–1308.
Komeima, K, Rogers, BS, Campochiaro, PA. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. J Cell Physiol 2007, 213: 809–815.
Papp, A, Nemeth, I, Karg, E, Papp, E. Glutathione status in retinopathy of prematurity. Free Radic Biol Med 1999, 27:738–743.
Deshpande, S, Patil, S, Kuchibhatla, SV, Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 2005, 87:133113.
Tsunekawa, S, Sahara, R, Kawazoe, Y, Ishikawa, K. Lattice relaxation of monosize CeO2‐x nanocrystalline particles. Appl Surf Sci 1999, 152:53–56.
Chen, J, Patil, S, Seal, S, McGinnis, JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 2006, 1:142–150.
Zhou, X, Wong, LL, Karakoti, AS, Seal, S, McGinnis, JF. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the vldlr knockout mouse. PLoS One 2011, 6:e16733.
Truong, SN, Alam, S, Zawadzki, RJ, Choi, SS, Telander, DG, Park, SS, Werner, JS, Morse, LS. High resolution fourier‐domain optical coherence tomography of retinal angiomatous proliferation. Retina 2007, 27:915–925.
Elman, MJ, Aiello, LP, Beck, RW, Bressler, NM, Bressler, SB, Edwards, AR, Ferris, FL, 3rd, Friedman, SM, Glassman, AR, Miller, KM, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010, 117: 1064.e35–1077.e35.
Rosenfeld, PJ, Brown, DM, Heier, JS, Boyer, DS, Kaiser, PK, Chung, CY, Kim, RY. Ranibizumab for neovascular age‐related macular degeneration. N Engl J Med 2006, 355:1419–1431.
Brown, DM, Kaiser, PK, Michels, M, Soubrane, G, Heier, JS, Kim, RY, Sy, JP, Schneider, S. Ranibizumab versus verteporfin for neovascular age‐related macular degeneration. N Engl J Med 2006, 355:1432–1444.
Kroto, HW, Heath, JR, O`Brien, SC, Curl, RF, Smalley, RE. C60: Buckminsterfullerene. Nature 1985, 318: 162–163.
Dugan, LL, Turetsky, DM, Du, C, Lobner, D, Wheeler, M, Almli, CR, Shen, CK, Luh, TY, Choi, DW, Lin, TS. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A 1997, 94:9434–9439.
Shichi, H. Microsomal electron transfer system of bovine retinal pigment epithelium. Exp Eye Res 1969, 8:60–68.
Yau, KW, Baylor, DA. Cyclic GMP‐activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 1989, 12:289–327.
Moiseyev, G, Chen, Y, Takahashi, Y, Wu, BX, Ma, JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 2005, 102: 12413–12418.
Halliwell, B, Gutteridge, JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984, 219:1–14.
Hahn, P, Milam, AH, Dunaief, JL. Maculas affected by age‐related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch`s membrane. Arch Ophthalmol 2003, 121:1099–1105.
Rogers, BS, Symons, RC, Komeima, K, Shen, J, Xiao, W, Swaim, ME, Gong, YY, Kachi, S, Campochiaro, PA. Differential sensitivity of cones to iron‐mediated oxidative damage. Invest Ophthalmol Vis Sci 2007, 48:438–445.
Hahn, P, Qian, Y, Dentchev, T, Chen, L, Beard, J, Harris, ZL, Dunaief, JL. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age‐related macular degeneration. Proc Natl Acad Sci U S A 2004, 101:13850–13855.
Dunaief, JL, Richa, C, Franks, EP, Schultze, RL, Aleman, TS, Schenck, JF, Zimmerman, EA, Brooks, DG. Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 2005, 112:1062–1065.
Chowers, I, Wong, R, Dentchev, T, Farkas, RH, Iacovelli, J, Gunatilaka, TL, Medeiros, NE, Presley, JB, Campochiaro, PA, Curcio, CA, et al. The iron carrier transferrin is upregulated in retinas from patients with age‐related macular degeneration. Invest Ophthalmol Vis Sci 2006, 47:2135–2140.
He, X, Hahn, P, Iacovelli, J, Wong R, King, C, Bhisitkul, R, Massaro‐Giordano, M, Dunaief, JL. Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 2007, 26:649–673.
Liu, G, Men, P, Harris, PL, Rolston, RK, Perry, G, Smith, MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 2006, 406:189–193.
Gullapalli, VK, Khodair, M, Wang, H, Sugino, IK, Madreperla, S, Zarbin, MA. Retinal pigment epithelium and photoreceptor transplantation frontiers. In: SJ, Ryan, ed. Retina. 4th ed. Philadelphia, PA: Mosby, Inc; 2006, 2597–2613.
Zarbin, MA. Functionalizing cell‐based therapy for age‐related maculardegeneration. Am J Ophthalmol 2007, 143:681–682.
Zarbin, MA. Retinal pigment epithelium‐retina transplantation for retinal degenerative disease. Am J Ophthalmol 2008, 146:151–153.
Yuan, XB, Yuan, YB, Jiang, W, Liu, J, Tian, EJ, Shun, HM, Huang, DH, Yuan, XY, Li, H, Sheng, J. Preparation of rapamycin‐loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 2008, 349:241–248.
Prow, TW, Bhutto, I, Kim, SY, Grebe, R, Merges, C, McLeod, DS, Uno, K, Mennon, M, Rodriguez, L, Leong, K, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 2008, 4:340–349.
Caspi, RR. Experimental autoimmune uveoretinitis in the rat and mouse. Curr Protoc Immunol 2003, 15:6.
Kassem, MA, Abdel Rahman, AA, Ghorab, MM, Ahmed, MB, Khalil, RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007, 340:126–133.
Sakai, T, Kohno, H, Ishihara, T, Higaki, M, Saito, S, Matsushima, M, Mizushima, Y, Kitahara, K. Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 2006, 82: 657–663.
Bazile, D, Prud`homme, C, Bassoullet, MT, Marlard, M, Spenlehauer, G, Veillard, M. Stealth Me. PEG‐PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995, 84:493–498.
Ishihara, T, Kubota, T, Choi, T, Takahashi, M, Ayano, E, Kanazawa, H, Higaki, M. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm 2009, 375:148–154.
Sakai, T, Ishihara, T, Higaki, M, Akiyama, G, Tsuneoka, H. Therapeutic effect of stealth‐type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 2011, 52:1516–1521.
Zhang, R, He, R, Qian, J, Guo, J, Xue, K, Yuan, YF. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 2010, 51:3575–3582.
Glover, DJ, Lipps, HJ, Jans, DA. Towards safe, non‐viral therapeutic gene expression in humans. Nat Rev Genet 2005, 6:299–310.
Kutsuzawa, K, Chowdhury, EH, Nagaoka, M, Maruyama, K, Akiyama, Y, Akaike, T. Surface functionalization of inorganic nano‐crystals with fibronectin and E‐cadherin chimera synergistically accelerates trans‐gene delivery into embryonic stem cells. Biochem Biophys Res Commun 2006, 350:514–520.
Mo, Y, Barnett, ME, Takemoto, D, Davidson, H, Kompella, UB. Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 2007, 13:746–757.
Prow, T, Grebe, R, Merges, C, Smith, JN, McLeod, DS, Leary, JF, Lutty, GA. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol Vis 2006, 12:616–625.
Cai, X, Conley, S, Naash, M. Nanoparticle applications in ocular gene therapy. Vision Res 2008, 48:319–324.
Farjo, R, Skaggs, J, Quiambao, AB, Cooper, MJ, Naash, MI. Efficient non‐viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 2006, 1:e38.
Ferreira, L, Karp, JM, Nobre, L, Langer, R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008, 3:136–146.
Pack, DW, Hoffman, AS, Pun, S, Stayton, PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005, 4:581–593.
Incani, V, Tunis, E, Clements, BA, Olson, C, Kucharski, C, Lavasanifar, A, Uludag, H. Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. J Biomed Mater Res A 2007, 81:493–504.
Konstan, MW, Davis, PB, Wagener, JS, Hilliard, KA, Stern, RC, Milgram, LJ, Kowalczyk, TH, Hyatt, SL, Fink, TL, Gedeon, CR, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 2004, 15:1255–1269.
Pitkanen, L, Ruponen, M, Nieminen, J, Urtti, A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 2003, 20:576–583.
Cai, X, Conley, SM, Nash, Z, Fliesler, SJ, Cooper, MJ, Naash, MI. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 2010, 24:1178–1191.
Flannery, JG ZS, Vaquero, MI, LaVail, MM, Muzyczka, N, Hauswirth, WW. Efficient photoreceptor‐targeted gene expression in vivo by recombinant adeno‐associated virus. Proc Natl Acad Sci U S A. 1997, 94:6916–6921.
Li, Q, Timmers, AM, Guy, J, Pang, J, Hauswirth, WW. Cone‐specific expression using a human red opsin promoter in recombinant AAV. Vision Res 2008, 48:332–338.
Porrello, K, Bhat, SP, Bok, D. Detection of interphotoreceptor retinoid binding protein (IRBP) mRNA in human and cone‐dominant squirrel retinas by in situ hybridization. J Histochem Cytochem 1991, 39:171–176.
Esumi, N, Oshima, Y, Li, Y, Campochiaro, PA, Zack, DJ. Analysis of the VMD2 promoter and implication of E‐box binding factors in its regulation. J Biol Chem 2004, 279:19064–19073.
Cai, X, Nash, Z, Conley, SM, Fliesler, SJ, Cooper, MJ, Naash, MI. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS One 2009, 4:e5290.
Bejjani, RA, BenEzra, D, Cohen, H, Rieger, J, Andrieu, C, Jeanny, JC, Gollomb, G, Behar‐Cohen, FF. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005, 11:124–132.
Conley, SM, Cai, X, Naash, MI. Nonviral ocular gene therapy: assessment and future directions. Curr Opin Mol Ther 2008, 10:456–463.
Conley, SM, Naash, MI. Nanoparticles for retinal gene therapy. Prog Retin Eye Res 2010, 29:376–397.
Ravi Kumar, MN, Bakowsky, U, Lehr, CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004, 25:1771–1777.
Marmorstein, AD, Marmorstein, LY, Rayborn, M, Wang, X, Hollyfield, JG, Petrukhin, K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 2000, 97:12758–12763.
Maguire, AM, Simonelli, F, Pierce, EA, Pugh, EN, Jr., Mingozzi, F, Bennicelli, J, Banfi, S, Marshall, KA, Testa, F, Surace, EM, et al. Safety and efficacy of gene transfer for Leber`s congenital amaurosis. N Engl J Med 2008, 358:2240–2248.
Bainbridge, JW, Smith, AJ, Barker, SS, Robbie, S, Henderson, R, Balaggan, K, Viswanathan, A, Holder, GE, Stockman, A, Tyler, N, et al. Effect of gene therapy on visual function in Leber`s congenital amaurosis. N Engl J Med 2008, 358:2231–2239.
Cideciyan, AV, Hauswirth, WW, Aleman, TS, Kaushal, S, Schwartz, SB, Boye, SL, Windsor, EA, Conlon, TJ, Sumaroka, A, Pang, JJ, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 2009, 20:999–1004.
Kay, MA. State‐of‐the‐art gene‐based therapies: the road ahead. Nat Rev Genet 2011, 12:316–328.
Donsante, A, Miller, DG, Li, Y, Vogler C, Brunt, EM, Russell, DW, Sands, MS. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007, 317:477.
Hacein‐Bey‐Abina, S, Von Kalle, C, Schmidt, M, McCormack, MP, Wulffraat, N, Leboulch, P, Lim, A, Osborne, CS, Pawliuk, R, Morillon, E, et al. LMO2‐associated clonal T cell proliferation in two patients after gene therapy for SCID‐X1. Science 2003, 302:415–419.
Boutin, S, Monteilhet, V, Veron, P, Leborgne, C, Benveniste, O, Montus, MF, Masurier, C. Prevalence of serum IgG and neutralizing factors against adeno‐associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010, 21:704–712.
Erles, K, Sebokova, P, Schlehofer, JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno‐associated virus (AAV). J Med Virol 1999, 59:406–411.
Raper, SE, Chirmule, N, Lee, FS, Wivel, NA, Bagg, A, Gao, GP, Wilson, JM, Batshaw, ML. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003, 80:148–158.
Zaiss, AK, Machado, HB, Herschman, HR. The influence of innate and pre‐existing immunity on adenovirus therapy. J Cell Biochem 2009, 108:778–790.
Manno, CS, Pierce, GF, Arruda, VR, Glader, B, Ragni, M, Rasko, JJ, Ozelo, MC, Hoots, K, Blatt, P, Konkle, B, et al. Successful transduction of liver in hemophilia by AAV‐factor IX and limitations imposed by the host immune response. Nat Med 2006, 12:342–347.
Mingozzi, F, Maus, MV, Hui, DJ, Sabatino, DE, Murphy, SL, Rasko, JE, Ragni, MV, Manno, CS, Sommer, J, Jiang, H, et al. CD8(+) T‐cell responses to adeno‐associated virus capsid in humans. Nat Med 2007, 13:419–422.
Petry, H, Brooks, A, Orme, A, Wang, P, Liu, P, Xie, J, Kretschmer, P, Qian, HS, Hermiston, TW, Harkins, RN. Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re‐administration in mice. Gene Ther 2008, 15:54–60.
Hauswirth, WW, Aleman, TS, Kaushal, S, Cideciyan, AV, Schwartz, SB, Wang, L, Conlon, TJ, Boye, SL, Flotte, TR, Byrne, BJ, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno‐associated virus gene vector: short‐term results of a phase I trial. Hum Gene Ther 2008, 19:979–990.
Goncalves, MA. Adeno‐associated virus: from defective virus to effective vector. Virol J 2005, 2:43.
Surace, EM, Auricchio, A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008, 48: 353–359.
Yang, GS, Schmidt, M, Yan, Z, Lindbloom, JD, Harding, TC, Donahue, BA, Engelhardt, JF, Kotin, R, Davidson, BL. Virus‐mediated transduction of murine retina with adeno‐associated virus: effects of viral capsid and genome size. J Virol 2002, 76:7651–7660.
Zaiss, AK, Muruve, DA. Immunity to adeno‐associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008, 15:808–816.
Sun, JY, Anand‐Jawa, V, Chatterjee, S, Wong, KK. Immune responses to adeno‐associated virus and its recombinant vectors. Gene Ther 2003, 10:964–976.
Ivics, Z, Izsvak, Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 2010, 1:25.
Calos, MP. The phiC31 integrase system for gene therapy. Curr Gene Ther 2006, 6:633–645.
Kwon, I, Schaffer, DV. Designer gene delivery vectors: molecular engineering and evolution of adeno‐associated viral vectors for enhanced gene transfer. Pharm Res 2008, 25:489–499.
Maheshri, N, Koerber, JT, Kaspar, BK, Schaffer, DV. Directed evolution of adeno‐associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006, 24:198–204.
Zhao, H, Giver, L, Shao, Z, Affholter, JA, Arnold, FH. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 1998, 16:258–261.
Koerber, JT, Klimczak, R, Jang, JH, Dalkara, D, Flannery, JG, Schaffer, DV. Molecular evolution of adeno‐associated virus for enhanced glial gene delivery. Mol Ther 2009, 17:2088–2095.
Klimczak, RR, Koerber, JT, Dalkara, D, Flannery, JG, Schaffer, DV. A novel adeno‐associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS One 2009, 4:e7467.
LaVail, MM, Yasumura, D, Matthes, MT, Lau‐Villacorta C, Unoki, K, Sung, CH, Steinberg, RH. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998, 39:592–602.
Chaum, E. Retinal neuroprotection by growth factors: a mechanistic perspective. J Cell Biochem 2003, 88:57–75.
Sieving, PA, Caruso, RC, Tao, W, Coleman, HR, Thompson, DJ, Fullmer, KR, Bush, RA. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 2006, 103:3896–3901.
Zhong, L, Zhao, W, Wu, J, Li, B, Zolotukhin, S, Govindasamy, L, Agbandje‐McKenna, M, Srivastava, A. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second‐strand DNA synthesis. Mol Ther 2007, 15:1323–1330.
Mah, C, Qing, K, Khuntirat, B, Ponnazhagan, S, Wang, XS, Kube, DM, Yoder, MC, Srivastava, A. Adeno‐associated virus type 2‐mediated gene transfer: role of epidermal growth factor receptor protein tyrosine kinase in transgene expression. J Virol 1998, 72: 9835–9843.
Zhong, L, Zhou, X, Li, Y, Qing, K, Xiao, X, Samulski, RJ, Srivastava, A. Single‐polarity recombinant adeno‐associated virus 2 vector‐mediated transgene expression in vitro and in vivo: mechanism of transduction. Mol Ther 2008, 16:290–295.
Zhong, L, Li, B, Mah, CS, Govindasamy, L, Agbandje‐McKenna, M, Cooper, M, Herzog, RW, Zolotukhin, I, Warrington, KH, Jr., Weigel‐Van Aken, KA, et al. Next generation of adeno‐associated virus 2 vectors: point mutations in tyrosines lead to high‐efficiency transduction at lower doses. Proc Natl Acad Sci U S A 2008, 105:7827–7832.
Wang, W, Malcolm, BA. Two‐stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site‐directed mutagenesis. Biotechniques 1999, 26:680–682.
McCarty, DM, Fu, H, Monahan, PE, Toulson, CE, Naik, P, Samulski, RJ. Adeno‐associated virus terminal repeat (TR) mutant generates self‐complementary vectors to overcome the rate‐limiting step to transduction in vivo. Gene Ther 2003, 10:2112–2118.
Yokoi, K, Kachi, S, Zhang, HS, Gregory, PD, Spratt, SK, Samulski, RJ, Campochiaro, PA. Ocular gene transfer with self‐complementary AAV vectors. Invest Ophthalmol Vis Sci 2007, 48:3324–3328.
Acland, GM, Aguirre, GD, Bennett, J, Aleman, TS, Cideciyan, AV, Bennicelli, J, Dejneka, NS, Pearce‐Kelling, SE, Maguire, AM, Palczewski, K, et al. Long‐term restoration of rod and cone vision by single dose rAAV‐mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005, 12:1072–1082.
Min, SH, Molday, LL, Seeliger, MW, Dinculescu, A, Timmers, AM, Janssen, A, Tonagel, F, Tanimoto, N, Weber, BH, Molday, RS, et al. Prolonged recovery of retinal structure/function after gene therapy in an Rs1h‐deficient mouse model of x‐linked juvenile retinoschisis. Mol Ther 2005, 12: 644–651.
Petrs‐Silva, H, Dinculescu, A, Li, Q, Min, SH, Chiodo, V, Pang, JJ, Zhong, L, Zolotukhin, S, Srivastava, A, Lewin, AS, et al. High‐efficiency transduction of the mouse retina by tyrosine‐mutant AAV serotype vectors. Mol Ther 2009, 17:463–471.
Streilein, JW. Limitations in the study of immune privilege in the subretinal space of the rodent. Invest Ophthalmol Vis Sci 1999, 40:3069.
Li, Q, Miller, R, Han, PY, Pang, J, Dinculescu, A, Chiodo, V, Hauswirth, WW. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 2008, 14:1760–1769.
Jones, BW, Watt, CB, Frederick, JM, Baehr, W, Chen, CK, Levine, EM, Milam, AH, Lavail, MM, Marc, RE. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 2003, 464:1–16.
Lamba, DA, Gust, J, Reh, TA. Transplantation of human embryonic stem cell‐derived photoreceptors restores some visual function in Crx‐deficient mice. Cell Stem Cell 2009, 4:73–79.
Lamba, DA, Karl, MO, Reh, TA. Strategies for retinal repair: cell replacement and regeneration. Prog Brain Res 2009, 175:23–31.
Lamba, DA, Karl, MO, Ware, CB, Reh, TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 2006, 103:12769–12774.
Lamba, DA, McUsic, A, Hirata, RK, Wang, PR, Russell, D, Reh, TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 2010, 5:e8763.
Ikeda, H, Osakada, F, Watanabe, K, Mizuseki, K, Haraguchi, T, Miyoshi, H, Kamiya, D, Honda, Y, Sasai, N, Yoshimura, N, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 2005, 102:11331–11336.
Osakada, F, Ikeda, H, Mandai, M, Wataya, T, Watanabe, K, Yoshimura, N, Akaike, A, Sasai, Y, Takahashi, M. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 2008, 26:215–224.
Hirami, Y, Osakada, F, Takahashi, K, Okita, K, Yamanaka, S, Ikeda, H, Yoshimura, N, Takahashi, M. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 2009, 458:126–131.
Osakada, F, Jin, ZB, Hirami, Y, Ikeda, H, Danjyo, T, Watanabe, K, Sasai, Y, Takahashi, M. In vitro differentiation of retinal cells from human pluripotent stem cells by small‐molecule induction. J Cell Sci 2009, 122:3169–3179.
Meyer, JS, Katz, ML, Maruniak, JA, Kirk, MD. Embryonic stem cell‐derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cell 2006, 24:274–283.
Seiler, MJ, Aramant, RB, Thomas, BB, Peng, Q, Sadda, SR, Keirstead, HS. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 2010, 31: 508–520.
MacLaren, RE, Pearson, RA, MacNeil, A, Douglas, RH, Salt, TE, Akimoto, M, Swaroop, A, Sowden, JC, Ali, RR. Retinal repair by transplantation of photoreceptor precursors. Nature 2006, 444:203–207.
Gust, J, Reh, TA. Adult donor rod photoreceptors integrate into the mature mouse retina. Invest Ophthalmol Vis Sci 2011, 52:5266–5272.
Tomita, M, Lavik, E, Klassen, H, Zahir, T, Langer, R, Young, MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cell 2005, 23: 1579–1588.
Scadden, DT. The stem‐cell niche as an entity of action. Nature 2006, 441:1075–1079.
Sugino, IK, Gullapalli, VK, Sun, Q, Wang, J, Nunes, CF, Cheewatrakoolpong, N, Johnson, AC, Degner, BC, Hua, J, Liu, T, et al. Cell‐deposited matrix improves retinal pigment epithelium survival on aged submacular human bruch`s membrane. Invest Ophthalmol Vis Sci 2011, 52:1345–1358.
Steedman, MR, Tao, SL, Klassen, H, Desai, TA. Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed Microdevices 2010, 12:363–369.
Recknor, JB, Sakaguchi, DS, Mallapragada, SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 2006, 27:4098–4108.
Park, J, Bauer, S, von der Mark, K, Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 2007, 7:1686–1691.
Chua, KN, Chai, C, Lee, PC, Tang, YN, Ramakrishna, S, Leong, KW, Mao, HQ. Surface‐aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials 2006, 27: 6043–6051.
Dalby, MJ, McCloy, D, Robertson, M, Wilkinson, CD, Oreffo, RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 2006, 27:1306–1315.
Mooney, DJ, Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2008, 2:205–213.
Ellis‐Behnke, RG, Liang, YX, You, SW, Tay, DK, Zhang, S, So, KF, Schneider, GE. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 2006, 103: 5054–5059.
Hynes, SR, Lavik, EB. A tissue‐engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 2010, 248:763–778.
Lavik, EB, Klassen, H, Warfvinge, K, Langer, R, Young, MJ. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 2005, 26: 3187–3196.
Tao, S, Young, C, Redenti, S, Zhang, Y, Klassen, H, Desai, T, Young, MJ. Survival, migration and differentiation of retinal progenitor cells transplanted on micro‐machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip 2007, 7:695–701.
Redenti, S, Tao, S, Yang, J, Gu, P, Klassen, H, Saigal, S, Desai, T, Young, MJ. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin‐film poly(e‐caprolactone) nanowire scaffold. J Ocul Biol Dis Infor 2008, 1:19–29.
Sodha, S, Wall, K, Redenti, S, Klassen, H, Young, MJ, Tao, SL. Microfabrication of a three‐dimensional polycaprolactone thin‐film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed 2011, 22:443–456.
Tao, SL, Desai, TA. Micromachined devices: the impact of controlled geometry from cell‐targeting to bioavailability. J Control Release 2005, 109:127–138.
Milam, AH, Li, ZY, Fariss, RN. Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1998, 17:175–205.
Lakhanpal, RR, Yanai, D, Weiland, JD, Fujii, GY, Caffey, S, Greenberg, RJ, de, Juan E, Jr., Humayun, MS. Advances in the development of visual prostheses. Curr Opin Ophthalmol 2003, 14:122–127.
Chen, SJ, Mahadevappa, M, Roizenblatt, R, Weiland, J, Humayun, M. Neural responses elicited by electrical stimulation of the retina. Trans Am Ophthalmol Soc 2006, 104:252–259.
Zrenner, E. Will retinal implants restore vision? Science 2002, 295:1022–1025.
Weiland, JD, Liu, W, Humayun, MS. Retinal prosthesis. Annu Rev Biomed Eng 2005, 7:361–401.
Banghart, M, Borges, K, Isacoff, E, Trauner, D, Kramer, RH. Light‐activated ion channels for remote control of neuronal firing. Nat Neurosci 2004, 7: 1381–1386.
Choi, SY, Sheng, Z, Kramer, RH. Imaging light‐modulated release of synaptic vesicles in the intact retina: retinal physiology at the dawn of the post‐electrode era. Vision Res 2005, 45:3487–3495.
Szobota, S, Gorostiza, P, Del Bene, F, Wyart, C, Fortin, DL, Kolstad, KD, Tulyathan, O, Volgraf, M, Numano, R, Aaron, HL, et al. Remote control of neuronal activity with a light‐gated glutamate receptor. Neuron 2007, 54:535–345.
Volgraf, M, Gorostiza, P, Numano, R, Kramer, RH, Isacoff, EY, Trauner, D. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2006, 2:47–52.
Nagel, G, Szellas, T, Huhn, W, Kateriya, S, Adeishvili, N, Berthold, P, Ollig, D, Hegemann, P, Bamberg, E. Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel. Proc Natl Acad Sci U S A 2003, 100:13940–13945.
Bi, A, Cui, J, Ma, YP, Olshevskaya, E, Pu, M, Dizhoor, AM, Pan, ZH. Ectopic expression of a microbial‐type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006, 50:23–33.
Lagali, PS, Balya, D, Awatramani, GB, Munch, TA, Kim, DS, Busskamp, V, Cepko, CL, Roska, B. Light‐activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008, 11:667–675.
Tomita, H, Sugano, E, Yawo, H, Ishizuka, T, Isago, H, Narikawa, S, Kugler, S, Tamai, M. Restoration of visual response in aged dystrophic RCS rats using AAV‐mediated channelopsin‐2 gene transfer. Invest Ophthalmol Vis Sci 2007, 48:3821–3826.
Bowes, C, Li, T, Danciger, M, Baxter, LC, Applebury, ML, Farber, DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP‐phosphodiesterase. Nature 1990, 347:677–680.
D`Cruz, PM, Yasumura, D, Weir, J, Matthes, MT, Abderrahim, H, LaVail, MM, Vollrath, D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000, 9:645–651.
Zhang, Y, Ivanova, E, Bi, A, Pan, ZH. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 2009, 29:9186–9196.
Doroudchi, MM, Greenberg, KP, Liu, J, Silka, KA, Boyden, ES, Lockridge, JA, Arman, AC, Janani, R, Boye, SE, Boye, SL, et al. Virally delivered channelrhodopsin‐2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011, 19:1220–1229.
Marc, RE, Jones, BW, Watt, CB, Vazquez‐Chona, F, Vaughan, DK, Organisciak, DT. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14: 782–806.
Strettoi, E, Pignatelli, V, Rossi, C, Porciatti, V, Falsini, B. Remodeling of second‐order neurons in the retina of rd/rd mutant mice. Vision Res 2003, 43:867–877.
Gargini, C, Terzibasi, E, Mazzoni, F, Strettoi, E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 2007, 500:222–238.
Greenberg, KP, Pham, A, Werblin, FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center‐surround antagonism. Neuron 2011, 69: 713–720.
Busskamp, V, Duebel, J, Balya, D, Fradot, M, Viney, TJ, Siegert, S, Groner, AC, Cabuy, E, Forster, V, Seeliger, M, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010, 329: 413–417.
Gorostiza, P, Isacoff, EY. Nanoengineering ion channels for optical control. Physiology (Bethesda) 2008, 23:238–247.
Fortin, DL, Banghart, MR, Dunn, TW, Borges, K, Wagenaar, DA, Gaudry, Q, Karakossian, MH, Otis, TS, Kristan, WB, Trauner, D, et al. Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 2008, 5:331–338.
Caporale, N, Kolstad, KD, Lee, TD, Tochitsky, I, Dalkara, D, Trauner, D, Kramer, RH, Dan, Y, Isacoff, EY, Flannery, JG. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 2011, 19:1212–1219.
Ahuja, AK, Dorn, JD, Caspi, A, McMahon, MJ, Dagnelie, G, Dacruz, L, Stanga, P, Humayun, MS, Greenberg, RJ. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial‐motor task. Br J Ophthalmol 2011, 95:539–543.
Winter, JO, Han, N, Jensen, R, Cogan, SF, Rizzo, JF. Adhesion molecules promote chronic neural interfaces following neurotrophin withdrawal. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:7151–7154.
Kelly, SK, Shire, DB, Chen, J, Doyle, P, Gingerich, MD, Drohan, WA, Theogarajan, LS, Cogan, SF, Wyatt, JL, Rizzo, JF, 3rd. Realization of a 15‐channel, hermetically‐encased wireless subretinal prosthesis for the blind. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:200–203.
Zrenner, E, Bartz‐Schmidt, KU, Benav, H, Besch, D, Bruckmann, A, Gabel, VP, Gekeler, F, Greppmaier, U, Harscher, A, Kibbel, S, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011, 278:1489–1497.
Julien, S, Peters, T, Ziemssen, F, Arango‐Gonzalez, B, Beck, S, Thielecke, H, Buth, H, Van Vlierberghe, S, Sirova, M, Rossmann, P, et al. Implantation of ultrathin, biofunctionalized polyimide membranes into the subretinal space of rats. Biomaterials 2011, 32:3890–3898.
Fujikado, T, Kamei, M, Sakaguchi, H, Kanda, H, Morimoto, T, Ikuno, Y, Nishida, K, Kishima, H, Maruo, T, Konoma, K, et al. Testing of semi‐chronically implanted retinal prosthesis by suprachoroidal‐transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011, 52:4726–4733.
Finlayson, PG, Iezzi, R. Glutamate stimulation of retinal ganglion cells in normal and s334ter‐4 rat retinas: a candidate for a neurotransmitter‐based retinal prosthesis. Invest Ophthalmol Vis Sci 2010, 51:3619–3628.
Lovric, J, Cho, SJ, Winnik, FM, Maysinger, D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005, 12:1227–1234.
Lovric, J, Bazzi, HS, Cuie, Y, Fortin, GR, Winnik, FM, Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005, 83:377–385.
Chan, WH, Shiao, NH, Lu, PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial‐dependent pathways and inhibition of survival signals. Toxicol Lett 2006, 167:191–200.
Choi, AO, Cho, SJ, Desbarats, J, Lovric, J, Maysinger, D. Quantum dot‐induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 2007, 5:1.
Maysinger, D, Behrendt, M, Lalancette‐Hebert, M, Kriz, J. Real‐time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 2007, 7:2513–2520.
Oberdorster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004, 112:1058–1062.
Kim, DH, Martin, DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 2006, 27:3031–3037.
Bharali, DJ, Klejbor, I, Stachowiak, EK, Dutta, P, Roy, I, Kaur, N, Bergey, EJ, Prasad, PN, Stachowiak, MK. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A 2005, 102:11539–11544.
Zou, LL, Huang, L, Hayes, RL, Black, C, Qiu, YH, Perez‐Polo, JR, Le, W, Clifton, GL, Yang, K. Liposome‐mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther 1999, 6:994–1005.
Green, RA, Lovell, NH, Wallace, GG, Poole‐Warren, LA. Conducting polymers for neural interfaces: challenges in developing an effective long‐term implant. Biomaterials 2008, 29:3393–3399.
Abidian, MR, Kim, D‐H, Martin, DC. Conducting‐polymer nanotubes for controlled drug release. Adv Mater 2006, 18:405–409.
Kim, D‐H, Richardson‐Burns, SM, Hendricks, JL, Sequera, C, Martin, DC. Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular responses. Adv Func Mater 2007, 17:79–86.
Cui, X, Lee, VA, Raphael, Y, Wiler, JA, Hetke, JF, Anderson, DJ, Martin, DC. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 2001, 56:261–272.
Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277: 1232–1237.
Gheith, MK, Pappas, TC, Lioppo, AV, Sinani, VA, Shim, BS, Motamedi, M, Wicksted, JP, Kotov, NA. Stimulation of neural cells by lateral currents in conductive layer‐by‐layer films of single‐walled carbon nanotubes. Adv Mater 2006, 18:2975–2979.
Sinani, VA, Koktysh, DS, Yun, B‐G, Matts, RL, Pappas, TC, Motamedi, M, Thomas, SN, Kotov, NA. Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Lett 2003, 3:1177–1183.
Pappas, TC, Wickramanyake, WM, Jan, E, Motamedi, M, Brodwick, M, Kotov, NA. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett 2007, 7:513–519.
Feynman, R. There`s plenty of room at the bottom. Eng Sci 1960, 23:22–36.