Abisambra,, J. F., Jinwal,, U. K., Jones,, J. R., Blair,, L. J., Koren,, J., 3rd, & Dickey,, C. A. (2011). Exploiting the diversity of the heat‐shock protein family for primary and secondary tauopathy therapeutics. Current Neuropharmacology, 9(4), 623–631. https://doi.org/10.2174/157015911798376226
Agmon‐Levin,, N., Paz,, Z., Israeli,, E., & Shoenfeld,, Y. (2009). Vaccines and autoimmunity. Nature Reviews Rheumatology, 5(11), 648–652. https://doi.org/10.1038/nrrheum.2009.196
Alexander,, L. N., Seward,, J. F., Santibanez,, T. A., Pallansch,, M. A., Kew,, O. M., Prevots,, D. R., … Sutter,, R. W. (2004). Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA, 292(14), 1696–1701. https://doi.org/10.1001/jama.292.14.1696
Al‐Halifa,, S., Gauthier,, L., Arpin,, D., Bourgault,, S., & Archambault,, D. (2019). Nanoparticle‐based vaccines against respiratory viruses. Frontiers in Immunology, 10, 22. https://doi.org/10.3389/fimmu.2019.00022
Arnaboldi,, P. M., Sambir,, M., D`Arco,, C., Peters,, L. A., Seegers,, J. F., Mayer,, L., … Dattwyler,, R. J. (2016). Intranasal delivery of a protein subunit vaccine using a tobacco mosaic virus platform protects against pneumonic plague. Vaccine, 34(47), 5768–5776. https://doi.org/10.1016/j.vaccine.2016.09.063
Asante,, K. P., Ansong,, D., Kaali,, S., Adjei,, S., Lievens,, M., Nana Badu,, L., … Ofori‐Anyinam,, O. (2020). Immunogenicity and safety of the RTS,S/AS01 malaria vaccine co‐administered with measles, rubella and yellow fever vaccines in Ghanaian children: A phase IIIb, multi‐center, non‐inferiority, randomized, open, controlled trial. Vaccine, 38(18), 3411–3421. https://doi.org/10.1016/j.vaccine.2020.03.014
Babin,, C., Majeau,, N., & Leclerc,, D. (2013). Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. Journal of Nanobiotechnology, 11, 10. https://doi.org/10.1186/1477-3155-11-10
Bachmann,, M. F., & Jennings,, G. T. (2010). Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nature Reviews. Immunology, 10(11), 787–796. https://doi.org/10.1038/nri2868
Banik,, S., Mansour,, A. A., Suresh,, R. V., Wykoff‐Clary,, S., Malik,, M., McCormick,, A. A., & Bakshi,, C. S. (2015). Development of a multivalent subunit vaccine against tularemia using tobacco mosaic virus (TMV) based delivery system. PLoS One, 10(6), e0130858. https://doi.org/10.1371/journal.pone.0130858
Bartual,, S. G., Otero,, J. M., Garcia‐Doval,, C., Llamas‐Saiz,, A. L., Kahn,, R., Fox,, G. C., & van Raaij,, M. J. (2010). Structure of the bacteriophage T4 long tail fiber receptor‐binding tip. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20287–20292. https://doi.org/10.1073/pnas.1011218107
BioRender. COVID‐19 Vaccine %26 Therapeutics Tracker (2020). Retrieved from https://biorender.com/covid-vaccine-tracker
Bolduc,, M., Baz,, M., Laliberte‐Gagne,, M. E., Carignan,, D., Garneau,, C., Russel,, A., … Leclerc,, D. (2018). The quest for a nanoparticle‐based vaccine inducing broad protection to influenza viruses. Nanomedicine, 14(8), 2563–2574. https://doi.org/10.1016/j.nano.2018.08.010
Brennan,, F. R., Bellaby,, T., Helliwell,, S. M., Jones,, T. D., Kamstrup,, S., Dalsgaard,, K., … Hamilton,, W. D. (1999). Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. Journal of Virology, 73(2), 930–938.
Brennan,, F. R., Gilleland,, L. B., Staczek,, J., Bendig,, M. M., Hamilton,, W. D. O., & Gilleland,, H. E. (1999). A chimaeric plant virus vaccine protects mice against a bacterial infection. Microbiology, 145(Pt 8), 2061–2067. https://doi.org/10.1099/13500872-145-8-2061
Brennan,, F. R., Jones,, T. D., Longstaff,, M., Chapman,, S., Bellaby,, T., Smith,, H., … Flock,, J. I. (1999). Immunogenicity of peptides derived from a fibronectin‐binding protein of S. aureus expressed on two different plant viruses. Vaccine, 17(15–16), 1846–1857. https://doi.org/10.1016/s0264-410x(98)00485-x
Bull,, J. J., Nuismer,, S. L., & Antia,, R. (2019). Recombinant vector vaccine evolution. PLoS Computational Biology, 15(7), e1006857. https://doi.org/10.1371/journal.pcbi.1006857
Butler,, P. J. (1984). The current picture of the structure and assembly of tobacco mosaic virus. The Journal of General Virology, 65(Pt 2), 253–279. https://doi.org/10.1099/0022-1317-65-2-253
Cabral‐Miranda,, G., Heath,, M. D., Mohsen,, M. O., Gomes,, A. C., Engeroff,, P., Flaxman,, A., … Bachmann,, M. F. (2017). Virus‐like particle (VLP) plus microcrystalline tyrosine (MCT) adjuvants enhance vaccine efficacy improving T and B cell immunogenicity and protection against Plasmodium berghei/vivax. Vaccines (Basel), 5(2), 10. https://doi.org/10.3390/vaccines5020010
Caivano,, A., Doria‐Rose,, N. A., Buelow,, B., Sartorius,, R., Trovato,, M., D`Apice,, L., … De Berardinis,, P. (2010). HIV‐1 gag p17 presented as virus‐like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN‐gamma production by CD4+ T cells. Virology, 407(2), 296–305. https://doi.org/10.1016/j.virol.2010.08.026
Callaway,, E. (2020). Coronavirus vaccine trials have delivered their first results—But their promise is still unclear. Nature, 581(7809), 363–364. https://doi.org/10.1038/d41586-020-01092-3
Carignan,, D., Therien,, A., Rioux,, G., Paquet,, G., Gagne,, M. L., Bolduc,, M., … Leclerc,, D. (2015). Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine, 33(51), 7245–7253. https://doi.org/10.1016/j.vaccine.2015.10.123
Carter,, D. C., Wright,, B., Jerome,, W. G., Rose,, J. P., & Wilson,, E. (2020). A unique protein self‐assembling nanoparticle with significant advantages in vaccine development and production. Journal of Nanomaterials, 2020, 1–10. https://doi.org/10.1155/2020/4297937
Cerpa‐Cruz,, S., Paredes‐Casillas,, P., Landeros Navarro,, E., Bernard‐Medina,, A. G., Martinez‐Bonilla,, G., & Gutierrez‐Urena,, S. (2013). Adverse events following immunization with vaccines containing adjuvants. Immunologic Research, 56(2–3), 299–303. https://doi.org/10.1007/s12026-013-8400-4
Chen,, F., Jiang,, R., Wang,, Y., Zhu,, M., Zhang,, X., Dong,, S., … Wang,, L. (2017). Recombinant phage elicits protective immune response against Systemic S. globosa infection in mouse model. Scientific Reports, 7, 42024. https://doi.org/10.1038/srep42024
Chichester,, J. A., Green,, B. J., Jones,, R. M., Shoji,, Y., Miura,, K., Long,, C. A., … Yusibov,, V. (2018). Safety and immunogenicity of a plant‐produced Pfs25 virus‐like particle as a transmission blocking vaccine against malaria: A phase 1 dose‐escalation study in healthy adults. Vaccine, 36(39), 5865–5871. https://doi.org/10.1016/j.vaccine.2018.08.033
Choi,, Y., & Chang,, J. (2013). Viral vectors for vaccine applications. Clinical and Experimental Vaccine Research, 2(2), 97–105. https://doi.org/10.7774/cevr.2013.2.2.97
Clark,, J. R., Bartley,, K., Jepson,, C. D., Craik,, V., & March,, J. B. (2011). Comparison of a bacteriophage‐delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunology and Medical Microbiology, 61(2), 197–204. https://doi.org/10.1111/j.1574-695X.2010.00763.x
ClinicalTrials.gov. A study of safety, tolerability and immunogenicity of HPV‐L2 vaccine in healthy adult male and female subjects (2020a). Retrieved from https://clinicaltrials.gov/ct2/show/study/NCT03929172.
ClinicalTrials.gov. Dose, Safety, Tolerability and Immunogenicity of an Influenza H1 Stabilized Stem Ferritin Vaccine, VRCFLUNPF099‐00‐VP, in Healthy Adults (2020b). Retrieved from https://www.clinicaltrials.gov/ct2/show/NCT03814720
ClinicalTrials.gov. Influenza HA Ferritin Vaccine, Alone or in Prime‐Boost Regimens With an Influenza DNA Vaccine in Healthy Adults (2020c). Retrieved from https://www.clinicaltrials.gov/ct2/show/NCT03186781
Cohen,, J. (2019). Controversy over dengue vaccine risk. Science, 365(6457), 961–962. https://doi.org/10.1126/science.365.6457.961
Conover,, R. (1962). Virus disease of papaya in Florida. Phytopathology, 52(1), 6.
Dalmau,, M., Lim,, S., Chen,, H. C., Ruiz,, C., & Wang,, S. W. (2008). Thermostability and molecular encapsulation within an engineered caged protein scaffold. Biotechnology and Bioengineering, 101(4), 654–664. https://doi.org/10.1002/bit.21988
Dalmau,, M., Lim,, S., & Wang,, S. W. (2009a). Design of a pH‐dependent molecular switch in a caged protein platform. Nano Letters, 9(1), 160–166. https://doi.org/10.1021/nl8027069
Dalmau,, M., Lim,, S., & Wang,, S. W. (2009b). pH‐triggered disassembly in a caged protein complex. Biomacromolecules, 10(12), 3199–3206. https://doi.org/10.1021/bm900674v
de Barra,, E., Hodgson,, S. H., Ewer,, K. J., Bliss,, C. M., Hennigan,, K., Collins,, A., … Hill,, A. V. (2014). A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One, 9(12), e115161. https://doi.org/10.1371/journal.pone.0115161
Delany,, I., Rappuoli,, R., & De Gregorio,, E. (2014). Vaccines for the 21st century. EMBO Molecular Medicine, 6(6), 708–720. https://doi.org/10.1002/emmm.201403876
Demminger,, D. E., Walz,, L., Dietert,, K., Hoffmann,, H., Planz,, O., Gruber,, A. D., … Wolff,, T. (2020). Adeno‐associated virus‐vectored influenza vaccine elicits neutralizing and Fcgamma receptor‐activating antibodies. EMBO Molecular Medicine, 12(5), e10938. https://doi.org/10.15252/emmm.201910938
den Hartog,, G., van Binnendijk,, R., Buisman,, A. M., Berbers,, G. A. M., & van der Klis,, F. R. M. (2020). Immune surveillance for vaccine‐preventable diseases. Expert Review of Vaccines, 19(4), 327–339. https://doi.org/10.1080/14760584.2020.1745071
Denis,, J., Acosta‐Ramirez,, E., Zhao,, Y., Hamelin,, M. E., Koukavica,, I., Baz,, M., … Leclerc,, D. (2008). Development of a universal influenza a vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine, 26(27–28), 3395–3403. https://doi.org/10.1016/j.vaccine.2008.04.052
Denis,, J., Majeau,, N., Acosta‐Ramirez,, E., Savard,, C., Bedard,, M. C., Simard,, S., … Leclerc,, D. (2007). Immunogenicity of papaya mosaic virus‐like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology, 363(1), 59–68. https://doi.org/10.1016/j.virol.2007.01.011
Desai,, S., Diener,, T., Tan,, B. K., Lowry,, N., Talukdar,, C., Chrusch,, W., & Wiebe,, S. (2014). An unusual case of vaccine‐associated paralytic poliomyelitis. Canadian Journal of Infectious Diseases and Medical Microbiology, 25(4), 227–228. https://doi.org/10.1155/2014/378320
Dobano,, C., Sanz,, H., Sorgho,, H., Dosoo,, D., Mpina,, M., Ubillos,, I., … Daubenberger,, C. (2019). Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy. Nature Communications, 10(1), 2174. https://doi.org/10.1038/s41467-019-10195-z
Dobano,, C., Ubillos,, I., Jairoce,, C., Gyan,, B., Vidal,, M., Jimenez,, A., … Moncunill,, G. (2019). RTS,S/AS01E immunization increases antibody responses to vaccine‐unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children: A case‐control study. BMC Medicine, 17(1), 157. https://doi.org/10.1186/s12916-019-1378-6
Domingo,, G. J., Orru,, S., & Perham,, R. N. (2001). Multiple display of peptides and proteins on a macromolecular scaffold derived from a multienzyme complex. Journal of Molecular Biology, 305(2), 259–267. https://doi.org/10.1006/jmbi.2000.4311
Dong,, Y. M., Zhang,, G. G., Huang,, X. J., Chen,, L., & Chen,, H. T. (2015). Promising MS2 mediated virus‐like particle vaccine against foot‐and‐mouth disease. Antiviral Research, 117, 39–43. https://doi.org/10.1016/j.antiviral.2015.01.005
Doolan,, D. L., Dobano,, C., & Baird,, J. K. (2009). Acquired immunity to malaria. Clinical Microbiology Reviews, 22(1), 13–36. https://doi.org/10.1128/CMR.00025-08
Durrani,, Z., McInerney,, T. L., McLain,, L., Jones,, T., Bellaby,, T., Brennan,, F. R., & Dimmock,, N. J. (1998). Intranasal immunization with a plant virus expressing a peptide from HIV‐1 gp41 stimulates better mucosal and systemic HIV‐1‐specific IgA and IgG than oral immunization. Journal of Immunological Methods, 220(1–2), 93–103. https://doi.org/10.1016/s0022-1759(98)00145-8
FDA. ERVEBO (2020a). Retrieved from https://www.fda.gov/vaccines-blood-biologics/ervebo
FDA. Vaccines Licensed for Use in the United States (April 24, 2020b). Retrieved from https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states
Fedson,, D. S. (2016). Treating the host response to emerging virus diseases: Lessons learned from sepsis, pneumonia, influenza and Ebola. Annals of Translational Medicine, 4(21), 421. https://doi.org/10.21037/atm.2016.11.03
Fogg,, P. C., Allison,, H. E., Saunders,, J. R., & McCarthy,, A. J. (2010). Bacteriophage lambda: A paradigm revisited. Journal of Virology, 84(13), 6876–6879. https://doi.org/10.1128/JVI.02177-09
Foster,, S. (2007). Rotavirus vaccine and intussusception. Journal of Pediatric Pharmacology and Therapeutics, 12(1), 4–7. https://doi.org/10.5863/1551-6776-12.1.4
Fuenmayor,, J., Godia,, F., & Cervera,, L. (2017). Production of virus‐like particles for vaccines. New Biotechnology, 39(Pt B), 174–180. https://doi.org/10.1016/j.nbt.2017.07.010
Georgiev,, I. S., Joyce,, M. G., Chen,, R. E., Leung,, K., McKee,, K., Druz,, A., … Kwong,, P. D. (2018). Two‐component ferritin nanoparticles for Multimerization of diverse trimeric antigens. ACS Infectious Diseases, 4(5), 788–796. https://doi.org/10.1021/acsinfecdis.7b00192
Gomes‐Neto,, J. F., Sartorius,, R., Canto,, F. B., Almeida,, T. S., Dias,, A. A., Barbosa,, C. D., … Bellio,, M. (2018). Vaccination with recombinant filamentous fd phages against parasite infection requires TLR9 expression. Frontiers in Immunology, 9, 1173. https://doi.org/10.3389/fimmu.2018.01173
Graham,, B. S. (2020). Rapid COVID‐19 vaccine development. Science, 368(6494), 945–946. https://doi.org/10.1126/science.abb8923
Gupta,, R. K., Rost,, B. E., Relyveld,, E., & Siber,, G. R. (1995). Adjuvant properties of aluminum and calcium compounds. Pharmaceutical Biotechnology, 6, 229–248. https://doi.org/10.1007/978-1-4615-1823-5_8
Hanafi,, L. A., Bolduc,, M., Gagne,, M. E., Dufour,, F., Langelier,, Y., Boulassel,, M. R., … Lapointe,, R. (2010). Two distinct chimeric potexviruses share antigenic cross‐presentation properties of MHC class I epitopes. Vaccine, 28(34), 5617–5626. https://doi.org/10.1016/j.vaccine.2010.06.024
He,, L., de Val,, N., Morris,, C. D., Vora,, N., Thinnes,, T. C., Kong,, L., … Zhu,, J. (2016). Presenting native‐like trimeric HIV‐1 antigens with self‐assembling nanoparticles. Nature Communications, 7, 12041. https://doi.org/10.1038/ncomms12041
Henry,, K., Arabi‐Ghahroudi,, M., & Scott,, J. (2015). Beyond phage display: Non‐traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Frontiers in Microbiology, 6(755), 1–18. https://doi.org/10.3389/fmicb.2015.00755
Hess,, K. L., & Jewell,, C. M. (2020). Phage display as a tool for vaccine and immunotherapy development. Bioengineering %26 Translational Medicine, 5(1), e10142. https://doi.org/10.1002/btm2.10142
Ho,, J. K., Jeevan‐Raj,, B., & Netter,, H. J. (2020). Hepatitis B virus (HBV) subviral particles as protective vaccines and vaccine platforms. Viruses, 12(2), 1–26. https://doi.org/10.3390/v12020126
Jaworski,, J. P., Krebs,, S. J., Trovato,, M., Kovarik,, D. N., Brower,, Z., Sutton,, W. F., … Haigwood,, N. L. (2012). Co‐immunization with multimeric scaffolds and DNA rapidly induces potent autologous HIV‐1 neutralizing antibodies and CD8+ T cells. PLoS One, 7(2), e31464. https://doi.org/10.1371/journal.pone.0031464
Jegerlehner,, A., Zabel,, F., Langer,, A., Dietmeier,, K., Jennings,, G. T., Saudan,, P., & Bachmann,, M. F. (2013). Bacterially produced recombinant influenza vaccines based on virus‐like particles. PLoS One, 8(11), e78947. https://doi.org/10.1371/journal.pone.0078947
Jiang,, L., Li,, Q., Li,, M., Zhou,, Z., Wu,, L., Fan,, J., … Xu,, Z. (2006). A modified TMV‐based vector facilitates the expression of longer foreign epitopes in tobacco. Vaccine, 24(2), 109–115. https://doi.org/10.1016/j.vaccine.2005.09.060
Jin,, Y., Li,, P., & Wang,, F. (2018). Beta‐glucans as potential immunoadjuvants: A review on the adjuvanticity, structure‐activity relationship and receptor recognition properties. Vaccine, 36(35), 5235–5244. https://doi.org/10.1016/j.vaccine.2018.07.038
Joelson,, T., Akerblom,, L., Oxelfelt,, P., Strandberg,, B., Tomenius,, K., & Morris,, T. J. (1997). Presentation of a foreign peptide on the surface of tomato bushy stunt virus. The Journal of General Virology, 78(Pt 6), 1213–1217. https://doi.org/10.1099/0022-1317-78-6-1213
Jones,, R. M., Chichester,, J. A., Mett,, V., Jaje,, J., Tottey,, S., Manceva,, S., … Yusibov,, V. (2013). A plant‐produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One, 8(11), e79538. https://doi.org/10.1371/journal.pone.0079538
Kallerup,, R., & Foged,, C. (2015). Classification of vaccines. In C. Foged,, T. Rades,, Y. Perrie,, & S. Hook, (Eds.), Subunit vaccine delivery. Advances in delivery science and technology. New York, NY: Springer.
Kanekiyo,, M., Bu,, W., Joyce,, M. G., Meng,, G., Whittle,, J. R., Baxa,, U., … Nabel,, G. J. (2015). Rational design of an Epstein‐Barr virus vaccine targeting the receptor‐binding site. Cell, 162(5), 1090–1100. https://doi.org/10.1016/j.cell.2015.07.043
Kanekiyo,, M., Wei,, C. J., Yassine,, H. M., McTamney,, P. M., Boyington,, J. C., Whittle,, J. R., … Nabel,, G. J. (2013). Self‐assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 499(7456), 102–106. https://doi.org/10.1038/nature12202
Khan,, F., Porter,, M., Schwenk,, R., DeBot,, M., Saudan,, P., & Dutta,, S. (2015). Head‐to‐head comparison of soluble vs. Qbeta VLP Circumsporozoite protein vaccines reveals selective enhancement of NANP repeat responses. PLoS One, 10(11), e0142035. https://doi.org/10.1371/journal.pone.0142035
Kim,, Y. S., Son,, A., Kim,, J., Kwon,, S. B., Kim,, M. H., Kim,, P., … Seong,, B. L. (2018). Chaperna‐mediated assembly of ferritin‐based Middle East respiratory syndrome‐coronavirus nanoparticles. Frontiers in Immunology, 9, 1093. https://doi.org/10.3389/fimmu.2018.01093
Knight‐Jones,, T. J., & Rushton,, J. (2013). The economic impacts of foot and mouth disease ‐ what are they, how big are they and where do they occur? Preventive Veterinary Medicine, 112(3–4), 161–173. https://doi.org/10.1016/j.prevetmed.2013.07.013
Koch,, J., Harder,, T., von Kries,, R., & Wichmann,, O. (2017). Risk of intussusception after rotavirus vaccination. Deutsches Ärzteblatt International, 114(15), 255–262. https://doi.org/10.3238/arztebl.2017.0255
Krebs,, S. J., McBurney,, S. P., Kovarik,, D. N., Waddell,, C. D., Jaworski,, J. P., Sutton,, W. F., … Haigwood,, N. L. (2014). Multimeric scaffolds displaying the HIV‐1 envelope MPER induce MPER‐specific antibodies and cross‐neutralizing antibodies when co‐immunized with gp160 DNA. PLoS One, 9(12), e113463. https://doi.org/10.1371/journal.pone.0113463
Kreijtz,, J. H., Goeijenbier,, M., Moesker,, F. M., van den Dries,, L., Goeijenbier,, S., De Gruyter,, H. L., … Osterhaus,, A. D. (2014). Safety and immunogenicity of a modified‐vaccinia‐virus‐Ankara‐based influenza a H5N1 vaccine: A randomised, double‐blind phase 1/2a clinical trial. The Lancet Infectious Diseases, 14(12), 1196–1207. https://doi.org/10.1016/S1473-3099(14)70963-6
Lacasse,, P., Denis,, J., Lapointe,, R., Leclerc,, D., & Lamarre,, A. (2008). Novel plant virus‐based vaccine induces protective cytotoxic T‐lymphocyte‐mediated antiviral immunity through dendritic cell maturation. Journal of Virology, 82(2), 785–794. https://doi.org/10.1128/JVI.01811-07
Laher,, F., Moodie,, Z., Cohen,, K. W., Grunenberg,, N., Bekker,, L. G., Allen,, M., … Tomaras,, G. D. (2020). Safety and immune responses after a 12‐month booster in healthy HIV‐uninfected adults in HVTN 100 in South Africa: A randomized double‐blind placebo‐controlled trial of ALVAC‐HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine, 17(2), e1003038. https://doi.org/10.1371/journal.pmed.1003038
Laliberte‐Gagne,, M. E., Bolduc,, M., Therien,, A., Garneau,, C., Casault,, P., Savard,, P., … Leclerc,, D. (2019). Increased immunogenicity of full‐length protein antigens through Sortase‐mediated coupling on the PapMV vaccine platform. Vaccines (Basel), 7(2), 1–9. https://doi.org/10.3390/vaccines7020049
Lauer,, K. B., Borrow,, R., & Blanchard,, T. J. (2017). Multivalent and multipathogen viral vector vaccines. Clinical and Vaccine Immunology, 24(1), 1–15. https://doi.org/10.1128/CVI.00298-16
Leclerc,, D., Beauseigle,, D., Denis,, J., Morin,, H., Pare,, C., Lamarre,, A., & Lapointe,, R. (2007). Proteasome‐independent major histocompatibility complex class I cross‐presentation mediated by papaya mosaic virus‐like particles leads to expansion of specific human T cells. Journal of Virology, 81(3), 1319–1326. https://doi.org/10.1128/JVI.01720-06
Lee,, C. S., Bishop,, E. S., Zhang,, R., Yu,, X., Farina,, E. M., Yan,, S., … He,, T. C. (2017). Adenovirus‐mediated gene delivery: Potential applications for gene and Cell‐based therapies in the new era of personalized medicine. Genes %26 Diseases, 4(2), 43–63. https://doi.org/10.1016/j.gendis.2017.04.001
Lee,, S., & Nguyen,, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51–57. https://doi.org/10.4110/in.2015.15.2.51
Levy,, Y., Lacabaratz,, C., Ellefsen‐Lavoie,, K., Stohr,, W., Lelievre,, J. D., Bart,, P. A., … Pantaleo,, G. (2020). Optimal priming of poxvirus vector (NYVAC)‐based HIV vaccine regimens for T cell responses requires three DNA injections. Results of the randomized multicentre EV03/ANRS VAC20 phase I/II trial. PLoS Pathogens, 16(6), e1008522. https://doi.org/10.1371/journal.ppat.1008522
Li,, Z., Cui,, K., Wang,, H., Liu,, F., Huang,, K., Duan,, Z., … Liu,, Q. (2019). A milk‐based self‐assemble rotavirus VP6‐ferritin nanoparticle vaccine elicited protection against the viral infection. Journal of Nanobiotechnology, 17(1), 13. https://doi.org/10.1186/s12951-019-0446-6
Lico,, C., Mancini,, C., Italiani,, P., Betti,, C., Boraschi,, D., Benvenuto,, E., & Baschieri,, S. (2009). Plant‐produced potato virus X chimeric particles displaying an influenza virus‐derived peptide activate specific CD8+ T cells in mice. Vaccine, 27(37), 5069–5076. https://doi.org/10.1016/j.vaccine.2009.06.045
Liebowitz,, D., Gottlieb,, K., Kolhatkar,, N. S., Garg,, S. J., Asher,, J. M., Nazareno,, J., … Tucker,, S. N. (2020). Efficacy, immunogenicity, and safety of an oral influenza vaccine: A placebo‐controlled and active‐controlled phase 2 human challenge study. The Lancet Infectious Diseases, 20(4), 435–444. https://doi.org/10.1016/S1473-3099(19)30584-5
Lindahl,, J. F., & Grace,, D. (2015). The consequences of human actions on risks for infectious diseases: A review. Infection Ecology %26 Epidemiology, 5, 30048. https://doi.org/10.3402/iee.v5.30048
Lizotte,, P. H., Wen,, A. M., Sheen,, M. R., Fields,, J., Rojanasopondist,, P., Steinmetz,, N. F., & Fiering,, S. (2016). In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 11(3), 295–303. https://doi.org/10.1038/nnano.2015.292
Look,, M., Bandyopadhyay,, A., Blum,, J. S., & Fahmy,, T. M. (2010). Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced Drug Delivery Reviews, 62(4–5), 378–393. https://doi.org/10.1016/j.addr.2009.11.011
Low,, J. G., Lee,, L. S., Ooi,, E. E., Ethirajulu,, K., Yeo,, P., Matter,, A., … Novotny‐Diermayr,, V. (2014). Safety and immunogenicity of a virus‐like particle pandemic influenza a (H1N1) 2009 vaccine: Results from a double‐blinded, randomized phase I clinical trial in healthy Asian volunteers. Vaccine, 32(39), 5041–5048. https://doi.org/10.1016/j.vaccine.2014.07.011
Lurie,, N., Saville,, M., Hatchett,, R., & Halton,, J. (2020). Developing Covid‐19 vaccines at pandemic speed. The New England Journal of Medicine, 382(21), 1969–1973. https://doi.org/10.1056/NEJMp2005630
Mailand,, M. T., & Frederiksen,, J. L. (2017). Vaccines and multiple sclerosis: A systematic review. Journal of Neurology, 264(6), 1035–1050. https://doi.org/10.1007/s00415-016-8263-4
Mallajosyula,, J. K., Hiatt,, E., Hume,, S., Johnson,, A., Jeevan,, T., Chikwamba,, R., … McCormick,, A. A. (2014). Single‐dose monomeric HA subunit vaccine generates full protection from influenza challenge. Human Vaccines %26 Immunotherapeutics, 10(3), 586–595. https://doi.org/10.4161/hv.27567
Manini,, I., & Montomoli,, E. (2018). Epidemiology and prevention of human papillomavirus. Annali di Igiene, 30(4 Supple 1), 28–32. https://doi.org/10.7416/ai.2018.2231
Manolova,, V., Flace,, A., Bauer,, M., Schwarz,, K., Saudan,, P., & Bachmann,, M. F. (2008). Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 38(5), 1404–1413. https://doi.org/10.1002/eji.200737984
Mansour,, A. A., Banik,, S., Suresh,, R. V., Kaur,, H., Malik,, M., McCormick,, A. A., & Bakshi,, C. S. (2018). An improved tobacco mosaic virus (TMV)‐conjugated multiantigen subunit vaccine against respiratory tularemia. Frontiers in Microbiology, 9, 1195. https://doi.org/10.3389/fmicb.2018.01195
March,, J. B., Clark,, J. R., & Jepson,, C. D. (2004). Genetic immunisation against hepatitis B using whole bacteriophage lambda particles. Vaccine, 22(13–14), 1666–1671. https://doi.org/10.1016/j.vaccine.2003.10.047
Marusic,, C., Rizza,, P., Lattanzi,, L., Mancini,, C., Spada,, M., Belardelli,, F., … Capone,, I. (2001). Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. Journal of Virology, 75(18), 8434–8439. https://doi.org/10.1128/jvi.75.18.8434-8439.2001
Marzi,, A., Ebihara,, H., Callison,, J., Groseth,, A., Williams,, K. J., Geisbert,, T. W., & Feldmann,, H. (2011). Vesicular stomatitis virus‐based Ebola vaccines with improved cross‐protective efficacy. The Journal of Infectious Diseases, 204(Suppl 3), S1066–S1074. https://doi.org/10.1093/infdis/jir348
Matthews,, Q., Gu,, L., Krendelchtchikov,, A., & C, Z. (2013). Viral vectors for vaccine development. Novel Gene Therapy Approaches. Retrieved from https://www.intechopen.com/books/novel-gene-therapy-approaches/viral-vectors-for-vaccine-development
Mbaeyi,, C., Wadood,, Z. M., Moran,, T., Mjourn,, Ather,, F., Stehling‐Ariza,, T., … Sharaf,, M. (2018). Strategic response to an outbreak of circulating vaccine‐derived poliovirus type 2 ‐ Syria, 2017‐2018. MMWR. Morbidity and Mortality Weekly Report, 67(24), 690–694. https://doi.org/10.15585/mmwr.mm6724a5
Mbow,, M. L., De Gregorio,, E., Valiante,, N. M., & Rappuoli,, R. (2010). New adjuvants for human vaccines. Current Opinion in Immunology, 22(3), 411–416. https://doi.org/10.1016/j.coi.2010.04.004
McBurney,, S. P., Sunshine,, J. E., Gabriel,, S., Huynh,, J. P., Sutton,, W. F., Fuller,, D. H., … Messer,, W. B. (2016). Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non‐human primates. Vaccine, 34(30), 3500–3507. https://doi.org/10.1016/j.vaccine.2016.03.108
McComb,, R. C., Ho,, C. L., Bradley,, K. A., Grill,, L. K., & Martchenko,, M. (2015). Presentation of peptides from Bacillus anthracis protective antigen on tobacco mosaic virus as an epitope targeted anthrax vaccine. Vaccine, 33(48), 6745–6751. https://doi.org/10.1016/j.vaccine.2015.10.075
McCormick,, A. A., Shakeel,, A., Yi,, C., Kaur,, H., Mansour,, A. M., & Bakshi,, C. S. (2018). Intranasal administration of a two‐dose adjuvanted multi‐antigen TMV‐subunit conjugate vaccine fully protects mice against Francisella tularensis LVS challenge. PLoS One, 13(4), e0194614. https://doi.org/10.1371/journal.pone.0194614
McInerney,, T. L., Brennan,, F. R., Jones,, T. D., & Dimmock,, N. J. (1999). Analysis of the ability of five adjuvants to enhance immune responses to a chimeric plant virus displaying an HIV‐1 peptide. Vaccine, 17(11–12), 1359–1368. https://doi.org/10.1016/s0264-410x(98)00388-0
Milne,, J. L., Wu,, X., Borgnia,, M. J., Lengyel,, J. S., Brooks,, B. R., Shi,, D., … Subramaniam,, S. (2006). Molecular structure of a 9‐MDa icosahedral pyruvate dehydrogenase subcomplex containing the E2 and E3 enzymes using cryoelectron microscopy. The Journal of Biological Chemistry, 281(7), 4364–4370. https://doi.org/10.1074/jbc.M504363200
Minhinnick,, A., Satti,, I., Harris,, S., Wilkie,, M., Sheehan,, S., Stockdale,, L., … McShane,, H. (2016). A first‐in‐human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A‐IMX313, administered to BCG‐vaccinated adults. Vaccine, 34(11), 1412–1421. https://doi.org/10.1016/j.vaccine.2016.01.062
Molino,, N. M., Neek,, M., Tucker,, J. A., Nelson,, E. L., & Wang,, S. W. (2016). Viral‐mimicking protein nanoparticle vaccine for eliciting anti‐tumor responses. Biomaterials, 86, 83–91. https://doi.org/10.1016/j.biomaterials.2016.01.056
Molino,, N. M., & Wang,, S. W. (2014). Caged protein nanoparticles for drug delivery. Current Opinion in Biotechnology, 28, 75–82. https://doi.org/10.1016/j.copbio.2013.12.007
Moncayo,, A., & Silveira,, A. C. (2017). Chapter 4: Current epidemiological trends of Chagas disease in Latin America and future challenges: epidemiology, surveillance, and health policies. In J. Telleria, & M. Tibayrenc, (Eds.), American Trypanosomiasis Chagas Disease (2nd ed.). Amsterdam: Elsevier.
Moss,, B., Smith,, G. L., Gerin,, J. L., & Purcell,, R. H. (1984). Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature, 311(5981), 67–69. https://doi.org/10.1038/311067a0
Moura,, A. P. V., Santos,, L. C. B., Brito,, C. R. N., Valencia,, E., Junqueira,, C., Filho,, A. A. P., … Marques,, A. F. (2017). Virus‐like particle display of the alpha‐gal carbohydrate for vaccination against Leishmania infection. ACS Central Science, 3(9), 1026–1031. https://doi.org/10.1021/acscentsci.7b00311
Murray,, A. A., Wang,, C., Fiering,, S., & Steinmetz,, N. F. (2018). In situ vaccination with cowpea vs tobacco mosaic virus against melanoma. Molecular Pharmaceutics, 15(9), 3700–3716. https://doi.org/10.1021/acs.molpharmaceut.8b00316
Nami,, S., Mohammadi,, R., Vakili,, M., Khezripour,, K., Mirzaei,, H., & Morovati,, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine %26 Pharmacotherapy, 109, 333–344. https://doi.org/10.1016/j.biopha.2018.10.075
Naso,, M. F., Tomkowicz,, B., Perry,, W. L., 3rd, & Strohl,, W. R. (2017). Adeno‐associated virus (AAV) as a vector for gene therapy. BioDrugs, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5
Neek,, M., Kim,, T. I., & Wang,, S. W. (2019). Protein‐based nanoparticles in cancer vaccine development. Nanomedicine, 15(1), 164–174. https://doi.org/10.1016/j.nano.2018.09.004
Neek,, M., Tucker,, J. A., Kim,, T. I., Molino,, N. M., Nelson,, E. L., & Wang,, S. W. (2018). Co‐delivery of human cancer‐testis antigens with adjuvant in protein nanoparticles induces higher cell‐mediated immune responses. Biomaterials, 156, 194–203. https://doi.org/10.1016/j.biomaterials.2017.11.022
Nieto,, K., & Salvetti,, A. (2014). AAV vectors vaccines against infectious diseases. Frontiers in Immunology, 5, 5. https://doi.org/10.3389/fimmu.2014.00005
Nuzzaci,, M., Piazzolla,, G., Vitti,, A., Lapelosa,, M., Tortorella,, C., Stella,, I., … Piazzolla,, P. (2007). Cucumber mosaic virus as a presentation system for a double hepatitis C virus‐derived epitope. Archives of Virology, 152(5), 915–928. https://doi.org/10.1007/s00705-006-0916-7
Ollmann Saphire,, E. (2020). A Vaccine against Ebola Virus. Cell, 181(1), 6. https://doi.org/10.1016/j.cell.2020.03.011
Omer,, S. B., Salmon,, D. A., Orenstein,, W. A., de Hart,, M. P., & Halsey,, N. (2009). Vaccine refusal, mandatory immunization, and the risks of vaccine‐preventable diseases. The New England Journal of Medicine, 360(19), 1981–1988. https://doi.org/10.1056/NEJMsa0806477
Pati,, R., Shevtsov,, M., & Sonawane,, A. (2018). Nanoparticle vaccines against infectious diseases. Frontiers in Immunology, 9, 2224. https://doi.org/10.3389/fimmu.2018.02224
Patterson,, D. P., Rynda‐Apple,, A., Harmsen,, A. L., Harmsen,, A. G., & Douglas,, T. (2013). Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano, 7(4), 3036–3044. https://doi.org/10.1021/nn4006544
Peachman,, K. K., Li,, Q., Matyas,, G. R., Shivachandra,, S. B., Lovchik,, J., Lyons,, R. C., … Rao,, M. (2012). Anthrax vaccine antigen‐adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clinical and Vaccine Immunology, 19(1), 11–16. https://doi.org/10.1128/CVI.05376-11
Peeples,, L. (2020). News feature: Avoiding pitfalls in the pursuit of a COVID‐19 vaccine. Proceedings of the National Academy of Sciences of the United States of America, 117(15), 8218–8221. https://doi.org/10.1073/pnas.2005456117
Piazzolla,, G., Nuzzaci,, M., Tortorella,, C., Panella,, E., Natilla,, A., Boscia,, D., … Antonaci,, S. (2005). Immunogenic properties of a chimeric plant virus expressing a hepatitis C virus (HCV)‐derived epitope: New prospects for an HCV vaccine. Journal of Clinical Immunology, 25(2), 142–152. https://doi.org/10.1007/s10875-005-2820-4
Pitisuttithum,, P., Nitayaphan,, S., Chariyalertsak,, S., Kaewkungwal,, J., Dawson,, P., Dhitavat,, J., … group, R. V. s. (2020). Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC‐HIV in HIV‐uninfected Thai volunteers: A double‐blind, randomised controlled trial. Lancet HIV, 7(4), e238–e248. https://doi.org/10.1016/S2352-3018(19)30406-0
Pittman,, P. R., Hahn,, M., Lee,, H. S., Koca,, C., Samy,, N., Schmidt,, D., … Chaplin,, P. (2019). Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox. The New England Journal of Medicine, 381(20), 1897–1908. https://doi.org/10.1056/NEJMoa1817307
Pomwised,, R., Intamaso,, U., Teintze,, M., Young,, M., & Pincus,, S. H. (2016). Coupling peptide antigens to virus‐like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines (Basel), 4(2), 1–10. https://doi.org/10.3390/vaccines4020015
Purwar,, M., Pokorski,, J. K., Singh,, P., Bhattacharyya,, S., Arendt,, H., DeStefano,, J., … Varadarajan,, R. (2018). Design, display and immunogenicity of HIV1 gp120 fragment immunogens on virus‐like particles. Vaccine, 36(42), 6345–6353. https://doi.org/10.1016/j.vaccine.2018.07.032
Ramezanpour,, B., Haan,, I., Osterhaus,, A., & Claassen,, E. (2016). Vector‐based genetically modified vaccines: Exploiting Jenner`s legacy. Vaccine, 34(50), 6436–6448. https://doi.org/10.1016/j.vaccine.2016.06.059
Rauch,, S., Jasny,, E., Schmidt,, K. E., & Petsch,, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers in Immunology, 9, 1963. https://doi.org/10.3389/fimmu.2018.01963
Ren,, D., Kratz,, F., & Wang,, S. W. (2011). Protein nanocapsules containing doxorubicin as a pH‐responsive delivery system. Small, 7(8), 1051–1060. https://doi.org/10.1002/smll.201002242
Rennermalm,, A., Li,, Y. H., Bohaufs,, L., Jarstrand,, C., Brauner,, A., Brennan,, F. R., & Flock,, J. I. (2001). Antibodies against a truncated Staphylococcus aureus fibronectin‐binding protein protect against dissemination of infection in the rat. Vaccine, 19(25–26), 3376–3383. https://doi.org/10.1016/s0264-410x(01)00080-9
Richert,, L. E., Harmsen,, A. L., Rynda‐Apple,, A., Wiley,, J. A., Servid,, A. E., Douglas,, T., & Harmsen,, A. G. (2013). Inducible bronchus‐associated lymphoid tissue (iBALT) synergizes with local lymph nodes during antiviral CD4+ T cell responses. Lymphatic Research and Biology, 11(4), 196–202. https://doi.org/10.1089/lrb.2013.0015
Richert,, L. E., Servid,, A. E., Harmsen,, A. L., Rynda‐Apple,, A., Han,, S., Wiley,, J. A., … Harmsen,, A. G. (2012). A virus‐like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Vaccine, 30(24), 3653–3665. https://doi.org/10.1016/j.vaccine.2012.03.035
RTS,S Clinical Trials Partnership. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. Lancet, 386(9988), 31–45. https://doi.org/10.1016/S0140-6736(15)60721-8
Sanchez,, L., Vidal,, M., Jairoce,, C., Aguilar,, R., Ubillos,, I., Cuamba,, I., … Dobano,, C. (2020). Antibody responses to the RTS,S/AS01E vaccine and Plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique. NPJ Vaccines, 5, 46. https://doi.org/10.1038/s41541-020-0192-7
Sartorius,, R., D`Apice,, L., Prisco,, A., & De Berardinis,, P. (2019). Arming filamentous bacteriophage, a nature‐made nanoparticle, for new vaccine and immunotherapeutic strategies. Pharmaceutics, 11(9), 1–22. https://doi.org/10.3390/pharmaceutics11090437
Schwarz,, B., Morabito,, K. M., Ruckwardt,, T. J., Patterson,, D. P., Avera,, J., Miettinen,, H. M., … Douglas,, T. (2016). Viruslike particles Encapsidating respiratory syncytial virus M and M2 proteins induce robust T cell responses. ACS Biomaterials Science %26 Engineering, 2(12), 2324–2332. https://doi.org/10.1021/acsbiomaterials.6b00532
Segal,, B. H., Wang,, X. Y., Dennis,, C. G., Youn,, R., Repasky,, E. A., Manjili,, M. H., & Subjeck,, J. R. (2006). Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discovery Today, 11(11–12), 534–540. https://doi.org/10.1016/j.drudis.2006.04.016
Shah,, R. A., Limmer,, A. L., Nwannunu,, C. E., Patel,, R. R., Mui,, U. N., & Tyring,, S. K. (2019). Shingrix for herpes zoster: A review. Skin Therapy Letter, 24(4), 5–7.
Sharma,, J., Shepardson,, K., Johns,, L. L., Wellham,, J., Avera,, J., Schwarz,, B., … Douglas,, T. (2020). A self‐Adjuvanted, modular, antigenic VLP for rapid response to influenza virus variability. ACS Applied Materials %26 Interfaces, 12(16), 18211–18224. https://doi.org/10.1021/acsami.9b21776
Shi,, J., Koteiche,, H. A., McDonald,, E. T., Fox,, T. L., Stewart,, P. L., & McHaourab,, H. S. (2013). Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding. The Journal of Biological Chemistry, 288(7), 4819–4830. https://doi.org/10.1074/jbc.M112.388132
Shivachandra,, S. B., Rao,, M., Janosi,, L., Sathaliyawala,, T., Matyas,, G. R., Alving,, C. R., … Rao,, V. B. (2006). In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through hoc‐capsid interactions: A strategy for efficient display of large full‐length proteins. Virology, 345(1), 190–198. https://doi.org/10.1016/j.virol.2005.10.037
Singleton,, R. L., Sanders,, C. A., Jones,, K., Thorington,, B., Egbo,, T., Coats,, M. T., & Waffo,, A. B. (2018). Function of the RNA Coliphage Qbeta proteins in medical in vitro evolution. Methods and Protocols, 1(2), 1–12. https://doi.org/10.3390/mps1020018
Skamel,, C., Aller,, S. G., & Bopda Waffo,, A. (2014). In vitro evolution and affinity‐maturation with Coliphage qbeta display. PLoS One, 9(11), e113069. https://doi.org/10.1371/journal.pone.0113069
Skibinski,, D. A., Hanson,, B. J., Lin,, Y., von Messling,, V., Jegerlehner,, A., Tee,, J. B., … Connolly,, J. E. (2013). Enhanced neutralizing antibody titers and Th1 polarization from a novel Escherichia coli derived pandemic influenza vaccine. PLoS One, 8(10), e76571. https://doi.org/10.1371/journal.pone.0076571
Skibinski,, D. A. G., Jones,, L. A., Zhu,, Y. O., Xue,, L. W., Au,, B., Lee,, B., … Connolly,, J. E. (2018). Induction of human T‐cell and cytokine responses following vaccination with a novel influenza vaccine. Scientific Reports, 8(1), 18007. https://doi.org/10.1038/s41598-018-36703-7
Sliepen,, K., Ozorowski,, G., Burger,, J. A., van Montfort,, T., Stunnenberg,, M., LaBranche,, C., … Sanders,, R. W. (2015). Presenting native‐like HIV‐1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 12, 82. https://doi.org/10.1186/s12977-015-0210-4
Soares‐Weiser,, K., Maclehose,, H., Bergman,, H., Ben‐Aharon,, I., Nagpal,, S., Goldberg,, E., … Cunliffe,, N. (2012). Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database of Systematic Reviews, 11, CD008521. https://doi.org/10.1002/14651858.CD008521.pub3
Speiser,, D. E., Schwarz,, K., Baumgaertner,, P., Manolova,, V., Devevre,, E., Sterry,, W., … Bachmann,, M. F. (2010). Memory and effector CD8 T‐cell responses after nanoparticle vaccination of melanoma patients. Journal of Immunotherapy, 33(8), 848–858. https://doi.org/10.1097/CJI.0b013e3181f1d614
Staczek,, J., Bendahmane,, M., Gilleland,, L. B., Beachy,, R. N., & Gilleland,, H. E., Jr. (2000). Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine, 18(21), 2266–2274. https://doi.org/10.1016/s0264-410x(99)00571-x
Stockley,, P. G., White,, S. J., Dykeman,, E., Manfield,, I., Rolfsson,, O., Patel,, N., … Twarock,, R. (2016). Bacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid. Bacteriophage, 6(1), e1157666. https://doi.org/10.1080/21597081.2016.1157666
Sucher,, A. J., Chahine,, E. B., Nelson,, M., & Sucher,, B. J. (2011). Prevnar 13, the new 13‐valent pneumococcal conjugate vaccine. The Annals of Pharmacotherapy, 45(12), 1516–1524. https://doi.org/10.1345/aph.1Q347
Sun,, B., Yu,, S., Zhao,, D., Guo,, S., Wang,, X., & Zhao,, K. (2018). Polysaccharides as vaccine adjuvants. Vaccine, 36(35), 5226–5234. https://doi.org/10.1016/j.vaccine.2018.07.040
Swanson,, K. A., Rainho‐Tomko,, J. N., Williams,, Z. P., Lanza,, L., Peredelchuk,, M., Kishko,, M., … Nabel,, G. J. (2020). A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Science Immunology, 5(47), eaba6466. https://doi.org/10.1126/sciimmunol.aba6466
Tao,, P., Mahalingam,, M., Zhu,, J., Moayeri,, M., Sha,, J., Lawrence,, W. S., … Rao,, V. B. (2018). A bacteriophage T4 nanoparticle‐based dual vaccine against Anthrax and plague. MBio, 9(5), 1–13. https://doi.org/10.1128/mBio.01926-18
Theil,, E. C. (2013). Ferritin: The protein nanocage and iron biomineral in health and in disease. Inorganic Chemistry, 52(21), 12223–12233. https://doi.org/10.1021/ic400484n
Therien,, A., Bedard,, M., Carignan,, D., Rioux,, G., Gauthier‐Landry,, L., Laliberte‐Gagne,, M. E., … Leclerc,, D. (2017). A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase‐mediated antigen coupling. Journal of Nanobiotechnology, 15(1), 54. https://doi.org/10.1186/s12951-017-0289-y
Tohme,, R. A., Awosika‐Olumo,, D., Nielsen,, C., Khuwaja,, S., Scott,, J., Xing,, J., … Spradling,, P. R. (2011). Evaluation of hepatitis B vaccine immunogenicity among older adults during an outbreak response in assisted living facilities. Vaccine, 29(50), 9316–9320. https://doi.org/10.1016/j.vaccine.2011.10.011
Tumban,, E., Peabody,, J., Tyler,, M., Peabody,, D. S., & Chackerian,, B. (2012). VLPs displaying a single L2 epitope induce broadly cross‐neutralizing antibodies against human papillomavirus. PLoS One, 7(11), e49751. https://doi.org/10.1371/journal.pone.0049751
Tyler,, M., Tumban,, E., Dziduszko,, A., Ozbun,, M. A., Peabody,, D. S., & Chackerian,, B. (2014). Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine, 32(34), 4267–4274. https://doi.org/10.1016/j.vaccine.2014.06.054
Uhde‐Holzem,, K., Schlosser,, V., Viazov,, S., Fischer,, R., & Commandeur,, U. (2010). Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. Journal of Virological Methods, 166(1–2), 12–20. https://doi.org/10.1016/j.jviromet.2010.01.017
Ura,, T., Okuda,, K., & Shimada,, M. (2014). Developments in viral vector‐based vaccines. Vaccines (Basel), 2(3), 624–641. https://doi.org/10.3390/vaccines2030624
Vabret,, N., Britton,, G. J., Gruber,, C., Hegde,, S., Kim,, J., Kuksin,, M., … The Sinai Immunology Review Project. (2020). Immunology of COVID‐19: Current state of the science. Immunity, 52(6), 910–941. https://doi.org/10.1016/j.immuni.2020.05.002
Vadala,, M., Poddighe,, D., Laurino,, C., & Palmieri,, B. (2017). Vaccination and autoimmune diseases: Is prevention of adverse health effects on the horizon? The EPMA Journal, 8(3), 295–311. https://doi.org/10.1007/s13167-017-0101-y
van Zyl‐Smit,, R. N., Esmail,, A., Bateman,, M. E., Dawson,, R., Goldin,, J., van Rikxoort,, E., … Bateman,, E. D. (2017). Safety and immunogenicity of adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A randomized trial. American Journal of Respiratory and Critical Care Medicine, 195(9), 1171–1180. https://doi.org/10.1164/rccm.201603-0654OC
Vardas,, E., Kaleebu,, P., Bekker,, L. G., Hoosen,, A., Chomba,, E., Johnson,, P. R., … Schmidt,, C. (2010). A phase 2 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 vaccine based on adeno‐associated virus. AIDS Research and Human Retroviruses, 26(8), 933–942. https://doi.org/10.1089/aid.2009.0242
Vartak,, A., & Sucheck,, S. J. (2016). Recent advances in subunit vaccine carriers. Vaccines (Basel), 4(2), 12. https://doi.org/10.3390/vaccines4020012
Vrieze,, J. (2019). First malaria vaccine rolled out in Africa—Despite limited efficacy and nagging safety concerns. Science. https://doi.org/10.1126/science.aba3207
Wang,, C., Beiss,, V., & Steinmetz,, N. F. (2019). Cowpea mosaic virus nanoparticles and empty virus‐like particles show distinct but overlapping Immunostimulatory properties. Journal of Virology, 93(21), 1–14. https://doi.org/10.1128/JVI.00129-19
Wang,, C., Tu,, J., Liu,, J., & Molineux,, I. J. (2019). Structural dynamics of bacteriophage P22 infection initiation revealed by cryo‐electron tomography. Nature Microbiology, 4(6), 1049–1056. https://doi.org/10.1038/s41564-019-0403-z
Wang,, L., Xing,, D., Le Van,, A., Jerse,, A. E., & Wang,, S. (2017). Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae. FEBS Open Bio, 7(8), 1196–1207. https://doi.org/10.1002/2211-5463.12267
Wang,, W., Zhou,, X., Bian,, Y., Wang,, S., Chai,, Q., Guo,, Z., … Zhu,, M. (2020). Dual‐targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nature Nanotechnology, 15(5), 406–416. https://doi.org/10.1038/s41565-020-0648-y
Wang,, Y., Su,, Q., Dong,, S., Shi,, H., Gao,, X., & Wang,, L. (2014). Hybrid phage displaying SLAQVKYTSASSI induces protection against Candida albicans challenge in BALB/c mice. Human Vaccines %26 Immunotherapeutics, 10(4), 1057–1063. https://doi.org/10.4161/hv.27714
Wang,, Z., Xu,, L., Yu,, H., Lv,, P., Lei,, Z., Zeng,, Y., … Cheng,, T. (2019). Ferritin nanocage‐based antigen delivery nanoplatforms: Epitope engineering for peptide vaccine design. Biomaterials Science, 7(5), 1794–1800. https://doi.org/10.1039/c9bm00098d
Wilkie,, M., Satti,, I., Minhinnick,, A., Harris,, S., Riste,, M., Ramon,, R. L., … McShane,, H. (2020). A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime ‐ MVA85A boost in healthy UKadults. Vaccine, 38(4), 779–789. https://doi.org/10.1016/j.vaccine.2019.10.102
Yan,, Y., Wang,, X., Lou,, P., Hu,, Z., Qu,, P., Li,, D., … Zhong,, H. (2020). A nanoparticle‐based hepatitis C virus vaccine with enhanced potency. The Journal of Infectious Diseases, 221(8), 1304–1314. https://doi.org/10.1093/infdis/jiz228
Yassine,, H. M., Boyington,, J. C., McTamney,, P. M., Wei,, C. J., Kanekiyo,, M., Kong,, W. P., … Graham,, B. S. (2015). Hemagglutinin‐stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 21(9), 1065–1070. https://doi.org/10.1038/nm.3927
Yusibov,, V., Mett,, V., Mett,, V., Davidson,, C., Musiychuk,, K., Gilliam,, S., … Mann,, D. (2005). Peptide‐based candidate vaccine against respiratory syncytial virus. Vaccine, 23(17–18), 2261–2265. https://doi.org/10.1016/j.vaccine.2005.01.039
Zhai,, L., Peabody,, J., Pang,, Y. S., Schiller,, J., Chackerian,, B., & Tumban,, E. (2017). A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil‐9. Antiviral Research, 147, 116–123. https://doi.org/10.1016/j.antiviral.2017.09.012
Zhai,, L., Yadav,, R., Kunda,, N. K., Anderson,, D., Bruckner,, E., Miller,, E. K., … Tumban,, E. (2019). Oral immunization with bacteriophage MS2‐L2 VLPs protects against oral and genital infection with multiple HPV types associated with head %26 neck cancers and cervical cancer. Antiviral Research, 166, 56–65. https://doi.org/10.1016/j.antiviral.2019.03.012
Zhu,, F., Wang,, Y., Xu,, Z., Qu,, H., Zhang,, H., Niu,, L., … He,, H. (2019). Novel adenoassociated virusbased genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Molecular Medicine Reports, 19(2), 1016–1023. https://doi.org/10.3892/mmr.2018.9739
Zhu,, F.‐C., Li,, Y.‐H., Guan,, X.‐H., Hou,, L.‐H., Wang,, W.‐J., Li,, J.‐X., … Chen,, W. (2020). Safety, tolerability, and immunogenicity of a recombinant adenovirus type‐5 vectored COVID‐19 vaccine: A dose‐escalation, open‐label, non‐randomised, first‐in‐human trial. The Lancet, 395(10240), 1845–1854. https://doi.org/10.1016/s0140-6736(20)31208-3