Adeel,, M., Duzagac,, F., Canzonieri,, V., & Rizzolio,, F. (2020). Self‐therapeutic nanomaterials for cancer therapy: A review. ACS Applied Nano Materials, 3(6), 4962–4971.
Alizadeh,, D., White,, E. E., Sanchez,, T. C., Liu,, S., Zhang,, L., Badie,, B., & Berlin,, J. M. (2018). Immunostimulatory CpG on carbon nanotubes selectively inhibits migration of brain tumor cells. Bioconjugate Chemistry, 29(5), 1659–1668.
Almeida,, J. P. M., Lin,, A. Y., Figueroa,, E. R., Foster,, A. E., & Drezek,, R. A. (2015). In vivo gold nanoparticle delivery of peptide vaccine induces anti‐tumor immune response in prophylactic and therapeutic tumor models. Small, 11(12), 1453–1459.
Anas,, A., Akita,, H., Harashima,, H., Itoh,, T., Ishikawa,, M., & Biju,, V. (2008). Photosensitized breakage and damage of DNA by CdSe− ZnS quantum dots. The Journal of Physical Chemistry B, 112(32), 10005–10011.
Arvizo,, R. R., Rana,, S., Miranda,, O. R., Bhattacharya,, R., Rotello,, V. M., & Mukherjee,, P. (2011). Mechanism of anti‐angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology and Medicine, 7(5), 580–587.
Arvizo,, R. R., Saha,, S., Wang,, E., Robertson,, J. D., Bhattacharya,, R., & Mukherjee,, P. (2013). Inhibition of tumor growth and metastasis by a self‐therapeutic nanoparticle. Proceedings of the National Academy of Sciences, 110(17), 6700–6705.
Baharara,, J., Namvar,, F., Mousavi,, M., Ramezani,, T., & Mohamad,, R. (2014). Anti‐angiogenesis effect of biogenic silver nanoparticles synthesized using saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 19(9), 13498–13508.
Bai,, D.‐P., Zhang,, X.‐F., Zhang,, G.‐L., Huang,, Y.‐F., & Gurunathan,, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International Journal of Nanomedicine, 12, 6521–6535.
Bastús,, N. G., Sánchez‐Tilló,, E., Pujals,, S., Farrera,, C., López,, C., Giralt,, E., … Puntes,, V. (2009). Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano, 3(6), 1335–1344.
Battogtokh,, G., Choi,, Y. S., Kang,, D. S., Park,, S. J., Shim,, M. S., Huh,, K. M., … Kang,, H. C. (2018). Mitochondria‐targeting drug conjugates for cytotoxic, anti‐oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharmaceutica Sinica B, 8(6), 862–880.
Bear,, A. S., Kennedy,, L. C., Young,, J. K., Perna,, S. K., Almeida,, J. P. M., Lin,, A. Y., … Foster,, A. E. (2013). Elimination of metastatic melanoma using gold nanoshell‐enabled photothermal therapy and adoptive T cell transfer. PLoS One, 8(7), e69073.
Bhattacharya,, R., & Mukherjee,, P. (2008). Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 60(11), 1289–1306.
Bhattacharya,, R., Mukherjee,, P., Xiong,, Z., Atala,, A., Soker,, S., & Mukhopadhyay,, D. (2004). Gold nanoparticles inhibit VEGF165‐induced proliferation of HUVEC cells. Nano Letters, 4(12), 2479–2481.
Bhattacharya,, R., Patra,, C. R., Verma,, R., Kumar,, S., Greipp,, P. R., & Mukherjee,, P. (2007). Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Advanced Materials, 19(5), 711–716.
Boca,, S. C., Potara,, M., Gabudean,, A.‐M., Juhem,, A., Baldeck,, P. L., & Astilean,, S. (2011). Chitosan‐coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311(2), 131–140.
Boelens,, J., Lust,, S., Offner,, F., Bracke,, M. E., & Vanhoecke,, B. W. (2007). The endoplasmic reticulum: A target for new anticancer drugs. In Vivo, 21(2), 215–226.
Borkowska,, M., Siek,, M., Kolygina,, D. V., Sobolev,, Y. I., Lach,, S., Kumar,, S., … Grzybowski,, B. A. (2020). Targeted crystallization of mixed‐charge nanoparticles in lysosomes induces selective death of cancer cells. Nature Nanotechnology, 15(4), 331–341.
Buttacavoli,, M., Albanese,, N. N., Di Cara,, G., Alduina,, R., Faleri,, C., Gallo,, M., … Baldi,, F. (2018). Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation. Oncotarget, 9(11), 9685.
Calixto,, G., Bernegossi,, J., de Freitas,, L., Fontana,, C., & Chorilli,, M. (2016). Nanotechnology‐based drug delivery systems for photodynamic therapy of cancer: A review. Molecules, 21(3), 342.
Caputo,, F., De Nicola,, M., & Ghibelli,, L. (2014). Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology, 92(1), 112–130.
Carriere,, M., Sauvaigo,, S., Douki,, T., & Ravanat,, J.‐L. (2016). Impact of nanoparticles on DNA repair processes: Current knowledge and working hypotheses. Mutagenesis, 32(1), 203–213.
Casais‐Molina,, M., Cab,, C., Canto,, G., Medina,, J., & Tapia,, A. (2018). Carbon Nanomaterials for breast cancer treatment. Journal of Nanomaterials, 2018(2), 1–9.
Chang,, M. Y., Shiau,, A. L., Chen,, Y. H., Chang,, C. J., Chen,, H. H. W., & Wu,, C. L. (2008). Increased apoptotic potential and dose‐enhancing effect of gold nanoparticles in combination with single‐dose clinical electron beams on tumor‐bearing mice. Cancer Science, 99(7), 1479–1484.
ClinicalTrials.gov (2018). Identifier NCT03020017. In NU‐0129 in treating patients with recurrent glioblastoma or gliosarcoma undergoing surgery. Bethesda, MD: U.S. National Library of Medicine. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03020017
Dam,, D. H. M., Culver,, K. S., Sisco,, P. N., & Odom,, T. W. (2012). Research spotlight: Shining light on nuclear‐targeted therapy using gold nanostar constructs. Therapeutic Delivery, 3(11), 1263–1267.
Dam,, D. H. M., Lee,, J. H., Sisco,, P. N., Co,, D. T., Zhang,, M., Wasielewski,, M. R., & Odom,, T. W. (2012). Direct observation of nanoparticle–cancer cell nucleus interactions. ACS Nano, 6(4), 3318–3326.
Deng,, J., Xu,, S., Hu,, W., Xun,, X., Zheng,, L., & Su,, M. (2018). Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X‐ray radiation therapy of breast cancer. Biomaterials, 154, 24–33.
Domenech,, M., Marrero‐Berrios,, I., Torres‐Lugo,, M., & Rinaldi,, C. (2013). Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano, 7(6), 5091–5101. https://doi.org/10.1021/nn4007048
Fontana,, F., Shahbazi,, M. A., Liu,, D., Zhang,, H., Mäkilä,, E., Salonen,, J., … Santos,, H. A. (2017). Multistaged nanovaccines based on porous silicon@ acetalated dextran@ cancer cell membrane for cancer immunotherapy. Advanced Materials, 29(7), 1603239.
Fouad,, Y. A., & Aanei,, C. (2017). Revisiting the hallmarks of cancer. American Journal of Cancer Research, 7(5), 1016–1036.
Gao,, D., & Jiang,, L. (2018). Exosomes in cancer therapy: A novel experimental strategy. American Journal of Cancer Research, 8(11), 2165.
Gao,, M., Yi,, J., Zhu,, J., Minikes,, A. M., Monian,, P., Thompson,, C. B., & Jiang,, X. (2019). Role of mitochondria in ferroptosis. Molecular Cell, 73(2), 354–363. e353.
Gao,, W., Cao,, W., Zhang,, H., Li,, P., Xu,, K., & Tang,, B. (2014). Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au–ZnO hybrid nanoparticles. Chemical Communications, 50(60), 8117–8120.
Ge,, R., Liu,, C., Zhang,, X., Wang,, W., Li,, B., Liu,, J., … Hou,, Y. (2018). Photothermal‐activatable Fe3O4 superparticle nanodrug carriers with PD‐L1 immune checkpoint blockade for anti‐metastatic cancer immunotherapy. ACS Applied Materials %26 Interfaces, 10(24), 20342–20355.
Geng,, F., Song,, K., Xing,, J. Z., Yuan,, C., Yan,, S., Yang,, Q., … Kong,, B. (2011). Thio‐glucose bound gold nanoparticles enhance radio‐cytotoxic targeting of ovarian cancer. Nanotechnology, 22(28), 285101.
Giri,, S., Karakoti,, A., Graham,, R. P., Maguire,, J. L., Reilly,, C. M., Seal,, S., … Shridhar,, V. (2013). Nanoceria: A rare‐earth nanoparticle as a novel anti‐angiogenic therapeutic agent in ovarian cancer. PLoS One, 8(1), e54578.
Gopisetty,, M. K., Kovács,, D., Igaz,, N., Rónavári,, A., Bélteky,, P., Rázga,, Z., … Kónya,, Z. (2019). Endoplasmic reticulum stress: Major player in size‐dependent inhibition of P‐glycoprotein by silver nanoparticles in multidrug‐resistant breast cancer cells. Journal of Nanobiotechnology, 17(1), 1–15.
Greish,, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In S. Grobmyer & B. Moudgil (Eds.), Cancer nanotechnology Methods in Molecular Biology (Methods and Protocols), (vol 624, pp. 25–37). Humana Press. Springer.
Gulumian,, M., & Andraos,, C. (2018). In search of a converging cellular mechanism in nanotoxicology and nanomedicine in the treatment of cancer. Toxicologic Pathology, 46(1), 4–13.
Gupta,, S., Cuffe,, L., Szegezdi,, E., Logue,, S. E., Neary,, C., Healy,, S., & Samali,, A. (2010). Mechanisms of ER stress‐mediated mitochondrial membrane permeabilization. International Journal of Cell Biology, 2010, 170215.
Gurunathan,, S., Lee,, K.‐J., Kalishwaralal,, K., Sheikpranbabu,, S., Vaidyanathan,, R., & Eom,, S. H. (2009). Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), 6341–6350.
Hainfeld,, J. F., Dilmanian,, F. A., Slatkin,, D. N., & Smilowitz,, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. Journal of Pharmacy and Pharmacology, 60(8), 977–985.
Han,, L., Tang,, C., & Yin,, C. (2016). pH‐responsive core–shell structured nanoparticles for triple‐stage targeted delivery of doxorubicin to tumors. ACS Applied Materials %26 Interfaces, 8(36), 23498–23508.
Hassannia,, B., Vandenabeele,, P., & Berghe,, T. V. (2019). Targeting Ferroptosis to iron out cancer. Cancer Cell, 35(6), 830–849.
Haume,, K., Rosa,, S., Grellet,, S., Śmiałek,, M. A., Butterworth,, K. T., Solov`yov,, A. V., … Mason,, N. J. (2016). Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnology, 7(1), 8.
Hess,, K. L., Medintz,, I. L., & Jewell,, C. M. (2019). Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today, 27, 73–98.
Hinde,, E., Thammasiraphop,, K., Duong,, H. T., Yeow,, J., Karagoz,, B., Boyer,, C., … Gaus,, K. (2017). Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 12(1), 81.
Hossen,, S., Hossain,, M. K., Basher,, M., Mia,, M., Rahman,, M., & Uddin,, M. J. (2019). Smart nanocarrier‐based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research, 15, 1–18.
Hu,, J., Dong,, Y., Ding,, L., Dong,, Y., Wu,, Z., Wang,, W., … Duan,, Y. (2019). Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduction and Targeted Therapy, 4(1), 1–7.
Huang,, H., Delikanli,, S., Zeng,, H., Ferkey,, D. M., & Pralle,, A. (2010). Remote control of ion channels and neurons through magnetic‐field heating of nanoparticles. Nature Nanotechnology, 5(8), 602.
Huang,, K.‐J., Wei,, Y.‐H., Chiu,, Y.‐C., Wu,, S.‐R., & Shieh,, D.‐B. (2019). Assessment of zero‐valent iron‐based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomaterials Science, 7(4), 1311–1322.
Huang,, Y., & Zeng,, J. (2020). Recent development and applications of nanomaterials for cancer immunotherapy. Nanotechnology Reviews, 9(1), 382–399.
Hubbell,, J. H., & Seltzer,, S. M. (1995). Tables of X‐ray mass attenuation coefficients and mass energy‐absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest.
Huo,, S., Jin,, S., Ma,, X., Xue,, X., Yang,, K., Kumar,, A., … Liang,, X.‐J. (2014). Ultrasmall gold nanoparticles as carriers for nucleus‐based gene therapy due to size‐dependent nuclear entry. ACS Nano, 8(6), 5852–5862.
Jambhrunkar,, M., Yu,, M., Zhang,, H., Abbaraju,, P., Meka,, A. K., Cavallaro,, A., … Yu,, C. (2018). Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2‐biased immune response. Nano Research, 11(1), 370–382.
Jiang,, Y., Huo,, S., Hardie,, J., Liang,, X.‐J., & Rotello,, V. M. (2016). Progress and perspective of inorganic nanoparticle‐based siRNA delivery systems. Expert Opinion on Drug Delivery, 13(4), 547–559.
Jiao,, F., Liu,, Y., Qu,, Y., Li,, W., Zhou,, G., Ge,, C., … Chen,, C. (2010). Studies on anti‐tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon, 48(8), 2231–2243.
Jung,, H. S., Han,, J., Lee,, J.‐H., Lee,, J. H., Choi,, J.‐M., Kweon,, H.‐S., … Jung,, J. H. (2015). Enhanced NIR radiation‐triggered hyperthermia by mitochondrial targeting. Journal of the American Chemical Society, 137(8), 3017–3023.
Kalishwaralal,, K., Banumathi,, E., Pandian,, S. R. K., Deepak,, V., Muniyandi,, J., Eom,, S. H., & Gurunathan,, S. (2009). Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids and Surfaces B: Biointerfaces, 73(1), 51–57.
Kang,, B., Mackey,, M. A., & El‐Sayed,, M. A. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society, 132(5), 1517–1519.
Kargozar,, S., Baino,, F., Hamzehlou,, S., Hamblin,, M. R., & Mozafari,, M. (2020). Nanotechnology for angiogenesis: Opportunities and challenges. Chemical Society Reviews, 49, 5008–5057.
Kim,, S. E., Zhang,, L., Ma,, K., Riegman,, M., Chen,, F., Ingold,, I., … Jiang,, X. (2016). Ultrasmall nanoparticles induce ferroptosis in nutrient‐deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 11(11), 977.
Kodiha,, M., Hutter,, E., Boridy,, S., Juhas,, M., Maysinger,, D., & Stochaj,, U. (2014). Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and Molecular Life Sciences, 71(21), 4259–4273.
Kwiatkowski,, S., Knap,, B., Przystupski,, D., Saczko,, J., Kędzierska,, E., Knap‐Czop,, K., … Kulbacka,, J. (2018). Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomedicine %26 Pharmacotherapy, 106, 1098–1107.
Lai,, P.‐X., Chen,, C.‐W., Wei,, S.‐C., Lin,, T.‐Y., Jian,, H.‐J., Lai,, I. P.‐J., … Tzou,, W.‐S. (2016). Ultrastrong trapping of VEGF by graphene oxide: Anti‐angiogenesis application. Biomaterials, 109, 12–22.
Lamouille,, S., Xu,, J., & Derynck,, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178.
Lee,, I. H., Kwon,, H. K., An,, S., Kim,, D., Kim,, S., Yu,, M. K., … Jon,, S. (2012). Imageable antigen‐presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angewandte Chemie International Edition, 51(35), 8800–8805.
Li,, N., Sun,, Q., Yu,, Z., Gao,, X., Pan,, W., Wan,, X., & Tang,, B. (2018). Nuclear‐targeted photothermal therapy prevents cancer recurrence with near‐infrared triggered copper sulfide nanoparticles. ACS Nano, 12(6), 5197–5206.
Li,, X., Song,, L., Hu,, X., Liu,, C., Shi,, J., Wang,, H., … Song,, H. (2018). Inhibition of epithelial–Mesenchymal transition and tissue regeneration by waterborne titanium dioxide nanoparticles. ACS Applied Materials %26 Interfaces, 10(4), 3449–3458.
Li,, Y.‐J., Yang,, C.‐X., & Yan,, X.‐P. (2018). Biomimetic persistent luminescent nanoplatform for autofluorescence‐free metastasis tracking and chemophotodynamic therapy. Analytical Chemistry, 90(6), 4188–4195.
Lin,, F., Bao,, Y.‐W., & Wu,, F.‐G. (2018). Improving the phototherapeutic efficiencies of molecular and Nanoscale materials by targeting mitochondria. Molecules, 23(11), 3016.
Lin,, L. S., Song,, J., Song,, L., Ke,, K., Liu,, Y., Zhou,, Z., … Tang,, W. (2018). Simultaneous Fenton‐like ion delivery and glutathione depletion by MnO2‐based Nanoagent to enhance Chemodynamic therapy. Angewandte Chemie International Edition, 57(18), 4902–4906.
Liu,, C.‐G., Han,, Y.‐H., Kankala,, R. K., Wang,, S.‐B., & Chen,, A.‐Z. (2020). Subcellular performance of nanoparticles in cancer therapy. International Journal of Nanomedicine, 15, 675.
Liu,, L., Ni,, F., Zhang,, J., Jiang,, X., Lu,, X., Guo,, Z., & Xu,, R. (2011). Silver nanocrystals sensitize magnetic‐nanoparticle‐mediated thermo‐induced killing of cancer cells. Acta Biochimica et Biophysica Sinica, 43(4), 316–323.
Liu,, M., Liu,, B., Liu,, Q., Du,, K., Wang,, Z., & He,, N. (2019). Nanomaterial‐induced ferroptosis for cancer specific therapy. Coordination Chemistry Reviews, 382, 160–180.
Ma,, X., Wu,, Y., Jin,, S., Tian,, Y., Zhang,, X., Zhao,, Y., … Liang,, X.‐J. (2011). Gold nanoparticles induce autophagosome accumulation through size‐dependent nanoparticle uptake and lysosome impairment. ACS Nano, 5(11), 8629–8639.
Ma,, Z., Han,, K., Dai,, X., & Han,, H. (2018). Precisely striking tumors without adjacent normal tissue damage via mitochondria‐templated accumulation. ACS Nano, 12(6), 6252–6262.
Mahony,, D., Cavallaro,, A. S., Stahr,, F., Mahony,, T. J., Qiao,, S. Z., & Mitter,, N. (2013). Mesoporous silica nanoparticles act as a self‐adjuvant for ovalbumin model antigen in mice. Small, 9(18), 3138–3146.
Marrache,, S., & Dhar,, S. (2012). Engineering of blended nanoparticle platform for delivery of mitochondria‐acting therapeutics. Proceedings of the National Academy of Sciences, 109(40), 16288–16293.
Marrache,, S., & Dhar,, S. (2015). The energy blocker inside the power house: Mitochondria targeted delivery of 3‐bromopyruvate. Chemical Science, 6(3), 1832–1845.
Meng,, H., Xing,, G., Sun,, B., Zhao,, F., Lei,, H., Li,, W., … Wang,, X. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4(5), 2773–2783.
Mishra,, A. R., Zheng,, J., Tang,, X., & Goering,, P. L. (2016). Silver nanoparticle‐induced autophagic‐lysosomal disruption and NLRP3‐inflammasome activation in HepG2 cells is size‐dependent. Toxicological Sciences, 150(2), 473–487. https://doi.org/10.1093/toxsci/kfw011
Miyayama,, T., Fujiki,, K., & Matsuoka,, M. (2018). Silver nanoparticles induce lysosomal‐autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. Toxicology In Vitro, 46, 148–154.
Mocan,, L., Matea,, C., Tabaran,, F. A., Mosteanu,, O., Pop,, T., Mocan,, T., & Iancu,, C. (2015). Photothermal treatment of liver cancer with albumin‐conjugated gold nanoparticles initiates Golgi apparatus–ER dysfunction and caspase‐3 apoptotic pathway activation by selective targeting of Gp60 receptor. International Journal of Nanomedicine, 10, 5435.
Moosavi,, M. A., Sharifi,, M., Ghafary,, S. M., Mohammadalipour,, Z., Khataee,, A., Rahmati,, M., … Ghavami,, S. (2016). Photodynamic N‐TiO2 nanoparticle treatment induces controlled Ros‐mediated autophagy and terminal differentiation of leukemia cells. Scientific Reports, 6, 34413.
Mukherjee,, P., Bhattacharya,, R., Bone,, N., Lee,, Y. K., Patra,, C. R., Wang,, S., … Yaszemski,, M. J. (2007). Potential therapeutic application of gold nanoparticles in B‐chronic lymphocytic leukemia (BCLL): Enhancing apoptosis. Journal of Nanobiotechnology, 5(1), 4.
Mukherjee,, P., Bhattacharya,, R., Wang,, P., Wang,, L., Basu,, S., Nagy,, J. A., … Soker,, S. (2005). Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 11(9), 3530–3534.
Murugesan,, S., Mousa,, S. A., O`Connor,, L. J., Lincoln,, D. W., & Linhardt,, R. J. (2007). Carbon inhibits vascular endothelial growth factor‐and fibroblast growth factor‐promoted angiogenesis. FEBS Letters, 581(6), 1157–1160.
Navya,, P., Kaphle,, A., Srinivas,, S., Bhargava,, S. K., Rotello,, V. M., & Daima,, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23.
Naz,, S., Shamoon,, M., Wang,, R., Zhang,, L., Zhou,, J., & Chen,, J. (2019). Advances in therapeutic implications of inorganic drug delivery nano‐platforms for cancer. International Journal of Molecular Sciences, 20(4), 965.
Nguyen,, H. T., Tran,, K. K., Sun,, B., & Shen,, H. (2012). Activation of inflammasomes by tumor cell death mediated by gold nanoshells. Biomaterials, 33(7), 2197–2205.
Nishida,, N., Yano,, H., Nishida,, T., Kamura,, T., & Kojiro,, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213.
Ojea‐Jiménez,, I., García‐Fernández,, L., Lorenzo,, J., & Puntes,, V. F. (2012). Facile preparation of cationic gold nanoparticle‐bioconjugates for cell penetration and nuclear targeting. ACS Nano, 6(9), 7692–7702.
Pan,, L., He,, Q., Liu,, J., Chen,, Y., Ma,, M., Zhang,, L., & Shi,, J. (2012). Nuclear‐targeted drug delivery of TAT peptide‐conjugated monodisperse mesoporous silica nanoparticles. Journal of the American Chemical Society, 134(13), 5722–5725.
Pan,, L., Liu,, J., & Shi,, J. (2017). Nuclear‐targeting gold nanorods for extremely low NIR activated photothermal therapy. ACS Applied Materials %26 Interfaces, 9(19), 15952–15961.
Pan,, L., Liu,, J., & Shi,, J. (2018). Cancer cell nucleus‐targeting nanocomposites for advanced tumor therapeutics. Chemical Society Reviews, 47(18), 6930–6946. https://doi.org/10.1039/c8cs00081f
Parra,, J., Abad‐Somovilla,, A., Mercader,, J. V., Taton,, T. A., & Abad‐Fuentes,, A. (2013). Carbon nanotube‐protein carriers enhance size‐dependent self‐adjuvant antibody response to haptens. Journal of Controlled Release, 170(2), 242–251.
Perica,, K., Bieler,, J., Schuetz,, C., Varela,, J., Oelke,, M., & Schneck,, J. (2014). Enrichment and expansion with nanoscale artificial antigen presenting cells for T cell adoptive immunotherapy. Journal for ImmunoTherapy of Cancer, 2(3), 1–1.
Perica,, K., Bieler,, J. G., Schütz,, C., Varela,, J. C., Douglass,, J., Skora,, A., … Zhou,, S. (2015). Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano, 9(7), 6861–6871.
Perica,, K., Medero,, A. D. L., Durai,, M., Chiu,, Y. L., Bieler,, J. G., Sibener,, L., … Edidin,, M. (2014). Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 119–129.
Piao,, S., & Amaravadi,, R. K. (2016). Targeting the lysosome in cancer. Annals of the New York Academy of Sciences, 1371(1), 45.
Pollard,, H., Remy,, J.‐S., Loussouarn,, G., Demolombe,, S., Behr,, J.‐P., & Escande,, D. (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. Journal of Biological Chemistry, 273(13), 7507–7511.
Pool,, H., Campos‐Vega,, R., Herrera‐Hernández,, M. G., García‐Solis,, P., García‐Gasca,, T., Sánchez,, I. C., … Vergara‐Castañeda,, H. (2018). Development of genistein‐PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. American Journal of Translational Research, 10(8), 2306.
Porcel,, E., Liehn,, S., Remita,, H., Usami,, N., Kobayashi,, K., Furusawa,, Y., … Lacombe,, S. (2010). Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology, 21(8), 085103.
Qiu,, L., Chen,, T., Öçsoy,, I., Yasun,, E., Wu,, C., Zhu,, G., … Yu,, R. (2015). A cell‐targeted, size‐photocontrollable, nuclear‐uptake nanodrug delivery system for drug‐resistant cancer therapy. Nano Letters, 15(1), 457–463.
Ramirez,, R., Córdova,, C., Gatica,, S., Rodriguez,, B., Lazano,, C., Marchant,, I., … Olivero,, P. (2018). Transient receptor potential vanilloid 1 expression mediates capsaicin‐induced cell death. Frontiers in Physiology, 9, 682.
Repnik,, U., Česen,, M. H., & Turk,, B. (2014). Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion, 19, 49–57.
Roa,, W., Zhang,, X., Guo,, L., Shaw,, A., Hu,, X., Xiong,, Y., … Chen,, J. (2009). Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20(37), 375101.
Roma‐Rodrigues,, C., Fernandes,, A. R., & Baptista,, P. V. (2014). Exosome in tumour microenvironment: Overview of the crosstalk between normal and cancer cells. BioMed Research International, 2014, 179486. https://doi.org/10.1155/2014/179486
Roma‐Rodrigues,, C., Pereira,, F., de Matos,, A. P. A., Fernandes,, M., Baptista,, P. V., & Fernandes,, A. R. (2017). Smuggling gold nanoparticles across cell types–A new role for exosomes in gene silencing. Nanomedicine: Nanotechnology, Biology and Medicine, 13(4), 1389–1398.
Roma‐Rodrigues,, C., Raposo,, L., Cabral,, R., Paradinha,, F., Baptista,, P., & Fernandes,, A. (2017). Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: Implications for cancer diagnostics and therapy. International Journal of Molecular Sciences, 18(1), 162.
Rosa,, S., Connolly,, C., Schettino,, G., Butterworth,, K. T., & Prise,, K. M. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1), 2.
Rosenbaum,, T., & Simon,, S. A. (2006). TRPV1 receptors and signal transduction. In W. B., Liedtke,, & S., Heller,, (Eds.), TRP ion channel function in sensory transduction and cellular signaling cascades. Boca Raton (FL): CRC Press/Taylor %26 Francis; 2007. Chapter 5. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5260/
Sacchetti,, C., Rapini,, N., Magrini,, A., Cirelli,, E., Bellucci,, S., Mattei,, M., … Bottini,, M. (2013). In vivo targeting of intratumor regulatory T cells using PEG‐modified single‐walled carbon nanotubes. Bioconjugate Chemistry, 24(6), 852–858.
Saha,, S., Xiong,, X., Chakraborty,, P. K., Shameer,, K., Arvizo,, R. R., Kudgus,, R. A., … Robertson,, J. D. (2016). Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano, 10(12), 10636–10651.
Sakhrani,, N. M., & Padh,, H. (2013). Organelle targeting: Third level of drug targeting. Drug Design, Development and Therapy, 7, 585.
Satapathy,, S. R., Nayak,, A., Siddharth,, S., Das,, S., Nayak,, D., & Kundu,, C. N. (2018). Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 883–896.
Schütz,, I., Lopez‐Hernandez,, T., Gao,, Q., Puchkov,, D., Jabs,, S., Nordmeyer,, D., … Haucke,, V. (2016). Lysosomal dysfunction caused by cellular accumulation of silica nanoparticles. Journal of Biological Chemistry, 291(27), 14170–14184.
Senapati,, S., Mahanta,, A. K., Kumar,, S., & Maiti,, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1), 7.
Seynhaeve,, A. L., Dicheva,, B. M., Hoving,, S., Koning,, G. A., & ten Hagen,, T. L. (2013). Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: Evaluated by in vitro/in vivo live cell imaging. Journal of Controlled Release, 172(1), 330–340.
Shen,, Z., Liu,, T., Li,, Y., Lau,, J., Yang,, Z., Fan,, W., … Bregadze,, V. I. (2018). Fenton‐reaction‐acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 12(11), 11355–11365.
Shen,, Z., Song,, J., Yung,, B. C., Zhou,, Z., Wu,, A., & Chen,, X. (2018). Emerging strategies of cancer therapy based on ferroptosis. Advanced Materials, 30(12), 1704007.
Singh,, R. K., Knowles,, J. C., & Kim,, H.‐W. (2019). Advances in nanoparticle development for improved therapeutics delivery: Nanoscale topographical aspect. Journal of Tissue Engineering, 10, 2041731419877528.
Song,, J., Du,, L., Feng,, Y., Wu,, W., & Yan,, Z. (2013). Pyroptosis induced by zinc oxide nanoparticles in A549 cells. Wei Sheng Yan Jiu= Journal of Hygiene Research, 42(2), 273–276.
Spyratou,, E., Makropoulou,, M., Efstathopoulos,, E., Georgakilas,, A., & Sihver,, L. (2017). Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers, 9(12), 173.
Sun,, H., Jia,, J., Jiang,, C., & Zhai,, S. (2018). Gold nanoparticle‐induced cell death and potential applications in nanomedicine. International Journal of Molecular Sciences, 19(3), 754.
Sun,, H., Su,, J., Meng,, Q., Yin,, Q., Chen,, L., Gu,, W., … Wang,, S. (2017). Cancer cell membrane‐coated gold nanocages with hyperthermia‐triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Advanced Functional Materials, 27(3), 1604300.
Sun,, X., Li,, M., Yang,, Y., Jia,, H., & Liu,, W. (2018). Carrier‐free nanodrug‐based virus‐surface‐mimicking nanosystems for efficient drug/gene co‐delivery. Biomaterials Science, 6(12), 3300–3308.
Tu,, Z., Qiao,, H., Yan,, Y., Guday,, G., Chen,, W., Adeli,, M., & Haag,, R. (2018). Directed Graphene‐based Nanoplatforms for hyperthermia: Overcoming multiple drug resistance. Angewandte Chemie, 130(35), 11368–11372.
Villarroya‐Beltri,, C., Baixauli,, F., Gutiérrez‐Vázquez,, C., Sánchez‐Madrid,, F., & Mittelbrunn,, M. (2014). Sorting It Out: Regulation of Exosome Loading. Paper Presented at the Seminars in Cancer Biology.
Wang,, F., Gómez‐Sintes,, R., & Boya,, P. (2018). Lysosomal membrane permeabilization and cell death. Traffic, 19(12), 918–931.
Wang,, H., Liu,, Z., Gou,, Y., Qin,, Y., Xu,, Y., Liu,, J., & Wu,, J.‐Z. (2015). Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway. International Journal of Nanomedicine, 10, 5505.
Wang,, J., Li,, Y., Duan,, J., Yang,, M., Yu,, Y., Feng,, L., … Sun,, Z. (2018). Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy, 14(7), 1185–1200.
Wang,, S., Li,, F., Qiao,, R., Hu,, X., Liao,, H., Chen,, L., … Liu,, J. (2018). Arginine‐rich manganese silicate nanobubbles as a ferroptosis‐inducing agent for tumor‐targeted theranostics. ACS Nano, 12(12), 12380–12392.
Wang,, W., Wang,, P., Tang,, X., Elzatahry,, A. A., Wang,, S., Al‐Dahyan,, D., … Zhu,, X. (2017). Facile synthesis of uniform virus‐like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Central Science, 3(8), 839–846.
Wang,, Y.‐Y., Liu,, X.‐L., & Zhao,, R. (2019). Induction of pyroptosis and its implications in cancer management. Frontiers in Oncology, 9, 971.
Wei,, F., Wang,, Y., Luo,, Z., Li,, Y., & Duan,, Y. (2017). New findings of silica nanoparticles induced ER autophagy in human colon cancer cell. Scientific Reports, 7, 42591.
Wlodkowic,, D., Skommer,, J., McGuinness,, D., Hillier,, C., & Darzynkiewicz,, Z. (2009). ER–Golgi network—A future target for anti‐cancer therapy. Leukemia Research, 33(11), 1440–1447.
Wu,, M., Meng,, Q., Chen,, Y., Du,, Y., Zhang,, L., Li,, Y., … Shi,, J. (2015). Large‐pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor co‐templating assembly and nuclear‐targeted gene delivery. Advanced Materials, 27(2), 215–222.
Xia,, L., Wang,, Y., Chen,, Y., Yan,, J., Hao,, F., Su,, X., … Xu,, M. (2017). Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy. Oncotarget, 8(37), 61083.
Yang,, L.‐X., Wu,, Y.‐N., Wang,, P.‐W., Su,, W.‐C., & Shieh,, D.‐B. (2019). Iron release profile of silica‐modified zero‐Valent iron NPs and their implication in cancer therapy. International Journal of Molecular Sciences, 20(18), 4336.
Yang,, Y., Gao,, N., Hu,, Y., Jia,, C., Chou,, T., Du,, H., & Wang,, H. (2015). Gold nanoparticle‐enhanced photodynamic therapy: Effects of surface charge and mitochondrial targeting. Therapeutic Delivery, 6(3), 307–321.
Yata,, T., Takahashi,, Y., Tan,, M., Nakatsuji,, H., Ohtsuki,, S., Murakami,, T., … Takakura,, Y. (2017). DNA nanotechnology‐based composite‐type gold nanoparticle‐immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials, 146, 136–145.
Yong,, T., Zhang,, X., Bie,, N., Zhang,, H., Zhang,, X., Li,, F., … Santos,, H. A. (2019). Tumor exosome‐based nanoparticles are efficient drug carriers for chemotherapy. Nature Communications, 10(1), 1–16.
Yoo,, J.‐O., & Ha,, K.‐S. (2012). New insights into the mechanisms for photodynamic therapy‐induced cancer cell death. In Kwang W. Jeon (Eds.), International review of cell and molecular biology (Vol. 295, pp. 139–174) Cambridge, Massachusetts: Academic Press Elsevier.
Yu,, Z., Sun,, Q., Pan,, W., Li,, N., & Tang,, B. (2015). A near‐infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano, 9(11), 11064–11074.
Yuan,, Y.‐G., & Gurunathan,, S. (2017). Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537.
Zanganeh,, S., Hutter,, G., Spitler,, R., Lenkov,, O., Mahmoudi,, M., Shaw,, A., … Moseley,, M. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro‐inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), 986–994.
Zhang,, D.‐Y., Zheng,, Y., Tan,, C.‐P., Sun,, J.‐H., Zhang,, W., Ji,, L.‐N., & Mao,, Z.‐W. (2017). Graphene oxide decorated with Ru (II)–polyethylene glycol complex for lysosome‐targeted imaging and photodynamic/photothermal therapy. ACS Applied Materials %26 Interfaces, 9(8), 6761–6771.
Zhang,, E., Kircher,, M. F., Koch,, M., Eliasson,, L., Goldberg,, S. N., & Renström,, E. (2014). Dynamic magnetic fields remote‐control apoptosis via nanoparticle rotation. ACS Nano, 8(4), 3192–3201. https://doi.org/10.1021/nn406302j
Zhang,, X., Zhang,, H., Liang,, X., Zhang,, J., Tao,, W., Zhu,, X., … Mei,, L. (2016). Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: Lysosome impairment, mitochondrial damage, and ER stress. Molecular Pharmaceutics, 13(7), 2578–2587.
Zhang,, X.‐F., & Gurunathan,, S. (2016). Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: An effective anticancer therapy. International Journal of Nanomedicine, 11, 3655.
Zheng,, Q., Yang,, H., Wei,, J., Tong,, J.‐l., & Shu,, Y.‐q. (2013). The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomedicine %26 Pharmacotherapy, 67(7), 569–575.
Zhou,, B., Song,, J., Wang,, M., Wang,, X., Wang,, J., Howard,, E. W., … Chen,, W. R. (2018). BSA‐bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale, 10(46), 21640–21647.
Zhou,, F., Wu,, S., Song,, S., Chen,, W. R., Resasco,, D. E., & Xing,, D. (2012). Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials, 33(11), 3235–3242.
Zhou,, F., Wu,, S., Wu,, B., Chen,, W. R., & Xing,, D. (2011). Mitochondria‐targeting single‐walled carbon nanotubes for cancer photothermal therapy. Small, 7(19), 2727–2735.
Zhou,, F., Xing,, D., Wu,, B., Wu,, S., Ou,, Z., & Chen,, W. R. (2010). New insights of transmembranal mechanism and subcellular localization of noncovalently modified single‐walled carbon nanotubes. Nano Letters, 10(5), 1677–1681.
Zhou,, Q., Zhang,, L., & Wu,, H. (2017). Nanomaterials for cancer therapies. Nanotechnology Reviews, 6(5), 473–496.
Zhu,, Y.‐X., Jia,, H.‐R., Pan,, G.‐Y., Ulrich,, N. W., Chen,, Z., & Wu,, F.‐G. (2018). Development of a light‐controlled Nanoplatform for direct nuclear delivery of molecular and Nanoscale materials. Journal of the American Chemical Society, 140(11), 4062–4070. https://doi.org/10.1021/jacs.7b13672