Abbaspour,, N., Hurrell,, R., & Kelishadi,, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(2), 164–174.
Abdollah,, M. R., Carter,, T. J., Jones,, C., Kalber,, T. L., Rajkumar,, V., Tolner,, B., … Ellis,, M. (2018). Fucoidan prolongs the circulation time of dextran‐coated iron oxide nanoparticles. ACS Nano, 12(2), 1156–1169.
Abou,, D., Pickett,, J., & Thorek,, D. (2015). Nuclear molecular imaging with nanoparticles: Radiochemistry, applications and translation. The British Journal of Radiology, 88(1054), 20150185.
Abstiens,, K., Gregoritza,, M., & Goepferich,, A. M. (2018). Ligand density and linker length are critical factors for multivalent nanoparticle–receptor interactions. ACS Applied Materials %26 Interfaces, 11(1), 1311–1320.
Adamiano,, A., Iafisco,, M., Sandri,, M., Basini,, M., Arosio,, P., Canu,, T., … Ausanio,, G. (2018). On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomaterialia, 73, 458–469.
Adeyemi,, J. A., Machado,, A. R. T., Ogunjimi,, A. T., Alberici,, L. C., Antunes,, L. M. G., & Barbosa,, F., Jr. (2020). Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper‐iron oxide and carbon nanoparticles. Ecotoxicology and Environmental Safety, 189, 109982. https://doi.org/10.1016/j.ecoenv.2019.109982
Ait‐Mohand,, S., Fournier,, P., Dumulon‐Perreault,, V., Kiefer,, G. E., Jurek,, P., Ferreira,, C. L., … Guérin,, B. (2011). Evaluation of 64Cu‐labeled bifunctional chelate–bombesin conjugates. Bioconjugate Chemistry, 22(8), 1729–1735.
Ajdary,, M., Moosavi,, M. A., Rahmati,, M., Falahati,, M., Mahboubi,, M., Mandegary,, A., … Varma,, R. S. (2018). Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 8(9), 634.
Albanese,, A., Tang,, P. S., & Chan,, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124
Alivisatos,, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22(1), 47–52.
Anselmo,, A. C., & Mitragotri,, S. (2016). Nanoparticles in the clinic. Bioengineering %26 Translational Medicine, 1(1), 10–29.
Anselmo,, A. C., & Mitragotri,, S. (2019). Nanoparticles in the clinic: An update. Bioengineering %26 Translational Medicine, 4(3), e10143.
Ashby,, J., Pan,, S., & Zhong,, W. (2014). Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Applied Materials %26 Interfaces, 6(17), 15412–15419. https://doi.org/10.1021/am503909q
Attiaa,, M. F., Antona,, N., Wallyna,, J., Omrand,, Z., & Vandammea,, T. F. (2019). An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 71, 1185–1198.
Azadbakht,, B., Afarideh,, H., Ghannadi‐Maragheh,, M., Bahrami‐Samani,, A., & Asgari,, M. (2017). Preparation and evaluation of APTES‐PEG coated iron oxide nanoparticles conjugated to rhenium‐188 labeled rituximab. Nuclear Medicine and Biology, 48, 26–30.
Azorín‐Vega,, E., Zambrano‐Ramírez,, O., Rojas‐Calderón,, E., Ocampo‐García,, B., & Ferro‐Flores,, G. (2015). Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3‐octreotate and 177Lu–Tyr3‐octreotate conjugated to gold nanoparticles. Applied Radiation and Isotopes, 100, 96–100.
Bai,, J., Wang,, J. T.‐W., Rubio,, N., Protti,, A., Heidari,, H., Elgogary,, R., … Shah,, A. M. (2016). Triple‐modal imaging of magnetically‐targeted nanocapsules in solid tumours in vivo. Theranostics, 6(3), 342–356.
Bartlett,, D. W., Su,, H., Hildebrandt,, I. J., Weber,, W. A., & Davis,, M. E. (2007). Impact of tumor‐specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15549–15554.
Bastus,, N. G., Casals,, E., Ojea,, I., Varon,, M., & Puntes,, V. (2012). The Reactivity of colloidal inorganic nanoparticles. In Hashim,, A. A. (Eds.), The delivery of nanoparticles (pp. 377–400). London: IntechOpen. https://doi.org/10.5772/2647
Bertrand,, N., Wu,, J., Xu,, X., Kamaly,, N., & Farokhzad,, O. C. (2014). Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 66, 2–25. https://doi.org/10.1016/j.addr.2013.11.009
Bhatnagar,, P., Li,, Z., Choi,, Y., Guo,, J., Li,, F., Lee,, D. Y., … Zal,, T. (2013). Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper‐64. Integrative Biology, 5(1), 231–238.
Bhatt,, N. B., Pandya,, D. N., & Wadas,, T. J. (2018). Recent advances in zirconium‐89 chelator development. Molecules, 23(3), 638.
Black,, K. C., Akers,, W. J., Sudlow,, G., Xu,, B., Laforest,, R., & Achilefu,, S. (2015). Dual‐radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale, 7(2), 440–444.
Black,, K. C., Wang,, Y., Luehmann,, H. P., Cai,, X., Xing,, W., Pang,, B., … Liu,, Y. (2014). Radioactive 198Au‐doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano, 8(5), 4385–4394.
Blanco,, E., Shen,, H., & Ferrari,, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951.
Boros,, E., Bowen,, A. M., Josephson,, L., Vasdev,, N., & Holland,, J. P. (2015). Chelate‐free metal ion binding and heat‐induced radiolabeling of iron oxide nanoparticles. Chemical Science, 6(1), 225–236.
Boschi,, A., Uccelli,, L., & Martini,, P. (2019). A picture of modern Tc‐99m radiopharmaceuticals: Production, chemistry, and applications in molecular imaging. Applied Sciences, 9(12), 2526.
Boselli,, L., Polo,, E., Castagnola,, V., & Dawson,, K. A. (2017). Regimes of biomolecular ultrasmall nanoparticle interactions. Angewandte Chemie (International Edition in English), 56(15), 4215–4218. https://doi.org/10.1002/anie.201700343
Boyd,, A. S., Zic,, J. A., & Abraham,, J. L. (2007). Gadolinium deposition in nephrogenic fibrosing dermopathy. Journal of the American Academy of Dermatology, 56(1), 27–30.
Brandt,, M., Cardinale,, J., Aulsebrook,, M. L., Gasser,, G., & Mindt,, T. L. (2018). An overview of PET radiochemistry, part 2: Radiometals. Journal of Nuclear Medicine, 59(10), 1500–1506.
Brechbiel,, M. W. (2008). Bifunctional chelates for metal nuclides. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 52(2), 166.
Bronte,, V., & Pittet,, M. J. (2013). The spleen in local and systemic regulation of immunity. Immunity, 39(5), 806–818.
Brücher,, E. (2002). Kinetic stabilities of gadolinium (III) chelates used as MRI contrast agents. In Contrast agents I (pp. 103–122). Berlin, Heidelberg: Springer.
Burke,, B. P., Baghdadi,, N., Clemente,, G. S., Camus,, N., Guillou,, A., Kownacka,, A. E., … Archibald,, S. J. (2015). Final step gallium‐68 radiolabelling of silica‐coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discussions, 175, 59–71.
Burke,, B. P., Baghdadi,, N., Kownacka,, A. E., Nigam,, S., Clemente,, G. S., Al‐Yassiry,, M. M., … Gibbs,, P. (2015). Chelator free gallium‐68 radiolabelling of silica coated iron oxide nanorods via surface interactions. Nanoscale, 7(36), 14889–14896.
Cagliani,, R., Gatto,, F., & Bardi,, G. (2019). Protein adsorption: A feasible method for nanoparticle functionalization? Materials (Basel, Switzerland), 12(12), 1991. https://doi.org/10.3390/ma12121991
Cai,, H., Xie,, F., Mulgaonkar,, A., Chen,, L., Sun,, X., Hsieh,, J.‐T., … Wu,, C. (2018). Bombesin functionalized 64Cu‐copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 13(14), 1695–1705.
Cai,, Z., Yook,, S., Lu,, Y., Bergstrom,, D., Winnik,, M. A., Pignol,, J.‐P., & Reilly,, R. M. (2017). Local radiation treatment of HER2‐positive breast cancer using trastuzumab‐modified gold nanoparticles labeled with 177Lu. Pharmaceutical Research, 34(3), 579–590.
Campelo,, J. M., Luna,, D., Luque,, R., Marinas,, J. M., & Romero,, A. A. (2009). Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem: Chemistry %26 Sustainability Energy %26 Materials, 2(1), 18–45.
Cao,, X., Cao,, F., Xiong,, L., Yang,, Y., Cao,, T., Cai,, X., … Zhang,, Y. (2015). Cytotoxicity, tumor targeting and PET imaging of sub‐5 nm KGdF 4 multifunctional rare earth nanoparticles. Nanoscale, 7(32), 13404–13409.
Cataldi,, M., Vigliotti,, C., Mosca,, T., Cammarota,, M., & Capone,, D. (2017). Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. International Journal of Molecular Sciences, 18(6), 1249–1273. https://doi.org/10.3390/ijms18061249
Cedrowska,, E., Łyczko,, M., Piotrowska,, A., Bilewicz,, A., Stolarz,, A., Trzcińska,, A., … Wąs,, B. (2016). Silver impregnated nanoparticles of titanium dioxide as carriers for 211At. Radiochimica Acta, 104(4), 267–275.
Cędrowska,, E., Pruszynski,, M., Majkowska‐Pilip,, A., Męczyńska‐Wielgosz,, S., Bruchertseifer,, F., Morgenstern,, A., & Bilewicz,, A. (2018). Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. Journal of Nanoparticle Research, 20(3), 83. https://doi.org/10.1007/s11051-018-4181-y
Chakravarty,, R., Chakraborty,, S., Guleria,, A., Shukla,, R., Kumar,, C., Vimalnath Nair,, K., … Dash,, A. (2018). Facile one‐pot synthesis of intrinsically radiolabeled and cyclic RGD conjugated 199Au nanoparticles for potential use in nanoscale brachytherapy. Industrial %26 Engineering Chemistry Research, 57(43), 14337–14346.
Chakravarty,, R., Chakraborty,, S., Ningthoujam,, R. S., Vimalnath Nair,, K., Sharma,, K. S., Ballal,, A., … Vatsa,, R. K. (2016). Industrial‐scale synthesis of intrinsically radiolabeled 64CuS nanoparticles for use in positron emission tomography (PET) imaging of cancer. Industrial %26 Engineering Chemistry Research, 55(48), 12407–12419.
Chakravarty,, R., Dash,, A., & Cai,, W. (2017). Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: An overview. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 61(2), 181.
Chakravarty,, R., Valdovinos,, H. F., Chen,, F., Lewis,, C. M., Ellison,, P. A., Luo,, H., … Cai,, W. (2014). Intrinsically germanium‐69‐labeled iron oxide nanoparticles: Synthesis and in‐vivo dual‐modality PET/MR imaging. Advanced Materials, 26(30), 5119–5123.
Chanda,, N., Kan,, P., Watkinson,, L. D., Shukla,, R., Zambre,, A., Carmack,, T. L., … Fent,, G. M. (2010). Radioactive gold nanoparticles in cancer therapy: Therapeutic efficacy studies of GA‐198AuNP nanoconstruct in prostate tumor‐bearing mice. Nanomedicine: Nanotechnology, Biology and Medicine, 6(2), 201–209.
Chen,, D., Dougherty,, C. A., Yang,, D., Wu,, H., & Hong,, H. (2016). Radioactive nanomaterials for multimodality imaging. Tomography, 2(1), 3–16.
Chen,, F., Ellison,, P. A., Lewis,, C. M., Hong,, H., Zhang,, Y., Shi,, S., … Cai,, W. (2013). Chelator‐free synthesis of a dual‐modality PET/MRI agent. Angewandte Chemie International Edition, 52(50), 13319–13323.
Chen,, L., Chen,, J., Qiu,, S., Wen,, L., Wu,, Y., Hou,, Y., … Li,, Z. (2018). Biodegradable nanoagents with short biological half‐life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small, 14(4), 1702700.
Chen,, M., Guo,, Z., Chen,, Q., Wei,, J., Li,, J., Shi,, C., … Zheng,, N. (2018). Pd nanosheets with their surface coordinated by radioactive iodide as a high‐performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy. Chemical Science, 9(18), 4268–4274.
Chen,, X., Qiu,, X., Hou,, M., Wu,, X., Dong,, Y., Ma,, Y., … Wei,, Y. (2018). Differences in zwitterionic sulfobetaine and carboxybetaine dextran‐based hydrogels. Langmuir, 35(5), 1475–1482.
Cheng,, D., Li,, X., Zhang,, C., Tan,, H., Wang,, C., Pang,, L., & Shi,, H. (2015). Detection of vulnerable atherosclerosis plaques with a dual‐modal single‐photon‐emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Applied Materials %26 Interfaces, 7(4), 2847–2855.
Cheng,, K., Kothapalli,, S.‐R., Liu,, H., Koh,, A. L., Jokerst,, J. V., Jiang,, H., … Wu,, J. C. (2014). Construction and validation of nano gold tripods for molecular imaging of living subjects. Journal of the American Chemical Society, 136(9), 3560–3571.
Cheng,, L., Shen,, S., Jiang,, D., Jin,, Q., Ellison,, P. A., Ehlerding,, E. B., … Barnhart,, T. E. (2017). Chelator‐free labeling of metal oxide nanostructures with zirconium‐89 for positron emission tomography imaging. ACS Nano, 11(12), 12193–12201.
Cheng,, L., Shen,, S., Shi,, S., Yi,, Y., Wang,, X., Song,, G., … Cai,, W. (2016). FeSe2‐decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator‐free 64Cu‐labeling and multimodal image‐guided photothermal‐radiation therapy. Advanced Functional Materials, 26(13), 2185–2197.
Choi,, H. S., Liu,, W., Liu,, F., Nasr,, K., Misra,, P., Bawendi,, M. G., & Frangioni,, J. V. (2010). Design considerations for tumour‐targeted nanoparticles. Nature Nanotechnology, 5(1), 42–47. https://doi.org/10.1038/nnano.2009.314
Choi,, H. S., Liu,, W., Misra,, P., Tanaka,, E., Zimmer,, J. P., Itty Ipe,, B., … Frangioni,, J. V. (2007). Renal clearance of quantum dots. Nature Biotechnology, 25(10), 1165–1170. https://doi.org/10.1038/nbt1340
Choi,, M. H., Jeong,, S.‐W., Shim,, H. E., Yun,, S.‐J., Mushtaq,, S., Choi,, D. S., … Jeon,, J. (2017). Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial‐containing radiation‐resistant bacterium, Deinococcus radiodurans R1. Chemical Communications, 53(28), 3937–3940. https://doi.org/10.1039/C7CC00720E
Choi,, M. H., Shim,, H.‐E., Yun,, S.‐J., Park,, S.‐H., Choi,, D. S., Jang,, B.‐S., … Jeon,, J. (2016). Gold‐nanoparticle‐immobilized desalting columns for highly efficient and specific removal of radioactive iodine in aqueous media. ACS Applied Materials %26 Interfaces, 8(43), 29227–29231. https://doi.org/10.1021/acsami.6b11136
Chrastina,, A., & Schnitzer,, J. E. (2010). Iodine‐125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. International Journal of Nanomedicine, 5, 653.
Cipreste,, M. F., Peres,, A. M., Cotta,, A. A., Aragón,, F. H., Antunes,, A. d. M., Leal,, A. S., … de Sousa,, E. M. (2016). Synthesis and characterization of 159Gd‐doped hydroxyapatite nanorods for bioapplications as theranostic systems. Materials Chemistry and Physics, 181, 301–311.
Clanton,, R., Gonzalez,, A., Shankar,, S., & Akabani,, G. (2018). Rapid synthesis of 125I integrated gold nanoparticles for use in combined neoplasm imaging and targeted radionuclide therapy. Applied Radiation and Isotopes, 131, 49–57.
Cleeren,, F., Lecina,, J., Bridoux,, J., Devoogdt,, N., Tshibangu,, T., Xavier,, C., & Bormans,, G. (2018). Direct fluorine‐18 labeling of heat‐sensitive biomolecules for positron emission tomography imaging using the Al18F‐RESCA method. Nature Protocols, 13(10), 2330–2347.
Cohen,, J. M., Derk,, R., Wang,, L., Godleski,, J., Kobzik,, L., Brain,, J., & Demokritou,, P. (2014). Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology, 8(Suppl. 1), 216–225.
Cornelissen,, B. (2014). Imaging the inside of a tumour: A review of radionuclide imaging and theranostics targeting intracellular epitopes. Journal of Labelled Compounds and Radiopharmaceuticals, 57(4), 310–316. https://doi.org/10.1002/jlcr.3152
Cui,, X., Mathe,, D., Kovács,, N. M., Horváth,, I., Jauregui‐Osoro,, M., Torres Martin de Rosales, R., … Krüger,, D. (2016). Synthesis, characterization, and application of core–shell Co0.16Fe2.84O4@ NaYF4 (Yb, Er) and Fe3O4@ NaYF4 (Yb, Tm) nanoparticle as Trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjugate Chemistry, 27(2), 319–328.
De Jong,, W. H., Hagens,, W. I., Krystek,, P., Burger,, M. C., Sips,, A. J., & Geertsma,, R. E. (2008). Particle size‐dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29(12), 1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037
De Lima,, J. J. (2016). Nuclear medicine physics. Boca Raton, FL: CRC Press.
de Sá,, A., Prata,, M. I. M., Geraldes,, C. F., & André,, J. P. (2010). Triaza‐based amphiphilic chelators: Synthetic route, in vitro characterization and in vivo studies of their Ga (III) and Al (III) chelates. Journal of Inorganic Biochemistry, 104(10), 1051–1062.
de Souza Albernaz,, M., Toma,, S. H., Clanton,, J., Araki,, K., & Santos‐Oliveira,, R. (2018). Decorated superparamagnetic iron oxide nanoparticles with monoclonal antibody and diethylene‐triamine‐pentaacetic acid labeled with thechnetium‐99m and galium‐68 for breast cancer imaging. Pharmaceutical Research, 35(1), 24.
Deng,, S., Zhang,, W., Zhang,, B., Hong,, R., Chen,, Q., Dong,, J., … Wu,, Y. (2015). Radiolabeled cyclic arginine‐glycine‐aspartic (RGD)‐conjugated iron oxide nanoparticles as single‐photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual‐modality agents for imaging of breast cancer. Journal of Nanoparticle Research, 17(1), 19.
Dewaraja,, Y. K., Wilderman,, S. J., Koral,, K. F., Kaminski,, M. S., & Avram,, A. M. (2009). Use of integrated SPECT/CT imaging for tumor dosimetry in I‐131 radioimmunotherapy: A pilot patient study. Cancer Biotherapy and Radiopharmaceuticals, 24(4), 417–426.
Du,, B., Jiang,, X., Das,, A., Zhou,, Q., Yu,, M., Jin,, R., & Zheng,, J. (2017). Glomerular barrier behaves as an atomically precise bandpass filter in a sub‐nanometre regime. Nature Nanotechnology, 12(11), 1096–1102. https://doi.org/10.1038/nnano.2017.170
Dziawer,, L., Koźmiński,, P., Męczyńska‐Wielgosz,, S., Pruszyński,, M., Łyczko,, M., Wąs,, B., … Bilewicz,, A. (2017). Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Advances, 7(65), 41024–41032. https://doi.org/10.1039/C7RA06376H
Dziawer,, Ł., Majkowska‐Pilip,, A., Gaweł,, D., Godlewska,, M., Pruszyński,, M., Jastrzębski,, J., … Bilewicz,, A. (2019). Trastuzumab‐modified gold nanoparticles labeled with 211At as a prospective tool for local treatment of HER2‐positive breast cancer. Nanomaterials, 9(4), 632.
England,, C. G., Im,, H.‐J., Feng,, L., Chen,, F., Graves,, S. A., Hernandez,, R., … Nickles,, R. J. (2016). Re‐assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials, 100, 101–109.
Engwa,, G. A., Ferdinand,, P. U., Nwalo,, F. N., & Unachukwu,, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. In Karcioglu,, O., (Ed.), Poisoning in the modern world‐new tricks for an old dog?. London: IntechOpen.
Enrique,, M.‐A., Mariana,, O.‐R., Mirshojaei,, S. F., & Ahmadi,, A. (2015). Multifunctional radiolabeled nanoparticles: Strategies and novel classification of radiopharmaceuticals for cancer treatment. Journal of Drug Targeting, 23(3), 191–201.
Farrag,, N. S., El‐Sabagh,, H. A., Al‐mahallawi,, A. M., Amin,, A. M., AbdEl‐Bary,, A., & Mamdouh,, W. (2017). Comparative study on radiolabeling and biodistribution of core–shell silver/polymeric nanoparticles‐based theranostics for tumor targeting. International Journal of Pharmaceutics, 529(1–2), 123–133.
Ferrari,, M., De Marco,, P., Origgi,, D., & Pedroli,, G. (2014). SPECT/CT radiation dosimetry. Clinical and Translational Imaging, 2(6), 557–569.
Ferreira,, C. R., & Gahl,, W. A. (2017). Disorders of metal metabolism. Translational Science of Rare Diseases, 2(3–4), 101–139.
Frellsen,, A. F., Hansen,, A. E., Jølck,, R. I., Kempen,, P. J., Severin,, G. W., Rasmussen,, P. H., … Andresen,, T. L. (2016). Mouse positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded copper‐64. ACS Nano, 10(11), 9887–9898.
Freund,, B., Tromsdorf,, U. I., Bruns,, O. T., Heine,, M., Giemsa,, A., Bartelt,, A., … Ittrich,, H. (2012). A simple and widely applicable method to 59Fe‐radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano, 6(8), 7318–7325.
Frigell,, J., García,, I., Gómez‐Vallejo,, V., Llop,, J., & Penades,, S. (2014). 68Ga‐labeled gold glyconanoparticles for exploring blood–brain barrier permeability: Preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of the American Chemical Society, 136(1), 449–457.
Frullano,, L., & Caravan,, P. (2011). Strategies for the preparation of bifunctional gadolinium (III) chelators. Current Organic Synthesis, 8(4), 535–565.
Gabriel,, M., Decristoforo,, C., Donnemiller,, E., Ulmer,, H., Rychlinski,, C. W., Mather,, S. J., & Moncayo,, R. (2003). An intrapatient comparison of 99mTc‐EDDA/HYNIC‐TOC with 111In‐DTPA‐octreotide for diagnosis of somatostatin receptor‐expressing tumors. Journal of Nuclear Medicine, 44(5), 708–716.
Gaetke,, L. M., Chow‐Johnson,, H. S., & Chow,, C. K. (2014). Copper: Toxicological relevance and mechanisms. Archives of Toxicology, 88(11), 1929–1938.
Gao,, F., Cai,, P., Yang,, W., Xue,, J., Gao,, L., Liu,, R., … Zhao,, L. (2015). Ultrasmall [64Cu] Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano, 9(5), 4976–4986.
Gao,, H., Liu,, X., Tang,, W., Niu,, D., Zhou,, B., Zhang,, H., … Zheng,, Y. (2016). 99mTc‐conjugated manganese‐based mesoporous silica nanoparticles for SPECT, pH‐responsive MRI and anti‐cancer drug delivery. Nanoscale, 8(47), 19573–19580.
Gao,, Z., Hou,, Y., Zeng,, J., Chen,, L., Liu,, C., Yang,, W., & Gao,, M. (2017). Tumor microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Advanced Materials, 29(24), 1701095.
Gautier,, J., Allard‐Vannier,, E., Munnier,, E., Soucé,, M., & Chourpa,, I. (2013). Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. Journal of Controlled Release, 169(1–2), 48–61.
Ge,, J., Zhang,, Q., Zeng,, J., Gu,, Z., & Gao,, M. (2019). Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 228, 119553.
Gibson,, N., Holzwarth,, U., Abbas,, K., Simonelli,, F., Kozempel,, J., Cydzik,, I., … Ponti,, J. (2011). Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Archives of Toxicology, 85(7), 751–773.
Glaus,, C., Rossin,, R., Welch,, M. J., & Bao,, G. (2010). In vivo evaluation of 64Cu‐labeled magnetic nanoparticles as a dual‐modality PET/MR imaging agent. Bioconjugate Chemistry, 21(4), 715–722.
Goel,, S., Chen,, F., Ehlerding,, E. B., & Cai,, W. (2014). Intrinsically radiolabeled nanoparticles: An emerging paradigm. Small, 10(19), 3825–3830.
González‐Ruíz,, A., Ferro‐Flores,, G., Azorín‐Vega,, E., Ocampo‐García,, B., de Maria Ramírez,, F., Santos‐Cuevas,, C., … Morales‐Avila,, E. (2017). Synthesis and in vitro evaluation of an antiangiogenic cancer‐specific dual‐targeting 177Lu–Au‐nanoradiopharmaceutical. Journal of Radioanalytical and Nuclear Chemistry, 314(2), 1337–1345.
Gourni,, E., Del Pozzo,, L., Bartholomä,, M., Kiefer,, Y., Meyer,, P. T., Maecke,, H. R., & Holland,, J. P. (2017). Radiochemistry and preclinical PET imaging of 68Ga‐desferrioxamine radiotracers targeting prostate‐specific membrane antigen. Molecular Imaging, 16(10), 153601211773701.
Groult,, H., Ruiz‐Cabello, J. s., Pellico,, J., Lechuga‐Vieco,, A. V., Bhavesh,, R., Zamai,, M., … Martinez‐Alcazar,, M. P. (2015). Parallel multifunctionalization of nanoparticles: A one‐step modular approach for in vivo imaging. Bioconjugate Chemistry, 26(1), 153–160.
Guerrero,, S., Herance,, J. R., Rojas,, S., Mena,, J. F., Gispert,, J. D., Acosta,, G. A., … Kogan,, M. J. (2012). Synthesis and in vivo evaluation of the biodistribution of a 18F‐labeled conjugate gold‐nanoparticle‐peptide with potential biomedical application. Bioconjugate Chemistry, 23(3), 399–408.
Hao,, G., Zhou,, J., Guo,, Y., Long,, M. A., Anthony,, T., Stanfield,, J., … Sun,, X. (2011). A cell permeable peptide analog as a potential‐specific PET imaging probe for prostate cancer detection. Amino Acids, 41(5), 1093–1101.
Harris,, J. M., & Chess,, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2(3), 214–221.
Haute,, D. V., & Berlin,, J. M. (2017). Challenges in realizing selectivity for nanoparticle biodistribution and clearance: Lessons from gold nanoparticles. Therapeutic Delivery, 8(9), 763–774. https://doi.org/10.4155/tde-2017-0057
He,, X., Zhang,, H., Ma,, Y., Bai,, W., Zhang,, Z., Lu,, K., … Chai,, Z. (2010). Lung deposition and extrapulmonary translocation of nano‐ceria after intratracheal instillation. Nanotechnology, 21(28), 285103.
Heo,, G. S., Zhao,, Y., Sultan,, D., Zhang,, X., Detering,, L., Luehmann,, H. P., … Liu,, Y. (2019). Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Applied Materials %26 Interfaces, 11(22), 19669–19678. https://doi.org/10.1021/acsami.8b22752
Hildebrand,, H., & Franke,, K. (2012). A new radiolabeling method for commercial Ag0 nanopowder with 110mAg for sensitive nanoparticle detection in complex media. Journal of Nanoparticle Research, 14(10), 1142.
Hildebrand,, H., Schymura,, S., Holzwarth,, U., Gibson,, N., Dalmiglio,, M., & Franke,, K. (2015). Strategies for radiolabeling of commercial TiO2 nanopowder as a tool for sensitive nanoparticle detection in complex matrices. Journal of Nanoparticle Research, 17(6), 278.
Hirn,, S., Semmler‐Behnke,, M., Schleh,, C., Wenk,, A., Lipka,, J., Schäffler,, M., … Simon,, U. (2011). Particle size‐dependent and surface charge‐dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 77(3), 407–416.
Ho,, T. L. (1977). 1 – Introduction. In T.‐L. Ho, (Ed.), Hard and soft acids and bases principle in organic chemistry (pp. 1–3). London: Academic Press.
Hoffman,, D., Sun,, M., Yang,, L., McDonagh,, P. R., Corwin,, F., Sundaresan,, G., … Lamichhane,, N. (2014). Intrinsically radiolabelled [59Fe]‐SPIONs for dual MRI/radionuclide detection. American Journal of Nuclear Medicine and Molecular Imaging, 4(6), 548–560.
Holland,, J. P., Divilov,, V., Bander,, N. H., Smith‐Jones,, P. M., Larson,, S. M., & Lewis,, J. S. (2010). 89Zr‐DFO‐J591 for immunoPET of prostate‐specific membrane antigen expression in vivo. Journal of Nuclear Medicine, 51(8), 1293–1300.
Homayun,, B., Lin,, X., & Choi,, H.‐J. (2019). Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 11(3), 129. https://doi.org/10.3390/pharmaceutics11030129
Hoshyar,, N., Gray,, S., Han,, H., & Bao,, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (London, England), 11(6), 673–692. https://doi.org/10.2217/nnm.16.5
Howell,, M., Wang,, C., Mahmoud,, A., Hellermann,, G., Mohapatra,, S. S., & Mohapatra,, S. (2013). Dual‐function theranostic nanoparticles for drug delivery and medical imaging contrast: Perspectives and challenges for use in lung diseases. Drug Delivery and Translational Research, 3(4), 352–363. https://doi.org/10.1007/s13346-013-0132-4
Hu,, H., Huang,, P., Weiss,, O. J., Yan,, X., Yue,, X., Zhang,, M. G., … Niu,, G. (2014). PET and NIR optical imaging using self‐illuminating 64Cu‐doped chelator‐free gold nanoclusters. Biomaterials, 35(37), 9868–9876.
Hu,, H., Li,, D., Liu,, S., Wang,, M., Moats,, R., Conti,, P. S., & Li,, Z. (2014). Integrin α2β1 targeted GdVO4:Eu ultrathin nanosheet for multimodal PET/MR imaging. Biomaterials, 35(30), 8649–8658.
Hu,, M., Chen,, J., Li,, Z.‐Y., Au,, L., Hartland,, G. V., Li,, X., … Xia,, Y. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084–1094.
Huang,, H.‐C., Barua,, S., Sharma,, G., Dey,, S. K., & Rege,, K. (2011). Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release, 155(3), 344–357.
Huang,, Q., Zhang,, J., Zhang,, Y., Timashev,, P., Ma,, X., & Liang,, X.‐J. (2020). Adaptive changes induced by noble‐metal nanostructures in vitro and in vivo. Theranostics, 10(13), 5649–5670.
IAEA Radioisotopes Series No. 1 (2009). Technetium 99m radiopharmaceuticals: Status and trends: Vienna, Austria: IAEA publishing.
Jackson,, P. A., Hofman,, M. S., Hicks,, R. J., Scalzo,, M., & Violet,, J. A. (2019). Radiation dosimetry in 177Lu‐PSMA‐617 therapy using a single post‐treatment SPECT/CT: A novel methodology to generate time‐and tissue‐specific dose factors. Journal of Nuclear Medicine, 61(7), 1030–1036. https://doi.org/10.2967/jnumed.119.233411
Jang,, B., Park,, S., Kang,, S. H., Kim,, J. K., Kim,, S.‐K., Kim,, I.‐H., & Choi,, Y. (2012). Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quantitative Imaging in Medicine and Surgery, 2(1), 1–11.
Jarrett,, B. R., Gustafsson,, B. r., Kukis,, D. L., & Louie,, A. Y. (2008). Synthesis of 64Cu‐labeled magnetic nanoparticles for multimodal imaging. Bioconjugate Chemistry, 19(7), 1496–1504.
Jauregui‐Osoro,, M., Williamson,, P. A., Glaria,, A., Sunassee,, K., Charoenphun,, P., Green,, M. A., … Blower,, P. J. (2011). Biocompatible inorganic nanoparticles for [18F]‐fluoride binding with applications in PET imaging. Dalton Transactions, 40(23), 6226–6237.
Jelley,, N. A. (1990). Fundamentals of nuclear physics. Cambridge: Cambridge University Press.
Jeon,, J. (2019). Review of therapeutic applications of radiolabeled functional nanomaterials. International Journal of Molecular Sciences, 20(9), 2323.
Jiang,, X., Du,, B., Huang,, Y., & Zheng,, J. (2018). Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today, 21, 106–125. https://doi.org/10.1016/j.nantod.2018.06.006
Jiang,, X., Han,, Y., Zhang,, H., Liu,, H., Huang,, Q., Wang,, T., … Li,, Z. (2018). Cu–Fe–Se ternary nanosheet‐based drug delivery carrier for multimodal imaging and combined chemo/photothermal therapy of cancer. ACS Applied Materials %26 Interfaces, 10(50), 43396–43404.
Jin,, Q., Zhu,, W., Jiang,, D., Zhang,, R., Kutyreff,, C. J., Engle,, J. W., … Cheng,, L. (2017). Ultra‐small iron‐gallic acid coordination polymer nanoparticles for chelator‐free labeling of 64Cu and multimodal imaging‐guided photothermal therapy. Nanoscale, 9(34), 12609–12617.
Julien,, D. C., Behnke,, S., Wang,, G., Murdoch,, G. K., & Hill,, R. A. (2011). Utilization of monoclonal antibody‐targeted nanomaterials in the treatment of cancer. MAbs, 3(5), 467–478. https://doi.org/10.4161/mabs.3.5.16089
Kalantar‐zadeh,, K., Ou,, J. Z., Daeneke,, T., Strano,, M. S., Pumera,, M., & Gras,, S. L. (2015). Two‐dimensional transition metal dichalcogenides in biosystems. Advanced Functional Materials, 25(32), 5086–5099.
Kamal,, R., Chadha,, V. D., & Dhawan,, D. (2018). Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc‐Res‐AuNP) in colon cancer tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 1059–1071.
Kanwar,, P., & Kowdley,, K. V. (2014). Metal storage disorders: Wilson disease and hemochromatosis. Medical Clinics, 98(1), 87–102.
Katti,, K., Khoobchandani,, M., Thipe,, V., Al‐Yasiri,, A., Katti,, K., Loyalka,, S., … Lugão,, A. (2018). Prostate tumor therapy advances in nuclear medicine: Green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 318(3), 1737–1747.
Kettler,, K., Veltman,, K., van de Meent,, D., van Wezel,, A., & Hendriks,, A. J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environmental Toxicology and Chemistry, 33(3), 481–492. https://doi.org/10.1002/etc.2470
Kim,, B.‐E., Nevitt,, T., & Thiele,, D. J. (2008). Mechanisms for copper acquisition, distribution and regulation. Nature Chemical Biology, 4(3), 176–185.
Kim,, S.‐m., Chae,, M. K., Yim,, M. S., Jeong,, I. H., Cho,, J., Lee,, C., & Ryu,, E. K. (2013). Hybrid PET/MR imaging of tumors using an oleanolic acid‐conjugated nanoparticle. Biomaterials, 34(33), 8114–8121.
Kim,, Y. H., Jeon,, J., Hong,, S. H., Rhim,, W. K., Lee,, Y. S., Youn,, H., … Kang,, K. W. (2011). Tumor targeting and imaging using cyclic RGD‐PEGylated gold nanoparticle probes with directly conjugated iodine‐125. Small, 7(14), 2052–2060.
Koziorowski,, J., E Stanciu,, A., Gomez‐Vallejo,, V., & Llop,, J. (2017). Radiolabeled nanoparticles for cancer diagnosis and therapy. Anti‐Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry‐Anti‐Cancer Agents), 17(3), 333–354.
Kreyling,, W. G., Abdelmonem,, A. M., Ali,, Z., Alves,, F., Geiser,, M., Haberl,, N., … Kantner,, K. (2015). In vivo integrity of polymer‐coated gold nanoparticles. Nature Nanotechnology, 10(7), 619–623.
Kučka,, J., Hrubý,, M., Koňák,, Č., Kozempel,, J., & Lebeda,, O. (2006). Astatination of nanoparticles containing silver as possible carriers of 211At. Applied Radiation and Isotopes, 64(2), 201–206.
Kumar,, K., & Ghosh,, A. (2018). 18F‐AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals. Bioconjugate Chemistry, 29(4), 953–975.
Lamb,, J., & Holland,, J. P. (2018). Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. Journal of Nuclear Medicine, 59(3), 382–389. https://doi.org/10.2967/jnumed.116.187419
Lasser,, A. (1983). The mononuclear phagocytic system: A review. Human Pathology, 14(2), 108–126.
Lattuada,, L., Barge,, A., Cravotto,, G., Giovenzana,, G. B., & Tei,, L. (2011). The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chemical Society Reviews, 40(5), 3019–3049.
Lee,, H.‐Y., Li,, Z., Chen,, K., Hsu,, A. R., Xu,, C., Xie,, J., … Chen,, X. (2008). PET/MRI dual‐modality tumor imaging using arginine‐glycine‐aspartic (RGD)‐conjugated radiolabeled iron oxide nanoparticles. Journal of Nuclear Medicine, 49(8), 1371–1379.
Lee,, I. J., Park,, J. Y., Kim,, Y.‐i., Lee,, Y.‐S., Jeong,, J. M., Kim,, J., … Jeong,, S. (2017). Image‐based analysis of tumor localization after intra‐arterial delivery of technetium‐99m‐labeled SPIO using SPECT/CT and MRI. Molecular Imaging, 16, 1536012116689001.
Lee,, J., Lee,, T. S., Ryu,, J., Hong,, S., Kang,, M., Im,, K., … Song,, R. (2013). RGD peptide‐conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. Journal of Nuclear Medicine, 54(1), 96–103.
Lee,, S. B., Ahn,, S. B., Lee,, S.‐W., Jeong,, S. Y., Ghilsuk,, Y., Ahn,, B.‐C., … Lim,, D.‐K. (2016). Radionuclide‐embedded gold nanoparticles for enhanced dendritic cell‐based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Materials, 8(6), e281–e281.
Lee,, S. B., Lee,, S.‐W., Jeong,, S. Y., Yoon,, G., Cho,, S. J., Kim,, S. K., … Jeon,, Y. H. (2017). Engineering of radioiodine‐labeled gold core–shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS Applied Materials %26 Interfaces, 9(10), 8480–8489.
Li,, S.‐D., & Huang,, L. (2009). Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochimica et Biophysica Acta (BBA)‐Biomembranes, 1788(10), 2259–2266.
Li,, X., Wang,, C., Tan,, H., Cheng,, L., Liu,, G., Yang,, Y., … Zhang,, C. (2016). Gold nanoparticles‐based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials, 108, 71–80.
Li,, X., Xiong,, Z., Xu,, X., Luo,, Y., Peng,, C., Shen,, M., & Shi,, X. (2016). 99mTc‐labeled multifunctional low‐generation dendrimer‐entrapped gold nanoparticles for targeted SPECT/CT dual‐mode imaging of tumors. ACS Applied Materials %26 Interfaces, 8(31), 19883–19891.
Liang,, X., Wang,, H., Zhu,, Y., Zhang,, R., Cogger,, V. C., Liu,, X., … Roberts,, M. S. (2016). Short‐ and long‐term tracking of anionic ultrasmall nanoparticles in kidney. ACS Nano, 10(1), 387–395. https://doi.org/10.1021/acsnano.5b05066
Lin,, F.‐S., Chen,, C.‐H., Tseng,, F.‐G., Hwu,, Y., Chen,, J.‐K., Lin,, S.‐Y., & Yang,, C.‐S. (2013). Radiotherapy of the Excretable radioactive gold nanocomposite with intratumoral injection. International Journal of Materials, Mechanics and Manufacturing, 1(3), 265–268. https://doi.org/10.7763/ijmmm.2013.V1.56
Lipka,, J., Semmler‐Behnke,, M., Sperling,, R. A., Wenk,, A., Takenaka,, S., Schleh,, C., … Kreyling,, W. G. (2010). Biodistribution of PEG‐modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31(25), 6574–6581.
Liu,, L. X., Li,, B. X., Wang,, Q. Y., Dong,, Z. P., Li,, H. M., Jin,, Q. M., … Wang,, Y. (2016). An integrative folate‐based metal complex nanotube as a potent antitumor nanomedicine as well as an efficient tumor‐targeted drug carrier. Bioconjugate Chemistry, 27(12), 2863–2873.
Liu,, Q., Sun,, Y., Li,, C., Zhou,, J., Li,, C., Yang,, T., … Li,, F. (2011). 18F‐labeled magnetic‐upconversion nanophosphors via rare‐earth cation‐assisted ligand assembly. ACS Nano, 5(4), 3146–3157.
Liu,, S., Jia,, B., Qiao,, R., Yang,, Z., Yu,, Z., Liu,, Z., … Wang,, F. (2009). A novel type of dual‐modality molecular probe for MR and nuclear imaging of tumor: Preparation, characterization and in vivo application. Molecular Pharmaceutics, 6(4), 1074–1082.
Liu,, T., Shi,, S., Liang,, C., Shen,, S., Cheng,, L., Wang,, C., … Cai,, W. (2015). Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator‐free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano, 9(1), 950–960.
Liu,, Y., Ji,, M., & Wang,, P. (2019). Recent advances in small copper sulfide nanoparticles for molecular imaging and tumor therapy. Molecular Pharmaceutics, 16(8), 3322–3332.
Liu,, Y., Sun,, Y., Cao,, C., Yang,, Y., Wu,, Y., Ju,, D., & Li,, F. (2014). Long‐term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods. Biomaterials, 35(10), 3348–3355.
Llop,, J., Jiang,, P., Marradi,, M., Gomez‐Vallejo,, V., Echeverria,, M., Yu,, S., … Perez‐Campana,, C. (2015). Visualisation of dual radiolabelled poly (lactide‐co‐glycolide) nanoparticle degradation in vivo using energy‐discriminant SPECT. Journal of Materials Chemistry B, 3(30), 6293–6300.
Luehmann,, H. P., Pressly,, E. D., Detering,, L., Wang,, C., Pierce,, R., Woodard,, P. K., … Liu,, Y. (2014). PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. Journal of Nuclear Medicine, 55(4), 629–634.
Luna‐Gutiérrez,, M., Ferro‐Flores,, G., Ocampo‐García,, B., Jiménez‐Mancilla,, N., Morales‐Avila,, E., De León‐Rodríguez,, L., & Isaac‐Olivé,, K. (2012). 177Lu‐labeled monomeric, dimeric and multimeric RGD peptides for the therapy of tumors expressing α(ν)β(3) integrins. Journal of Labelled Compounds and Radiopharmaceuticals, 55(4), 140–148.
Luna‐Gutiérrez,, M., Ferro‐Flores,, G., Ocampo‐García,, B. E., Santos‐Cuevas,, C. L., Jiménez‐Mancilla,, N., León‐Rodríguez,, D., … Isaac‐Olivé,, K. (2013). A therapeutic system of 177Lu‐labeled gold nanoparticles‐RGD internalized in breast cancer cells. Journal of the Mexican Chemical Society, 57(3), 212–219.
Ma,, Y., Poole,, K., Goyette,, J., & Gaus,, K. (2017). Introducing membrane charge and membrane potential to T cell signaling. Frontiers in Immunology, 8, 1513–1513. https://doi.org/10.3389/fimmu.2017.01513
MacPherson,, D. S., Fung,, K., Cook,, B. E., Francesconi,, L. C., & Zeglis,, B. M. (2019). A brief overview of metal complexes as nuclear imaging agents. Dalton Transactions, 48(39), 14547–14565.
Mahmoudi,, M., Sheibani,, S., Milani,, A. S., Rezaee,, F., Gauberti,, M., Dinarvand,, R., & Vali,, H. (2015). Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (London, England), 10(2), 215–226. https://doi.org/10.2217/nnm.14.69
Marckmann,, P., Skov,, L., Rossen,, K., Dupont,, A., Damholt,, M. B., Heaf,, J. G., & Thomsen,, H. S. (2006). Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast‐enhanced magnetic resonance imaging. Journal of the American Society of Nephrology, 17(9), 2359–2362.
Matsumura,, Y., & Maeda,, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46(12 Pt 1), 6387–6392.
McBride,, W. J., Sharkey,, R. M., Karacay,, H., D`Souza,, C. A., Rossi,, E. A., Laverman,, P., … Goldenberg,, D. M. (2009). A novel method of 18F radiolabeling for PET. Journal of Nuclear Medicine, 50(6), 991–998.
McLaughlin,, M. F., Robertson,, D., Pevsner,, P. H., Wall,, J. S., Mirzadeh,, S., & Kennel,, S. J. (2014). LnPO4 nanoparticles doped with Ac‐225 and sequestered daughters for targeted alpha therapy. Cancer Biotherapy and Radiopharmaceuticals, 29(1), 34–41.
McLaughlin,, M. F., Woodward,, J., Boll,, R. A., Wall,, J. S., Rondinone,, A. J., Kennel,, S. J., … Robertson,, J. D. (2013). Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One, 8(1), e54531.
Mei,, B. C., Oh,, E., Susumu,, K., Farrell,, D., Mountziaris,, T. J., & Mattoussi,, H. (2009). Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir, 25(18), 10604–10611. https://doi.org/10.1021/la901423z
Melnik,, E., Demin,, V., Demin,, V., Gmoshinski,, I., Tyshko,, N., & Tutelyan,, V. (2013). Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae, 5(3), 107–115.
Mendoza‐Nava,, H., Ferro‐Flores,, G., Ramírez,, F. D. M., Ocampo‐García,, B., Santos‐Cuevas,, C., Azorín‐Vega,, E., … Isaac‐Olivé,, K. (2017). Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu‐dendrimer‐AuNP‐folate‐bombesin nanoprobe located inside cancer cells. Molecular Imaging, 16(3), 153601211770476.
Mendoza‐Sánchez,, A. N., Ferro‐Flores,, G., Ocampo‐García,, B. E., Morales‐Avila,, E., Ramírez,, F. D. M., De León‐Rodríguez,, L. M., … Camacho‐López,, M. A. (2010). Lys3‐bombesin conjugated to 99mTc‐labelled gold nanoparticles for in vivo gastrin releasing peptide‐receptor imaging. Journal of Biomedical Nanotechnology, 6(4), 375–384.
Moeendarbari,, S., Tekade,, R., Mulgaonkar,, A., Christensen,, P., Ramezani,, S., Hassan,, G., … Sun,, X. (2016). Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Scientific Reports, 6, 20614. https://doi.org/10.1038/srep20614
Mokhodoeva,, O., Vlk,, M., Málková,, E., Kukleva,, E., Mičolová,, P., Štamberg,, K., … Kozempel,, J. (2016). Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. Journal of Nanoparticle Research, 18(10), 301.
Moon,, S.‐H., Yang,, B. Y., Kim,, Y. J., Hong,, M. K., Lee,, Y.‐S., Lee,, D. S., … Jeong,, J. M. (2016). Development of a complementary PET/MR dual‐modal imaging probe for targeting prostate‐specific membrane antigen (PSMA). Nanomedicine: Nanotechnology, Biology and Medicine, 12(4), 871–879.
Morales‐Avila,, E., Ferro‐Flores,, G., Ocampo‐García,, B. E., De León‐Rodríguez,, L. M., Santos‐Cuevas,, C. L., García‐Becerra,, R., … Gómez‐Oliván,, L. (2011). Multimeric system of 99mTc‐labeled gold nanoparticles conjugated to c [RGDfK (C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjugate Chemistry, 22(5), 913–922.
Moyano,, D. F., Saha,, K., Prakash,, G., Yan,, B., Kong,, H., Yazdani,, M., & Rotello,, V. M. (2014). Fabrication of corona‐free nanoparticles with tunable hydrophobicity. ACS Nano, 8(7), 6748–6755. https://doi.org/10.1021/nn5006478
Munaweera,, I., Shi,, Y., Koneru,, B., Saez,, R., Aliev,, A., Di Pasqua,, A. J., & Balkus,, K. J., Jr. (2015). Chemoradiotherapeutic magnetic nanoparticles for targeted treatment of nonsmall cell lung cancer. Molecular Pharmaceutics, 12(10), 3588–3596.
Murphy,, C. J. (2008). Sustainability as an emerging design criterion in nanoparticle synthesis and applications. Journal of Materials Chemistry, 18(19), 2173–2176.
Mushtaq,, S., Yun,, S.‐J., Yang,, J. E., Jeong,, S.‐W., Shim,, H. E., Choi,, M. H., … Jeon,, J. (2017). Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environmental Science: Nano, 4(11), 2157–2163. https://doi.org/10.1039/C7EN00759K
Nahrendorf,, M., Keliher,, E., Marinelli,, B., Waterman,, P., Feruglio,, P. F., Fexon,, L., … Vinegoni,, C. (2010). Hybrid PET‐optical imaging using targeted probes. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7910–7915.
Nallathamby,, P. D., Mortensen,, N. P., Palko,, H. A., Malfatti,, M., Smith,, C., Sonnett,, J., … Wang,, W. (2015). New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale, 7(15), 6545–6555.
Nam,, J., Won,, N., Bang,, J., Jin,, H., Park,, J., Jung,, S., … Kim,, S. (2013). Surface engineering of inorganic nanoparticles for imaging and therapy. Advanced Drug Delivery Reviews, 65(5), 622–648. https://doi.org/10.1016/j.addr.2012.08.015
Natarajan,, A., Gruettner,, C., Ivkov,, R., Denardo,, G. L., Mirick,, G., Yuan,, A., … DeNardo,, S. (2008). Nanoferrite particle based radioimmunonanoparticles: Binding affinity and in vivo pharmacokinetics. Bioconjugate Chemistry, 19(6), 1211–1218.
Natarajan,, A., Xiong,, C.‐Y., Gruettner,, C., DeNardo,, G. L., & DeNardo,, S. J. (2008). Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biotherapy %26 Radiopharmaceuticals, 23(1), 82–91.
Nelson,, P. J., Rees,, A. J., Griffin,, M. D., Hughes,, J., Kurts,, C., & Duffield,, J. (2012). The renal mononuclear phagocytic system. Journal of the American Society of Nephrology, 23(2), 194–203.
Ng,, Q. K., Olariu,, C. I., Yaffee,, M., Taelman,, V. F., Marincek,, N., Krause,, T., … Walter,, M. A. (2014). Indium‐111 labeled gold nanoparticles for in‐vivo molecular targeting. Biomaterials, 35(25), 7050–7057.
Nguyen,, V. H., & Lee,, B. J. (2017). Protein corona: A new approach for nanomedicine design. International Journal of Nanomedicine, 12, 3137–3151. https://doi.org/10.2147/IJN.S129300
Ni,, D., Ferreira,, C. A., Barnhart,, T. E., Quach,, V., Yu,, B., Jiang,, D., … Hu,, P. (2018). Magnetic targeting of nanotheranostics enhances Cerenkov radiation‐induced photodynamic therapy. Journal of the American Chemical Society, 140(44), 14971–14979.
Normandin,, M. D., Yuan,, H., Wilks,, M. Q., Chen,, H. H., Kinsella,, J. M., Cho,, H., … El Fakhri,, G. (2015). Heat‐induced radiolabeling of nanoparticles for monocyte tracking by PET. Angewandte Chemie International Edition, 54(44), 13002–13006.
Nosrati,, S., Shanehsazzadeh,, S., Yousefnia,, H., Gholami,, A., Grüttner,, C., Jalilian,, A. R., … Lahooti,, A. (2016). Biodistribution evaluation of 166Ho–DTPA–SPION in normal rats. Journal of Radioanalytical and Nuclear Chemistry, 307(2), 1559–1566.
Ocampo‐García,, B. E., Ramírez,, F. d. M., Ferro‐Flores,, G., De León‐Rodríguez,, L. M., Santos‐Cuevas,, C. L., Morales‐Avila,, E., … Camacho‐López,, M. A. (2011). 99mTc‐labelled gold nanoparticles capped with HYNIC‐peptide/mannose for sentinel lymph node detection. Nuclear Medicine and Biology, 38(1), 1–11.
Oh,, J. Y., Kim,, H. S., Palanikumar,, L., Go,, E. M., Jana,, B., Park,, S. A., … Ryu,, J. H. (2018). Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nature Communications, 9(1), 4548. https://doi.org/10.1038/s41467-018-06979-4
Oroujeni,, M., Garousi,, J., Andersson,, K. G., Löfblom,, J., Mitran,, B., Orlova,, A., & Tolmachev,, V. (2018). Preclinical evaluation of [68Ga] Ga‐DFO‐ZEGFR:2377: A promising affibody‐based probe for noninvasive PET imaging of EGFR expression in tumors. Cell, 7(9), 141.
Oughton,, D. H., Hertel‐Aas,, T., Pellicer,, E., Mendoza,, E., & Joner,, E. J. (2008). Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1883–1887.
Overchuk,, M., & Zheng,, G. (2018). Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 156, 217–237. https://doi.org/10.1016/j.biomaterials.2017.10.024
Paik,, T., Chacko,, A.‐M., Mikitsh,, J. L., Friedberg,, J. S., Pryma,, D. A., & Murray,, C. B. (2015). Shape‐controlled synthesis of isotopic yttrium‐90‐labeled rare earth fluoride nanocrystals for multimodal imaging. ACS Nano, 9(9), 8718–8728.
Pang,, B., Zhao,, Y., Luehmann,, H., Yang,, X., Detering,, L., You,, M., … Ren,, Q. (2016). 64Cu‐doped PdCu@ Au tripods: A multifunctional nanomaterial for positron emission tomography and image‐guided photothermal cancer treatment. ACS Nano, 10(3), 3121–3131.
Panzarini,, E., Mariano,, S., Carata,, E., Mura,, F., Rossi,, M., & Dini,, L. (2018). Intracellular transport of silver and gold nanoparticles and biological responses: An update. International Journal of Molecular Sciences, 19(5), 1305.
Patra,, J. K., Das,, G., Fraceto,, L. F., Campos,, E. V. R., del Pilar Rodriguez‐Torres,, M., Acosta‐Torres,, L. S., … Sharma,, S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.
Patrick,, P. S., Bogart,, L. K., Macdonald,, T. J., Southern,, P., Powell,, M. J., Zaw‐Thin,, M., … Lythgoe,, M. F. (2019). Surface radio‐mineralisation mediates chelate‐free radiolabelling of iron oxide nanoparticles. Chemical Science, 10(9), 2592–2597.
Paudel,, K. S., Milewski,, M., Swadley,, C. L., Brogden,, N. K., Ghosh,, P., & Stinchcomb,, A. L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic Delivery, 1(1), 109–131. https://doi.org/10.4155/tde.10.16
Peer,, D., Karp,, J. M., Hong,, S., Farokhzad,, O. C., Margalit,, R., & Langer,, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387
Pellico,, J., Fernández‐Barahona,, I., Benito,, M., Gaitán‐Simón,, Á., Gutiérrez,, L., Ruiz‐Cabello,, J., & Herranz,, F. (2019). Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine: Nanotechnology, Biology and Medicine, 17, 26–35.
Pellico,, J., Lechuga‐Vieco,, A. V., Almarza,, E., Hidalgo,, A., Mesa‐Nunez,, C., Fernandez‐Barahona,, I., … Herranz,, F. (2017). In vivo imaging of lung inflammation with neutrophil‐specific (68)Ga nano‐radiotracer. Scientific Reports, 7(1), 13242. https://doi.org/10.1038/s41598-017-12829-y
Pellico,, J., Ruiz‐Cabello,, J., Saiz‐Alía,, M., del Rosario,, G., Caja,, S., Montoya,, M., … Galiana,, B. (2016). Fast synthesis and bioconjugation of 68Ga core‐doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media %26 Molecular Imaging, 11(3), 203–210.
Peltek,, O. O., Muslimov,, A. R., Zyuzin,, M. V., & Timin,, A. S. (2019). Current outlook on radionuclide delivery systems: From design consideration to translation into clinics. Journal of Nanobiotechnology, 17(1), 90.
Pérez‐Campaña,, C., Gómez‐Vallejo,, V., Puigivila,, M., Martín,, A., Calvo‐Fernández,, T., Moya,, S. E., … Llop,, J. (2013). Biodistribution of different sized nanoparticles assessed by positron emission tomography: A general strategy for direct activation of metal oxide particles. ACS Nano, 7(4), 3498–3505.
Pérez‐Campaña,, C., Sansaloni,, F., Gómez‐Vallejo,, V., Baz,, Z., Martin,, A., Moya,, S. E., … Llop,, J. (2014). Production of 18F‐labeled titanium dioxide nanoparticles by proton irradiation for biodistribution and biological fate studies in rats. Particle %26 Particle Systems Characterization, 31(1), 134–142.
Polyak,, A., Nagy,, L. N., Mihaly,, J., Görres,, S., Wittneben,, A., Leiter,, I., … Zrínyi,, M. (2017). Preparation and 68Ga‐radiolabeling of porous zirconia nanoparticle platform for PET/CT‐imaging guided drug delivery. Journal of Pharmaceutical and Biomedical Analysis, 137, 146–150.
Pospisilova,, M., Zapotocky,, V., Nesporova,, K., Laznicek,, M., Laznickova,, A., Zidek,, O., … Velebny,, V. (2017). Preparation and biodistribution of 59Fe‐radiolabelled iron oxide nanoparticles. Journal of Nanoparticle Research, 19(2), 80.
Price,, E. W., & Orvig,, C. (2014). Matching chelators to radiometals for radiopharmaceuticals. Chemical Society Reviews, 43(1), 260–290.
Qiu,, S., Zeng,, J., Hou,, Y., Chen,, L., Ge,, J., Wen,, L., … Gao,, M. (2018). Detection of lymph node metastasis with near‐infrared upconversion luminescent nanoprobes. Nanoscale, 10(46), 21772–21781.
Radović,, M., Calatayud,, M. P., Goya,, G. F., Ibarra,, M. R., Antić,, B., Spasojević,, V., … Vranješ‐Đurić,, S. (2015). Preparation and in vivo evaluation of multifunctional 90Y‐labeled magnetic nanoparticles designed for cancer therapy. Journal of Biomedical Materials Research Part A, 103(1), 126–134.
Radović,, M., Vranješ‐Đurić,, S., Nikolić,, N., Janković,, D., Goya,, G. F., Torres,, T. E., … Antić,, B. (2012). Development and evaluation of 90Y‐labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy. Journal of Materials Chemistry, 22(45), 24017–24025. https://doi.org/10.1039/C2JM35593K
Ramanathan,, S., Archunan,, G., Sivakumar,, M., Tamil Selvan,, S., Fred,, A. L., Kumar,, S., … Padmanabhan,, P. (2018). Theranostic applications of nanoparticles in neurodegenerative disorders. International Journal of Nanomedicine, 13, 5561–5576. https://doi.org/10.2147/IJN.S149022
Rambanapasi,, C., Barnard,, N., Grobler,, A., Buntting,, H., Sonopo,, M., Jansen,, D., … Zeevaart,, J. R. (2015). Dual radiolabeling as a technique to track nanocarriers: The case of gold nanoparticles. Molecules, 20(7), 12863–12879.
Riedinger,, A., Avellini,, T., Curcio,, A., Asti,, M., Xie,, Y., Tu,, R., … Iori,, M. (2015). Post‐synthesis incorporation of 64Cu in CuS nanocrystals to radiolabel photothermal probes: A feasible approach for clinics. Journal of the American Chemical Society, 137(48), 15145–15151.
Rojas,, J., Woodward,, J., Chen,, N., Rondinone,, A., Castano,, C., & Mirzadeh,, S. (2015). Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nuclear Medicine and Biology, 42(7), 614–620.
Rojas,, S., Gispert,, J. D., Abad,, S., Buaki‐Sogo,, M., Victor,, V. M., Garcia,, H., & Herance,, J. R. l. (2012). In vivo biodistribution of amino‐functionalized ceria nanoparticles in rats using positron emission tomography. Molecular Pharmaceutics, 9(12), 3543–3550.
Ruggiero,, A., Villa,, C. H., Bander,, E., Rey,, D. A., Bergkvist,, M., Batt,, C. A., … McDevitt,, M. R. (2010). Paradoxical glomerular filtration of carbon nanotubes. Proceedings of the National Academy of Sciences, 107(27), 12369–12374.
Ruiz‐de‐Angulo,, A., Zabaleta,, A., Gómez‐Vallejo,, V., Llop,, J., & Mareque‐Rivas,, J. C. (2016). Microdosed lipid‐coated 67Ga‐magnetite enhances antigen‐specific immunity by image tracked delivery of antigen and CpG to lymph nodes. ACS Nano, 10(1), 1602–1618.
Safavi‐Sohi,, R., Maghari,, S., Raoufi,, M., Jalali,, S. A., Hajipour,, M. J., Ghassempour,, A., & Mahmoudi,, M. (2016). Bypassing protein corona issue on active targeting: Zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Applied Materials %26 Interfaces, 8(35), 22808–22818. https://doi.org/10.1021/acsami.6b05099
Saha,, K., Kim,, S. T., Yan,, B., Miranda,, O. R., Alfonso,, F. S., Shlosman,, D., & Rotello,, V. M. (2013). Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small, 9(2), 300–305.
Sakr,, T. M., Khowessah,, O., Motaleb,, M., El‐Bary,, A. A., El‐Kolaly,, M., & Swidan,, M. M. (2018). I‐131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. European Journal of Pharmaceutical Sciences, 122, 239–245.
Salvanou,, E. A., Bouziotis,, P., & Tsoukalas,, C. (2018). Radiolabeled nanoparticles in nuclear oncology. Advanced Nano Research, 1(1), 38–55.
Same,, S., Aghanejad,, A., Akbari Nakhjavani,, S., Barar,, J., & Omidi,, Y. (2016). Radiolabeled theranostics: Magnetic and gold nanoparticles. BioImpacts: BI, 6(3), 169–181. https://doi.org/10.15171/bi.2016.23
Sandiford,, L., Phinikaridou,, A., Protti,, A., Meszaros,, L. K., Cui,, X., Yan,, Y., … Botnar,, R. M. (2013). Bisphosphonate‐anchored PEGylation and radiolabeling of superparamagnetic iron oxide: Long‐circulating nanoparticles for in vivo multimodal (T1 MRI‐SPECT) imaging. ACS Nano, 7(1), 500–512.
Schaffler,, M., Sousa,, F., Wenk,, A., Sitia,, L., Hirn,, S., Schleh,, C., … Krol,, S. (2014). Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 35(10), 3455–3466. https://doi.org/10.1016/j.biomaterials.2013.12.100
Schieda,, N., Blaichman,, J. I., Costa,, A. F., Glikstein,, R., Hurrell,, C., James,, M., … Tsampalieros,, A. (2018). Gadolinium‐based contrast agents in kidney disease: A comprehensive review and clinical practice guideline issued by the Canadian Association of Radiologists. Canadian Journal of Kidney Health and Disease, 5, 2054358118778573.
Schleh,, C., Holzwarth,, U., Hirn,, S., Wenk,, A., Simonelli,, F., Schäffler,, M., … Kreyling,, W. G. (2013). Biodistribution of inhaled gold nanoparticles in mice and the influence of surfactant protein D. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 26(1), 24–30.
Schleh,, C., Semmler‐Behnke,, M., Lipka,, J., Wenk,, A., Hirn,, S., Schäffler,, M., … Kreyling,, W. G. (2012). Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 6(1), 36–46.
Schrand,, A. M., Rahman,, M. F., Hussain,, S. M., Schlager,, J. J., Smith,, D. A., & Syed,, A. F. (2010). Metal‐based nanoparticles and their toxicity assessment. WIREs Nanomedicine and Nanobiotechnology, 2(5), 544–568. https://doi.org/10.1002/wnan.103
Shanehsazzadeh,, S., Oghabian,, M. A., Lahooti,, A., Abdollahi,, M., Haeri,, S. A., Amanlou,, M., … Allen,, B. J. (2013). Estimated background doses of [67Ga]‐DTPA‐USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nuclear Medicine Communications, 34(9), 915–925.
Shao,, X., Zhang,, H., Rajian,, J. R., Chamberland,, D. L., Sherman,, P. S., Quesada,, C. A., … Wang,, X. (2011). 125I‐labeled gold nanorods for targeted imaging of inflammation. ACS Nano, 5(11), 8967–8973.
Sharma,, H., Mishra,, P. K., Talegaonkar,, S., & Vaidya,, B. (2015). Metal nanoparticles: A theranostic nanotool against cancer. Drug Discovery Today, 20(9), 1143–1151.
Sharma,, R., Xu,, Y., Kim,, S. W., Schueller,, M. J., Alexoff,, D., Smith,, S. D., … Schlyer,, D. (2013). Carbon‐11 radiolabeling of iron‐oxide nanoparticles for dual‐modality PET/MR imaging. Nanoscale, 5(16), 7476–7483.
Shen,, S., Jiang,, D., Cheng,, L., Chao,, Y., Nie,, K., Dong,, Z., … Cai,, W. (2017). Renal‐clearable ultrasmall coordination polymer nanodots for chelator‐free 64Cu‐labeling and imaging‐guided enhanced radiotherapy of cancer. ACS Nano, 11(9), 9103–9111.
Shi,, S., Fliss,, B. C., Gu,, Z., Zhu,, Y., Hong,, H., Valdovinos,, H. F., … Chen,, F. (2015). Chelator‐free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Scientific Reports, 5, 16930.
Shi,, S., Xu,, C., Yang,, K., Goel,, S., Valdovinos,, H. F., Luo,, H., … Chen,, F. (2017). Chelator‐free radiolabeling of nanographene: Breaking the stereotype of chelation. Angewandte Chemie International Edition, 56(11), 2889–2892.
Shreffler,, J. W., Pullan,, J. E., Dailey,, K. M., Mallik,, S., & Brooks,, A. E. (2019). Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification. International Journal of Molecular Sciences, 20(23), 6056–6081 https://doi.org/10.3390/ijms20236056
Shukla,, R., Bansal,, V., Chaudhary,, M., Basu,, A., Bhonde,, R. R., & Sastry,, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21(23), 10644–10654. https://doi.org/10.1021/la0513712
Silva,, F., Zambre,, A., Campello,, M. P. C., Gano,, L., Santos,, I., Ferraria,, A. M., … Paulo,, A. n. (2016). Interrogating the role of receptor‐mediated mechanisms: Biological fate of peptide‐functionalized radiolabeled gold nanoparticles in tumor mice. Bioconjugate Chemistry, 27(4), 1153–1164.
Simonelli,, F., Marmorato,, P., Abbas,, K., Ponti,, J., Kozempel,, J., Holzwarth,, U., … Rossi,, F. (2011). Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE Transactions on Nanobioscience, 10(1), 44–50.
Sindhwani,, S., Syed,, A. M., Ngai,, J., Kingston,, B. R., Maiorino,, L., Rothschild,, J., … Chan,, W. C. W. (2020). The entry of nanoparticles into solid tumours. Nature Materials, 19, 566–575.
Smith,, B. R., & Gambhir,, S. S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117(3), 901–986.
Soenen,, S. J., Parak,, W. J., Rejman,, J., & Manshian,, B. (2015). (Intra)cellular stability of inorganic nanoparticles: Effects on cytotoxicity, particle functionality, and biomedical applications. Chemical Reviews, 115(5), 2109–2135. https://doi.org/10.1021/cr400714j
Soica,, C., Pinzaru,, I., Trandafirescu,, C., Andrica,, F., Danciu,, C., Mioc,, M., … Dehelean,, C. (2018). Silver‐, gold‐, and iron‐based metallic nanoparticles: Biomedical applications as theranostic agents for cancer. In Grumezescu, A. M. (Ed.), Design of nanostructures for theranostics applications (pp. 161–242). Oxford: Elsevier.
Soltani,, F., Samani,, A. B., Sadeghi,, M., Arani,, S. S., & Yavari,, K. (2015). Production of cerium‐141 using ceria and nanoceria powder: A potential radioisotope for simultaneous therapeutic and diagnostic applications. Journal of Radioanalytical and Nuclear Chemistry, 303(1), 385–391.
Song,, L., Falzone,, N., & Vallis,, K. A. (2016). EGF‐coated gold nanoparticles provide an efficient nano‐scale delivery system for the molecular radiotherapy of EGFR‐positive cancer. International Journal of Radiation Biology, 92(11), 716–723.
Speisky,, H., López‐Alarcón,, C., Olea‐Azar,, C., Sandoval‐Acuña,, C., & Aliaga,, M. E. (2011). Role of superoxide anions in the redox changes affecting the physiologically occurring Cu(II)‐glutathione complex. Bioinorganic Chemistry and Applications, 2011, 674149. https://doi.org/10.1155/2011/674149
Su,, N., Dang,, Y., Liang,, G., & Liu,, G. (2015). Iodine‐125‐labeled cRGD‐gold nanoparticles as tumor‐targeted radiosensitizer and imaging agent. Nanoscale Research Letters, 10(1), 160.
Suk,, J. S., Xu,, Q., Kim,, N., Hanes,, J., & Ensign,, L. M. (2016). PEGylation as a strategy for improving nanoparticle‐based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Pt A), 28–51. https://doi.org/10.1016/j.addr.2015.09.012
Sun,, X., Cai,, W., & Chen,, X. (2015). Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Accounts of Chemical Research, 48(2), 286–294.
Sun,, Z., Cheng,, K., Wu,, F., Liu,, H., Ma,, X., Su,, X., … Cheng,, Z. (2016). Robust surface coating for a fast, facile fluorine‐18 labeling of iron oxide nanoparticles for PET/MR dual‐modality imaging. Nanoscale, 8(47), 19644–19653.
Tang,, Q.‐S., Chen,, D.‐Z., Xue,, W.‐Q., Xiang,, J.‐Y., Gong,, Y.‐C., Zhang,, L., & Guo,, C.‐Q. (2011). Preparation and biodistribution of 188Re‐labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re‐folate‐CDDP/HSA MNPs) in vivo. International Journal of Nanomedicine, 6, 3077.
Tang,, Y., Zhang,, C., Wang,, J., Lin,, X., Zhang,, L., Yang,, Y., … Yang,, G. Y. (2015). MRI/SPECT/fluorescent tri‐modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Advanced Functional Materials, 25(7), 1024–1034.
Tao,, Y., Zhu,, L., Zhao,, Y., Yi,, X., Zhu,, L., Ge,, F., … Yang,, K. (2018). Nano‐graphene oxide‐manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy. Nanoscale, 10(11), 5114–5123.
Tenzer,, S., Docter,, D., Kuharev,, J., Musyanovych,, A., Fetz,, V., Hecht,, R., … Stauber,, R. H. (2013). Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 8(10), 772–781. https://doi.org/10.1038/nnano.2013.181
Thakor,, A. S., & Gambhir,, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. https://doi.org/10.3322/caac.21199
Thorek,, D. L., Ulmert,, D., Diop,, N.‐F. M., Lupu,, M. E., Doran,, M. G., Huang,, R., … Grimm,, J. (2014). Non‐invasive mapping of deep‐tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nature Communications, 5(1), 1–9.
Tian,, L., Wang,, Y., Sun,, L., Xu,, J., Chao,, Y., Yang,, K., … Liu,, Z. (2019). Cerenkov luminescence‐induced NO release from 32P‐labeled ZnFe(CN)5NO nanosheets to enhance radioisotope‐immunotherapy. Matter, 1(4), 1061–1076.
Tian,, L., Yi,, X., Dong,, Z., Xu,, J., Liang,, C., Chao,, Y., … Liu,, Z. (2018). Calcium bisphosphonate nanoparticles with chelator‐free radiolabeling to deplete tumor‐associated macrophages for enhanced cancer radioisotope therapy. ACS Nano, 12(11), 11541–11551.
Tian,, M., Lu,, W., Zhang,, R., Xiong,, C., Ensor,, J., Nazario,, J., … Miller,, J. (2013). Tumor uptake of hollow gold nanospheres after intravenous and intra‐arterial injection: PET/CT study in a rabbit VX2 liver cancer model. Molecular Imaging and Biology, 15(5), 614–624.
Tong,, X., Wang,, Z., Sun,, X., Song,, J., Jacobson,, O., Niu,, G., … Chen,, X. (2016). Size dependent kinetics of gold nanorods in EPR mediated tumor delivery. Theranostics, 6(12), 2039–2051.
Torres Martin de Rosales, R., Tavaré,, R., Glaria,, A., Varma,, G., Protti,, A., & Blower,, P. J. (2011). 99mTc‐bisphosphonate‐iron oxide nanoparticle conjugates for dual‐modality biomedical imaging. Bioconjugate Chemistry, 22(3), 455–465.
Torres Martin de Rosales, R., Tavaré,, R., Paul,, R. L., Jauregui‐Osoro,, M., Protti,, A., Glaria,, A., … Blower,, P. J. (2011). Synthesis of 64CuII‐bis (dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual‐modality PET‐MRI agent. Angewandte Chemie International Edition, 50(24), 5509–5513.
Travis,, L. B., Hauptmann,, M., Gaul,, L. K., Storm,, H. H., Goldman,, M. B., Nyberg,, U., … Andersson,, M. (2003). Site‐specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast. Radiation Research, 160(6), 691–706. https://doi.org/10.1667/rr3095
Trofimov,, A. D., Ivanova,, A. A., Zyuzin,, M. V., & Timin,, A. S. (2018). Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics, 10(4), 167.
Unak,, G., Ozkaya,, F., Medine,, E. I., Kozgus,, O., Sakarya,, S., Bekis,, R., … Timur,, S. (2012). Gold nanoparticle probes: Design and in vitro applications in cancer cell culture. Colloids and Surfaces B: Biointerfaces, 90, 217–226.
Venkatachalam,, M. A., & Rennke,, H. G. (1978). The structural and molecular basis of glomerular filtration. Circulation Research, 43(3), 337–347. https://doi.org/10.1161/01.res.43.3.337
Ventola,, C. L. (2017). Progress in nanomedicine: Approved and investigational Nanodrugs. P%26T: A Peer‐Reviewed Journal for Formulary Management, 42(12), 742–755.
Vilchis‐Juárez,, A., Ferro‐Flores,, G., Santos‐Cuevas,, C., Morales‐Avila,, E., Ocampo‐García,, B., Díaz‐Nieto,, L., … Gómez‐Oliván,, L. (2014). Molecular targeting radiotherapy with cyclo‐RGDFK (C) peptides conjugated to 177Lu‐labeled gold nanoparticles in tumor‐bearing mice. Journal of Biomedical Nanotechnology, 10(3), 393–404.
Wall,, M. A., Shaffer,, T. M., Harmsen,, S., Tschaharganeh,, D.‐F., Huang,, C.‐H., Lowe,, S. W., … Kircher,, M. F. (2017). Chelator‐free radiolabeling of SERRS nanoparticles for whole‐body PET and intraoperative Raman imaging. Theranostics, 7(12), 3068–3077.
Wallace,, D. F. (2016). The regulation of iron absorption and homeostasis. The Clinical Biochemist Reviews, 37(2), 51–62.
Wang,, H., Kumar,, R., Nagesha,, D., Duclos,, R. I., Jr., Sridhar,, S., & Gatley,, S. J. (2015). Integrity of 111In‐radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nuclear Medicine and Biology, 42(1), 65–70.
Wang,, J., Zhao,, H., Zhou,, Z., Zhou,, P., Yan,, Y., Wang,, M., … Yang,, S. (2016). MR/SPECT imaging guided photothermal therapy of tumor‐targeting Fe@Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Applied Materials %26 Interfaces, 8(31), 19872–19882.
Wang,, S., Lin,, J., Wang,, Z., Zhou,, Z., Bai,, R., Lu,, N., … Fan,, W. (2017). Core–satellite polydopamine–gadolinium–metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Advanced Materials, 29(35), 1701013.
Wang,, Y., Liu,, Y., Luehmann,, H., Xia,, X., Brown,, P., Jarreau,, C., … Xia,, Y. (2012). Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano, 6(7), 5880–5888.
Wang,, Y., Liu,, Y., Luehmann,, H., Xia,, X., Wan,, D., Cutler,, C., & Xia,, Y. (2013). Radioluminescent gold nanocages with controlled radioactivity for real‐time in vivo imaging. Nano Letters, 13(2), 581–585.
Wang,, Y., Wu,, Y., Liu,, Y., Shen,, J., Lv,, L., Li,, L., … Zhang,, L. W. (2016). BSA‐mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 26(29), 5335–5344.
Wilhelm,, S., Tavares,, A. J., Dai,, Q., Ohta,, S., Audet,, J., Dvorak,, H. F., & Chan,, W. C. W. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5), 1–12. https://doi.org/10.1038/natrevmats.2016.14
Wong,, O. A., Hansen,, R. J., Ni,, T. W., Heinecke,, C. L., Compel,, W. S., Gustafson,, D. L., & Ackerson,, C. J. (2013). Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. Nanoscale, 5(21), 10525–10533. https://doi.org/10.1039/c3nr03121g
Woodward,, J., Kennel,, S. J., Stuckey,, A., Osborne,, D., Wall,, J., Rondinone,, A. J., … Mirzadeh,, S. (2011). LaPO4 nanoparticles doped with actinium‐225 that partially sequester daughter radionuclides. Bioconjugate Chemistry, 22(4), 766–776.
Workgroup,, N. (2007). A group of EPA`s Science Policy Council. “EPA Nanotechnology Whitepaper.”
Xie,, H., Goins,, B., Bao,, A., Wang,, Z. J., & Phillips,, W. T. (2012). Effect of intratumoral administration on biodistribution of 64Cu‐labeled nanoshells. International Journal of Nanomedicine, 7, 2227.
Xie,, H., Wang,, Z. J., Bao,, A., Goins,, B., & Phillips,, W. T. (2010). In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. International Journal of Pharmaceutics, 395(1–2), 324–330.
Xie,, J., Chen,, K., Huang,, J., Lee,, S., Wang,, J., Gao,, J., … Chen,, X. (2010). PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 31(11), 3016–3022.
Xie,, X., Liao,, J., Shao,, X., Li,, Q., & Lin,, Y. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Scientific Reports, 7(1), 1–9.
Xu,, J., Peng,, C., Yu,, M., & Zheng,, J. (2017). Renal clearable noble metal nanoparticles: Photoluminescence, elimination, and biomedical applications. WIREs: Nanomedicine and Nanobiotechnology, 9(5), e1453.
Xu,, Z., Wang,, Y., Han,, J., Xu,, Q., Ren,, J., Xu,, J., … Chai,, Z. (2018). Noninvasive multimodal imaging of osteosarcoma and lymph nodes using a 99mTc‐labeled biomineralization nanoprobe. Analytical Chemistry, 90(7), 4529–4534.
Yang,, B. Y., Moon,, S.‐H., Seelam,, S. R., Jeon,, M. J., Lee,, Y.‐S., Lee,, D. S., … Jeong,, J. M. (2015). Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine, 10(12), 1899–1910.
Yang,, G., Phua,, S. Z. F., Bindra,, A. K., & Zhao,, Y. (2019). Degradability and clearance of inorganic nanoparticles for biomedical applications. Advanced Materials, 31(10), e1805730. https://doi.org/10.1002/adma.201805730
Yang,, M., Cheng,, K., Qi,, S., Liu,, H., Jiang,, Y., Jiang,, H., … Cheng,, Z. (2013). Affibody modified and radiolabeled gold–iron oxide hetero‐nanostructures for tumor PET, optical and MR imaging. Biomaterials, 34(11), 2796–2806.
Yang,, M., Huo,, D., Gilroy,, K. D., Sun,, X., Sultan,, D., Luehmann,, H., … Liu,, Y. (2017). Facile synthesis of 64Cu‐doped Au nanocages for positron emission tomography imaging. ChemNanoMat, 3(1), 44–50.
Yang,, S., Sun,, S., Zhou,, C., Hao,, G., Liu,, J., Ramezani,, S., … Zheng,, J. (2015). Renal clearance and degradation of glutathione‐coated copper nanoparticles. Bioconjugate Chemistry, 26(3), 511–519. https://doi.org/10.1021/acs.bioconjchem.5b00003
Yang,, X., Hong,, H., Grailer,, J. J., Rowland,, I. J., Javadi,, A., Hurley,, S. A., … Nickles,, R. J. (2011). cRGD‐functionalized, DOX‐conjugated, and 64Cu‐labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32(17), 4151–4160.
Ye,, D., Sultan,, D., Zhang,, X., Yue,, Y., Heo,, G. S., Kothapalli,, S. V., … Liu,, Y. (2018). Focused ultrasound‐enabled delivery of radiolabeled nanoclusters to the pons. Journal of Controlled Release, 283, 143–150.
Yeh,, T.‐K., Chen,, J.‐K., Lin,, C.‐H., Yang,, M.‐H., Yang,, C. S., Chou,, F.‐I., … Tsai,, M.‐H. (2012). Kinetics and tissue distribution of neutron‐activated zinc oxide nanoparticles and zinc nitrate in mice: Effects of size and particulate nature. Nanotechnology, 23(8), 085102.
Yeh,, Y.‐C., Creran,, B., & Rotello,, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880.
Yoo,, J., Park,, C., Yi,, G., Lee,, D., & Koo,, H. (2019). Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 11, 640.
Yook,, S., Cai,, Z., Lu,, Y., Winnik,, M. A., Pignol,, J.‐P., & Reilly,, R. M. (2015). Radiation nanomedicine for EGFR‐positive breast cancer: Panitumumab‐modified gold nanoparticles complexed to the β‐particle‐emitter, 177Lu. Molecular Pharmaceutics, 12(11), 3963–3972.
Yook,, S., Cai,, Z., Lu,, Y., Winnik,, M. A., Pignol,, J.‐P., & Reilly,, R. M. (2016). Intratumorally injected 177Lu‐labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. Journal of Nuclear Medicine, 57(6), 936–942.
Yook,, S., Lu,, Y., Jeong,, J. J., Cai,, Z., Tong,, L., Alwarda,, R., … Reilly,, R. M. (2016). Stability and biodistribution of thiol‐functionalized and 177Lu‐labeled metal chelating polymers bound to gold nanoparticles. Biomacromolecules, 17(4), 1292–1302.
Yu,, M., & Zheng,, J. (2015). Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano, 9(7), 6655–6674. https://doi.org/10.1021/acsnano.5b01320
Yu,, S. S., Lau,, C. M., Thomas,, S. N., Jerome,, W. G., Maron,, D. J., Dickerson,, J. H., … Giorgio,, T. D. (2012). Size‐ and charge‐dependent non‐specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine, 7, 799–813. https://doi.org/10.2147/IJN.S28531
Yuan,, H., Wilks,, M. Q., Normandin,, M. D., El Fakhri,, G., Kaittanis,, C., & Josephson,, L. (2018). Heat‐induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nature Protocols, 13(2), 392–412.
Zarschler,, K., Rocks,, L., Licciardello,, N., Boselli,, L., Polo,, E., Garcia,, K. P., … Dawson,, K. A. (2016). Ultrasmall inorganic nanoparticles: State‐of‐the‐art and perspectives for biomedical applications. Nanomedicine, 12(6), 1663–1701. https://doi.org/10.1016/j.nano.2016.02.019
Zavaleta,, C. L., Hartman,, K. B., Miao,, Z., James,, M. L., Kempen,, P., Thakor,, A. S., … Gambhir,, S. S. (2011). Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small, 7(15), 2232–2240.
Zhan,, Y., Ai,, F., Chen,, F., Valdovinos,, H. F., Orbay,, H., Sun,, H., … Cai,, W. (2016). Intrinsically zirconium‐89 labeled Gd2O2S: Eu nanoprobes for in vivo positron emission tomography and gamma‐ray‐induced radioluminescence imaging. Small, 12(21), 2872–2876.
Zhan,, Y., Ehlerding,, E. B., Shi,, S., Graves,, S. A., Goel,, S., Engle,, J. W., … Cai,, W. (2018). Intrinsically zirconium‐89‐labeled manganese oxide nanoparticles for in vivo dual‐modality positron emission tomography and magnetic resonance imaging. Journal of Biomedical Nanotechnology, 14(5), 900–909.
Zhan,, Y., Shi,, S., Ehlerding,, E. B., Graves,, S. A., Goel,, S., Engle,, J. W., … Cai,, W. (2017). Radiolabeled, antibody‐conjugated manganese oxide nanoparticles for tumor vasculature targeted positron emission tomography and magnetic resonance imaging. ACS Applied Materials %26 Interfaces, 9(44), 38304–38312.
Zhang,, G., Yang,, Z., Lu,, W., Zhang,, R., Huang,, Q., Tian,, M., … Li,, C. (2009). Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol‐coated gold nanoparticles in tumor‐xenografted mice. Biomaterials, 30(10), 1928–1936.
Zhang,, J., Zhang,, J., Xu,, X., Lu,, L., Hu,, S., Liu,, C., … Shi,, L. (2020). Evaluation of radiation dosimetry of 99mTc‐HYNIC‐PSMA and imaging in prostate cancer. Scientific Reports, 10(1), 1–9.
Zhang,, P., He,, X., Ma,, Y., Lu,, K., Zhao,, Y., & Zhang,, Z. (2012). Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere, 89(5), 530–535.
Zhang,, S., Gao,, H., & Bao,, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano, 9(9), 8655–8671. https://doi.org/10.1021/acsnano.5b03184
Zhang,, X., Yao,, M., Chen,, M., Li,, L., Dong,, C., Hou,, Y., … Wang,, F. (2016). Hyaluronic acid‐coated silver nanoparticles as a nanoplatform for in vivo imaging applications. ACS Applied Materials %26 Interfaces, 8(39), 25650–25653.
Zhang,, Y., Hong,, H., Engle,, J. W., Bean,, J., Yang,, Y., Leigh,, B. R., … Cai,, W. (2011). Positron emission tomography imaging of CD105 expression with a 64Cu‐labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One, 6(12), 1–7.
Zhang,, Y. N., Poon,, W., Tavares,, A. J., McGilvray,, I. D., & Chan,, W. C. W. (2016). Nanoparticle‐liver interactions: Cellular uptake and hepatobiliary elimination. Journal of Controlled Release, 240, 332–348. https://doi.org/10.1016/j.jconrel.2016.01.020
Zhang,, Z. (2016). Radiolabeling of nanoparticles. In Zhao,, Y., Zhang,, Z., & Feng,, W. (Eds.), Toxicology of Nanomaterials (pp. 69–94). Weinheim,Germany: Wiley‐VCH.
Zhang,, Z., He,, X., Zhang,, H., Ma,, Y., Zhang,, P., Ding,, Y., & Zhao,, Y. (2011). Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 3(8), 816–822.
Zhao,, L., Wen,, S., Zhu,, M., Li,, D., Xing,, Y., Shen,, M., … Zhao,, J. (2018). 99mTc‐labelled multifunctional polyethylenimine‐entrapped gold nanoparticles for dual mode SPECT and CT imaging. Artificial Cells, Nanomedicine, and Biotechnology, 46(Suppl. 1), 488–498.
Zhao,, Y., Detering,, L., Sultan,, D., Cooper,, M. L., You,, M., Cho,, S., … Liu,, Y. (2016). Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano, 10(6), 5959–5970. https://doi.org/10.1021/acsnano.6b01326
Zhao,, Y., Pang,, B., Luehmann,, H., Detering,, L., Yang,, X., Sultan,, D., … Xia,, Y. (2016). Gold nanoparticles doped with 199Au atoms and their use for targeted cancer imaging by SPECT. Advanced Healthcare Materials, 5(8), 928–935.
Zhao,, Y., Sultan,, D., Detering,, L., Cho,, S., Sun,, G., Pierce,, R., … Liu,, Y. (2014). Copper‐64‐alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angewandte Chemie International Edition, 53(1), 156–159.
Zhou,, B., Zheng,, L., Peng,, C., Li,, D., Li,, J., Wen,, S., … Shi,, X. (2014). Synthesis and characterization of PEGylated polyethylenimine‐entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Applied Materials %26 Interfaces, 6(19), 17190–17199.
Zhou,, C., Hao,, G., Thomas,, P., Liu,, J., Yu,, M., Sun,, S., … Zheng,, J. (2012). Near‐infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angewandte Chemie International Edition, 51(40), 10118–10122.
Zhou,, J., Yu,, M., Sun,, Y., Zhang,, X., Zhu,, X., Wu,, Z., … Li,, F. (2011). Fluorine‐18‐labeled Gd3+/Yb3+/Er3+ co‐doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials, 32(4), 1148–1156.
Zhou,, M., Zhang,, R., Huang,, M., Lu,, W., Song,, S., Melancon,, M. P., … Li,, C. (2010). A chelator‐free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro‐PET/CT imaging and photothermal ablation therapy. Journal of the American Chemical Society, 132(43), 15351–15358.
Zhou,, M., Zhao,, J., Tian,, M., Song,, S., Zhang,, R., Gupta,, S., … Li,, C. (2015). Radio‐photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale, 7(46), 19438–19447.
Zhu,, J., Chin,, J., Wängler,, C., Wängler,, B., Lennox,, R. B., & Schirrmacher,, R. (2014). Rapid 18F‐labeling and loading of PEGylated gold nanoparticles for in vivo applications. Bioconjugate Chemistry, 25(6), 1143–1150.
Zhu,, J., Li,, H., Xiong,, Z., Shen,, M., Conti,, P. S., Shi,, X., & Chen,, K. (2018). Polyethyleneimine‐coated manganese oxide nanoparticles for targeted tumor PET/MR imaging. ACS Applied Materials %26 Interfaces, 10(41), 34954–34964.
Zhu,, J., Zhang,, B., Tian,, J., Wang,, J., Chong,, Y., Wang,, X., … Ge,, C. (2015). Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single‐photon emission computed tomography dual‐modality imaging. Nanoscale, 7(8), 3392–3395.
Zuykov,, M., Pelletier,, E., & Demers,, S. (2011). Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis. Marine Environmental Research, 71(1), 17–21.