Assali,, M., Kittana,, N., Qasem,, S. A., Adas,, R., Saleh,, D., Arar,, A., & Zohud,, O. (2019). Combretastatin A4‐camptothecin micelles as combination therapy for effective anticancer activity. RSC Advances, 9(2), 1055–1061. https://doi.org/10.1039/c8ra08794f
Baker,, S. E., Sawvel,, A. M., Fan,, J., Shi,, Q., Strandwitz,, N., & Stucky,, G. D. (2008). Blood clot initiation by mesocellular foams: Dependence on nanopore size and enzyme immobilization. Langmuir, 24(24), 14254–14260. https://doi.org/10.1021/la802804z
Balakrishnan,, S., Bhat,, F. A., Raja Singh,, P., Mukherjee,, S., Elumalai,, P., Das,, S., … Arunakaran,, J. (2016). Gold nanoparticle‐conjugated quercetin inhibits epithelial‐mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR‐2‐mediated pathway in breast cancer. Cell Proliferation, 49(6), 678–697. https://doi.org/10.1111/cpr.12296
Balakrishnan,, S., Mukherjee,, S., Das,, S., Bhat,, F. A., Singh,, P. R., Patra,, C. R., & Arunakaran,, J. (2017). Gold nanoparticles‐conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt‐mediated pathway in breast cancer cell lines (MCF‐7 and MDA‐MB‐231). Cell Biochemistry and Function, 35(4), 217–231. https://doi.org/10.1002/cbf.3266
Baluk,, P., Morikawa,, S., Haskell,, A., Mancuso,, M., & McDonald,, D. M. (2003). Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. American Journal of Pathology, 163(5), 1801–1815. https://doi.org/10.1016/s0002-9440(10)63540-7
Banerjee,, I., De,, K., Mukherjee,, D., Dey,, G., Chattopadhyay,, S., Mukherjee,, M., … Misra,, M. (2016). Paclitaxel‐loaded solid lipid nanoparticles modified with Tyr‐3‐octreotide for enhanced anti‐angiogenic and anti‐glioma therapy. Acta Biomaterialia, 38, 69–81. https://doi.org/10.1016/j.actbio.2016.04.026
Battaglia,, L., Gallarate,, M., Peira,, E., Chirio,, D., Solazzi,, I., Giordano,, S. M. A., … Dianzani,, C. (2015). Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies. Nanotechnology, 26(25), 255102. https://doi.org/10.1088/0957-4484/26/25/255102
Behl,, T., & Kotwani,, A. (2015). Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy. Life Sciences, 135, 131–137. https://doi.org/10.1016/j.lfs.2015.06.017
Bergers,, G., & Benjamin,, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410. https://doi.org/10.1038/nrc1093
Bhattarai,, P., Hameed,, S., & Dai,, Z. F. (2018). Recent advances in anti‐angiogenic nanomedicines for cancer therapy. Nanoscale, 10(12), 5393–5423. https://doi.org/10.1039/c7nr09612g
Bianchini,, F., De Santis,, A., Portioli,, E., Krauss,, I. R., Battistini,, L., Curti,, C., … Sartori,, A. (2019). Integrin‐targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools. Nanomedicine: Nanotechnology, Biology and Medicine, 18, 135–145. https://doi.org/10.1016/j.nano.2019.02.015
Boral,, B. M., Williams,, D. J., & Boral,, L. I. (2016). Disseminated intravascular coagulation. American Journal of Clinical Pathology, 146(6), 670–680. https://doi.org/10.1093/ajcp/aqw195
Brand,, C., Froehlich,, M., Ring,, J., Schliemann,, C., Kessler,, T., Mantke,, V., … Schwoeppe,, C. (2015). Tumor growth inhibition via occlusion of tumor vasculature induced by N‐terminally PEGylated retargeted tissue factor tTF‐NGR. Molecular Pharmaceutics, 12(10), 3749–3758. https://doi.org/10.1021/acs.molpharmaceut.5b00508
Chen,, D., Qu,, X., Shao,, J., Wang,, W., & Dong,, X. (2020). Anti‐vascular nano agents: A promising approach for cancer treatment. Journal of Materials Chemistry B, 8(15), 2990–3004. https://doi.org/10.1039/c9tb02957e
Chen,, J., Jiang,, Z., Xu,, W., Sun,, T., Zhuang,, X., Ding,, J., & Chen,, X. (2020). Spatiotemporally targeted nanomedicine overcomes hypoxia‐induced drug resistance of tumor cells after disrupting neovasculature. Nano Letters, 20(8), 6191–6198. https://doi.org/10.1021/acs.nanolett.0c02515
Chen,, J., Sun,, X., Shao,, R., Xu,, Y., Gao,, J., & Liang,, W. (2017). VEGF siRNA delivered by polycation liposome‐encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. International Journal of Nanomedicine, 12, 6075–6088. https://doi.org/10.2147/ijn.S142739
Chen,, Q., Osada,, K., Ge,, Z., Uchida,, S., Tockary,, T. A., Dirisala,, A., … Kataoka,, K. (2017). Polyplex micelle installing intracellular self‐processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials, 113, 253–265. https://doi.org/10.1016/j.biomaterials.2016.10.042
Chen,, X., Lv,, H., Ye,, M., Wang,, S., Ni,, E., Zeng,, F., … Yan,, J. (2012). Novel superparamagnetic iron oxide nanoparticles for tumor embolization application: Preparation, characterization and double targeting. International Journal of Pharmaceutics, 426(1–2), 248–255. https://doi.org/10.1016/j.ijpharm.2012.01.043
Cho,, C. F., Yu,, L., Nsiama,, T. K., Kadam,, A. N., Raturi,, A., Shukla,, S., … Lewis,, J. D. (2017). Viral nanoparticles decorated with novel EGFL7 ligands enable intravital imaging of tumor neovasculature. Nanoscale, 9(33), 12096–12109. https://doi.org/10.1039/c7nr02558k
Choi,, J. Y., Ramasamy,, T., Kim,, S. Y., Kim,, J., Ku,, S. K., Youn,, Y. S., … Kim,, J. O. (2016). PEGylated lipid bilayer‐supported mesoporous silica nanoparticle composite for synergistic co‐delivery of axitinib and celastrol in multi‐targeted cancer therapy. Acta Biomaterialia, 39, 94–105. https://doi.org/10.1016/j.actbio.2016.05.012
Conesa‐Milian,, L., Falomir,, E., Murga,, J., Carda,, M., Meyen,, E., Liekens,, S., & Alberto Marco,, J. (2018). Synthesis and biological evaluation of carbamates derived from aminocombretastatin A‐4 as vascular disrupting agents. European Journal of Medicinal Chemistry, 147, 183–193. https://doi.org/10.1016/j.ejmech.2018.01.058
Coutinho,, J. M. (2015). Cerebral venous thrombosis. Journal of Thrombosis and Haemostasis, 13(Suppl 1), S238–S244. https://doi.org/10.1111/jth.12945
Crielaard,, B. J., van der Wal,, S., Huong Thu,, L., Bode,, A. T. L., Lammers,, T., Hennink,, W. E., … Storm,, G. (2012). Liposomes as carriers for colchicine‐derived prodrugs: Vascular disrupting nanomedicines with tailorable drug release kinetics. European Journal of Pharmaceutical Sciences, 45(4), 429–435. https://doi.org/10.1016/j.ejps.2011.08.027
Crielaard,, B. J., van der Wal,, S., Lammers,, T., Huong Thu,, L., Hennink,, W. E., Schiffelers,, R. M., … Fens,, M. H. A. M. (2011). A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. International Journal of Nanomedicine, 6, 2697–2703. https://doi.org/10.2147/ijn.S24450
Dahmani,, F. Z., Xiao,, Y., Zhang,, J., Yu,, Y., Zhou,, J., & Yao,, J. (2016). Multifunctional polymeric nanosystems for dual‐targeted combinatorial chemo/angiogenesis therapy of tumors. Advanced Healthcare Materials, 5(12), 1447–1461. https://doi.org/10.1002/adhm.201600169
Darweesh,, R. S., Ayoub,, N. M., & Nazzal,, S. (2019). Gold nanoparticles and angiogenesis: Molecular mechanisms and biomedical applications. International Journal of Nanomedicine, 14, 7643–7663. https://doi.org/10.2147/ijn.S223941
Daswani,, V. P., Ayesa,, U., Venegas,, B., & Chong,, P. L. G. (2015). Concentration‐induced J‐aggregate formation causes a biphasic change in the release of trans‐combretastatin A4 disodium phosphate from archaeosomes and the subsequent cytotoxicity on mammary cancer cells. Molecular Pharmaceutics, 12(10), 3724–3734. https://doi.org/10.1021/acs.molpharmaceut.5b00500
Davie,, E. W., & Kulman,, J. D. (2006). An overview of the structure and function of thrombin. Seminars in Thrombosis and Hemostasis, 32 Suppl 1, 3–15. https://doi.org/10.1055/s-2006-939550
Day,, E. S., Zhang,, L. N., Thompson,, P. A., Zawaski,, J. A., Kaffes,, C. C., Gaber,, M. W., … West,, J. L. (2012). Vascular‐targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine, 7(8), 1133–1148. https://doi.org/10.2217/Nnm.11.189
Denekamp,, J. (1990). Vascular attack as a therapeutic strategy for cancer. Cancer and Metastasis Reviews, 9(3), 267–282. https://doi.org/10.1007/bf00046365
Deng,, R., Wang,, Y., Zhen,, M., Li,, X., Zou,, T., Li,, J., … Wang,, C. (2018). Real‐time monitoring of tumor vascular disruption induced by radiofrequency assisted gadofullerene. Science China Materials, 61(8), 1101–1111. https://doi.org/10.1007/s40843-017-9223-6
Detappe,, A., Tsiamas,, P., Ngwa,, W., Zygmanski,, P., Makrigiorgos,, M., & Berbeco,, R. (2013). The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles. Medical Physics, 40(3), 031706. https://doi.org/10.1118/1.4791671
Di Paolo,, D., Ambrogio,, C., Pastorino,, F., Brignole,, C., Martinengo,, C., Carosio,, R., … Perri,, P. (2011). Selective therapeutic targeting of the anaplastic lymphoma kinase with liposomal siRNA induces apoptosis and inhibits angiogenesis in neuroblastoma. Molecular Therapy, 19(12), 2201–2212. https://doi.org/10.1038/mt.2011.142
Di Paolo,, D., Pastorino,, F., Zuccari,, G., Caffa,, I., Loi,, M., Marimpietri,, D., … Pagnan,, G. (2013). Enhanced anti‐tumor and anti‐angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. Journal of Controlled Release, 170(3), 445–451. https://doi.org/10.1016/j.jconrel.2013.06.015
Diagaradjane,, P., Shetty,, A., Wang,, J. C., Elliott,, A. M., Schwartz,, J., Shentu,, S., … Krishnan,, S. (2008). Modulation of in vivo tumor radiation response via gold nanoshell‐mediated vascular‐focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Letters, 8(5), 1492–1500. https://doi.org/10.1021/nl080496z
Ding,, J., Chen,, J., Gao,, L., Jiang,, Z., Zhang,, Y., Li,, M., … Chen,, X. (2019). Engineered nanomedicines with enhanced tumor penetration. Nano Today, 29, 100800. https://doi.org/10.1016/j.nantod.2019.100800
Dupeyre,, G., Chabot,, G. G., Thoret,, S., Cachet,, X., Seguin,, J., Guenard,, D., … Michel,, S. (2006). Synthesis and biological evaluation of (3,4,5‐trimethoxyphenyl)indol‐3‐ylmethane derivatives as potential antivascular agents. Bioorganic %26 Medicinal Chemistry, 14(13), 4410–4426. https://doi.org/10.1016/j.bmc.2006.02.037
Duval,, A. P., Jeanneret,, C., Santoro,, T., & Dormond,, O. (2018). mTOR and tumor cachexia. International Journal of Molecular Sciences, 19(8), 2225. https://doi.org/10.3390/ijms19082225
Dvorak,, H. F., Nagy,, J. A., & Dvorak,, A. M. (1991). Structure of solid tumors and their vasculature: Implications for therapy with monoclonal antibodies. Cancer Cells, 3(3), 77–85.
Dvorak,, H. F., Nagy,, J. A., Dvorak,, J. T., & Dvorak,, A. M. (1988). Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. American Journal of Pathology, 133(1), 95–109.
Eberhard,, A., Kahlert,, S., Goede,, V., Hemmerlein,, B., Plate,, K. H., & Augustin,, H. G. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: Implications for antiangiogenic tumor therapies. Cancer Research, 60(5), 1388–1393.
Falcon,, B. L., Chintharlapalli,, S., Uhlik,, M. T., & Pytowski,, B. (2016). Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR‐2) as anti‐angiogenic agents. Pharmacology %26 Therapeutics, 164, 204–225. https://doi.org/10.1016/j.pharmthera.2016.06.001
Ferrara,, N., & Adamis,, A. P. (2016). Ten years of anti‐vascular endothelial growth factor therapy. Nature Reviews Drug Discovery, 15(6), 385–403. https://doi.org/10.1038/nrd.2015.17
Folkman,, J., Bach,, M., Rowe,, J. W., Davidoff,, F., Lambert,, P., Hirsch,, C., … Henshaw,, E. (1971). Tumor angiogenesis‐therapeutic implications. New England Journal of Medicine, 285(21), 1182–1186. https://doi.org/10.1056/NEJM197111182852108
Gacche,, R. N., & Assaraf,, Y. G. (2018). Redundant angiogenic signaling and tumor drug resistance. Drug Resistance Updates, 36, 47–76. https://doi.org/10.1016/j.drup.2018.01.002
Gill,, J. H., Loadman,, P. M., Shnyder,, S. D., Cooper,, P., Atkinson,, J. M., Morais,, G. R., … Falconer,, R. A. (2014). Tumor‐targeted prodrug ICT2588 demonstrates therapeutic activity against solid tumors and reduced potential for cardiovascular toxicity. Molecular Pharmaceutics, 11(4), 1294–1300. https://doi.org/10.1021/mp400760b
Gillies,, R. J., Schornack,, P. A., Secomb,, T. W., & Raghunand,, N. (1999). Causes and effects of heterogeneous perfusion in tumors. Neoplasia, 1(3), 197–207. https://doi.org/10.1038/sj.neo.7900037
Giri,, S., Karakoti,, A., Graham,, R. P., Maguire,, J. L., Reilly,, C. M., Seal,, S., … Shridhar,, V. (2013). Nanoceria: A rare‐earth nanoparticle as a novel anti‐angiogenic therapeutic agent in ovarian cancer. PLoS ONE, 8(1), e54578. https://doi.org/10.1371/journal.pone.0054578
Golkar,, N., Samani,, S. M., & Tamaddon,, A. M. (2016). Modulated cellular delivery of anti‐VEGF siRNA (bevasiranib) by incorporating supramolecular assemblies of hydrophobically modified polyamidoamine dendrimer in stealth liposomes. International Journal of Pharmaceutics, 510(1), 30–41. https://doi.org/10.1016/j.ijpharm.2016.06.026
Grodzik,, M., Sawosz,, E., Wierzbicki,, M., Orlowski,, P., Hotowy,, A., Niemiec,, T., … Chwalibog,, A. (2011). Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. International Journal of Nanomedicine, 6, 3041–3048. https://doi.org/10.2147/ijn.S25528
Guo,, P., Yang,, J., Jia,, D., Moses,, M. A., & Auguste,, D. T. (2016). ICAM‐1‐targeted, Lcn2 siRNA‐encapsulating liposomes are potent anti‐angiogenic agents for triple negative breast cancer. Theranostics, 6(1), 1–13. https://doi.org/10.7150/thno.12167
Gurunathan,, S., Lee,, K. J., Kalishwaralal,, K., Sheikpranbabu,, S., Vaidyanathan,, R., & Eom,, S. H. (2009). Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), 6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008
Hao,, Y., Peng,, J., Zhang,, Y., Chen,, L., Luo,, F., Wang,, C., & Qian,, Z. (2018). Tumor neovasculature‐targeted APRPG‐PEG‐PDLLA/MPEG‐PDLLA mixed micelle loading combretastatin A‐4 for breast cancer therapy. ACS Biomaterials Science %26 Engineering, 4(6), 1986–1999. https://doi.org/10.1021/acsbiomaterials.7b00523
Harfouche,, R., Basu,, S., Soni,, S., Hentschel,, D. M., Mashelkar,, R. A., & Sengupta,, S. (2009). Nanoparticle‐mediated targeting of phosphatidylinositol‐3‐kinase signaling inhibits angiogenesis. Angiogenesis, 12(4), 325–338. https://doi.org/10.1007/s10456-009-9154-4
Hashizume,, H., Baluk,, P., Morikawa,, S., McLean,, J. W., Thurston,, G., Roberge,, S., … McDonald,, D. M. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. The American Journal of Pathology, 156(4), 1363–1380. https://doi.org/10.1016/s0002-9440(10)65006-7
Head,, M., & Jameson,, M. B. (2010). The development of the tumor vascular‐disrupting agent ASA404 (vadimezan, DMXAA): Current status and future opportunities. Expert Opinion on Investigational Drugs, 19(2), 295–304. https://doi.org/10.1517/13543780903540214
Heinig,, U., Scholz,, S., & Jennewein,, S. (2013). Getting to the bottom of Taxol biosynthesis by fungi. Fungal Diversity, 60(1), 161–170. https://doi.org/10.1007/s13225-013-0228-7
Heneberg,, P. (2016). Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Critical Reviews in Oncology/Hematology, 97, 303–311. https://doi.org/10.1016/j.critrevonc.2015.09.008
Hinnen,, P., & Eskens,, F. A. L. M. (2007). Vascular disrupting agents in clinical development. British Journal of Cancer, 96(8), 1159–1165. https://doi.org/10.1038/sj.bjc.6603694
Ho,, Y. J., Wu,, C. H., Jin,, Q. f., Lin,, C. Y., Chiang,, P. H., Wu,, N., … Yeh,, C. K. (2020). Superhydrophobic drug‐loaded mesoporous silica nanoparticles capped with β‐cyclodextrin for ultrasound image‐guided combined antivascular and chemo‐sonodynamic therapy. Biomaterials, 232, 119723. https://doi.org/10.1016/j.biomaterials.2019.119723
Ho,, Y. J., & Yeh,, C. K. (2017). Concurrent anti‐vascular therapy and chemotherapy in solid tumors using drug‐loaded acoustic nanodroplet vaporization. Acta Biomaterialia, 49, 472–485. https://doi.org/10.1016/j.actbio.2016.11.018
Hori,, K., Nishihara,, M., Shiraishi,, K., & Yokoyama,, M. (2010). The combretastatin derivative (Cderiv), a vascular disrupting agent, enables polymeric nanomicelles to accumulate in microtumors. Journal of Pharmaceutical Sciences, 99(6), 2914–2925. https://doi.org/10.1002/jps.22038
Hsieh,, J. J., Purdue,, M. P., Signoretti,, S., Swanton,, C., Albiges,, L., Schmidinger,, M., … Ficarra,, V. (2017). Renal cell carcinoma. Nature Reviews Disease Primers, 3, 17009. https://doi.org/10.1038/nrdp.2017.9
Huang,, S., Shao,, K., Liu,, Y., Kuang,, Y., Li,, J., An,, S., … Jiang,, C. (2013). Tumor‐targeting and microenvironment‐responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano, 7(3), 2860–2871. https://doi.org/10.1021/nn400548g
Huang,, X. M., Molema,, G., King,, S., Watkins,, L., Edgington,, T. S., & Thorpe,, P. E. (1997). Tumor infarction in mice by antibody‐directed targeting of tissue factor to tumor vasculature. Science, 275(5299), 547–550. https://doi.org/10.1126/science.275.5299.547
Imlay,, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
Iwase,, Y., & Maitani,, Y. (2012). Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biological and Pharmaceutical Bulletin, 35(6), 975–979. https://doi.org/10.1248/bpb.35.975
Jahanban‐Esfahlan,, R., Seidi,, K., Banimohamad‐Shotorbani,, B., Jahanban‐Esfahlan,, A., & Yousefi,, B. (2018). Combination of nanotechnology with vascular targeting agents for effective cancer therapy. Journal of Cellular Physiology, 233(4), 2982–2992. https://doi.org/10.1002/jcp.26051
Jahanban‐Esfahlan,, R., Seidi,, K., & Zarghami,, N. (2017). Tumor vascular infarction: Prospects and challenges. International Journal of Hematology, 105(3), 244–256. https://doi.org/10.1007/s12185-016-2171-3
Jain,, R. K. (1987). Transport of molecules across tumor vasculature. Cancer and Metastasis Reviews, 6(4), 559–593. https://doi.org/10.1007/bf00047468
Jassar,, A. S., Suzuki,, E., Kapoor,, V., Sun,, J., Silverberg,, M. B., Cheung,, L., … Albelda,, S. M. (2005). Activation of tumor‐associated macrophages by the vascular disrupting agent 5,6‐dimethylxanthenone‐4‐acetic acid induces an effective CD8+ T‐cell‐mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Research, 65(24), 11752–11761. https://doi.org/10.1158/0008-5472.Can-05-1658
Jiang,, J., Shen,, N., Ci,, T., Tang,, Z., Gu,, Z., Li,, G., & Chen,, X. (2019). Combretastatin A4 nanodrug‐induced MMP9 amplification boosts tumor‐selective release of doxorubicin prodrug. Advanced Materials, 31(44), 1904278. https://doi.org/10.1002/adma.201904278
Jiang,, J., Zhang,, Q., Guo,, J., Fang,, S., Zhou,, R., Zhu,, J., … Zheng,, C. (2019). Synthesis and biological evaluation of 7‐methoxy‐1‐(3,4,5‐trimethoxyphenyl)‐4,5‐dihydro‐2H‐benzo[e]indazoles as new colchicine site inhibitors. Bioorganic %26 Medicinal Chemistry Letters, 29(18), 2632–2634. https://doi.org/10.1016/j.bmcl.2019.07.042
Jiang,, Z., Chen,, J., Cui,, L., Zhuang,, X., Ding,, J., & Chen,, X. (2018). Advances in stimuli‐responsive polypeptide Nanogels. Small Methods, 2(3), 1700307. https://doi.org/10.1002/smtd.201700307
Kasthuri,, R. S., Glover,, S. L., Boles,, J., & Mackman,, N. (2010). Tissue factor and tissue factor pathway inhibitor as key regulators of global hemostasis: Measurement of their levels in coagulation assays. Seminars in Thrombosis and Hemostasis, 36(7), 764–771. https://doi.org/10.1055/s-0030-1265293
Kattula,, S., Byrnes,, J. R., & Wolberg,, A. S. (2017). Fibrinogen and fibrin in hemostasis and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(3), e13–e21. https://doi.org/10.1161/atvbaha.117.308564
Kommareddy,, S., & Amiji,, M. (2007). Antiangiogenic gene therapy with systemically administered sFlt‐1 plasmid DNA in engineered gelatin‐based nanovectors. Cancer Gene Therapy, 14(5), 488–498. https://doi.org/10.1038/sj.cgt.7701041
Konerding,, M. A., Malkusch,, W., Klapthor,, B., van Ackern,, C., Fait,, E., Hill,, S. A., … Denekamp,, J. (1999). Evidence for characteristic vascular patterns in solid tumours: Quantitative studies using corrosion casts. British Journal of Cancer, 80(5–6), 724–732. https://doi.org/10.1038/sj.bjc.6690416
Kotopoulis,, S., Stigenc,, E., Popa,, M., Safont,, M. M., Healey,, A., Kvale,, S., … McCormack,, E. (2017). Sonoporation with acoustic cluster therapy (ACT [R]) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. Journal of Controlled Release, 245, 70–80. https://doi.org/10.1016/j.jconrel.2016.11.019
Lee,, S. J., Yook,, S., Yhee,, J. Y., Yoon,, H. Y., Kim,, M. G., Ku,, S. H., … Kim,, K. (2015). Co‐delivery of VEGF and Bcl‐2 dual‐targeted siRNA polymer using a single nanoparticle for synergistic anti‐cancer effects in vivo. Journal of Controlled Release, 220, 631–641. https://doi.org/10.1016/j.jconrel.2015.08.032
Less,, J. R., Skalak,, T. C., Sevick,, E. M., & Jain,, R. K. (1991). Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Resach, 51(1), 265–273.
Levi,, M. (2016). Management of cancer‐associated disseminated intravascular coagulation. Thrombosis Research, 140(Suppl 1), S66–S70. https://doi.org/10.1016/s0049-3848(16)30101-3
Li,, F., Wang,, Y., Chen,, W. L., Wang,, D. D., Zhou,, Y. J., You,, B. G., … Zhang,, X. N. (2019). Co‐delivery of VEGF siRNA and etoposide for enhanced anti‐angiogenesis and anti‐proliferation effect via multi‐functional nanoparticles for orthotopic non‐small cell lung cancer treatment. Theranostics, 9(20), 5886–5898. https://doi.org/10.7150/thno.32416
Li,, H., Zhang,, X., Lin,, X., Zhuang,, S., Wu,, Y., Liu,, Z., … Zhao,, J. (2020). CaCO3 nanoparticles pH‐sensitively induce blood coagulation as a potential strategy for starving tumor therapy. Journal of Materials Chemistry B, 8(6), 1223–1234. https://doi.org/10.1039/c9tb02684c
Li,, S., Feng,, X., Wang,, J., He,, L., Wang,, C., Ding,, J., & Chen,, X. (2018). Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Research, 11(11), 5769–5786. https://doi.org/10.1007/s12274-018-2124-7
Li,, S., Jiang,, Q., Ding,, B., & Nie,, G. (2019). Anticancer activities of tumor‐killing nanorobots. Trends in Biotechnology, 37(6), 573–577. https://doi.org/10.1016/j.tibtech.2019.01.010
Li,, S., Jiang,, Q., Liu,, S., Zhang,, Y., Tian,, Y., Song,, C., … Zhao,, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258–264. https://doi.org/10.1038/nbt.4071
Li,, S., Zhang,, Y., Wang,, J., Zhao,, Y., Ji,, T., Zhao,, X., … Nie,, G. (2017). Nanoparticle‐mediated local depletion of tumour‐associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering, 1(8), 667–679. https://doi.org/10.1038/s41551-017-0115-8
Li,, X., Wu,, M., Pan,, L., & Shi,, J. (2016). Tumor vascular‐targeted co‐delivery of anti‐angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle‐based drug delivery system for synergetic therapy of tumor. International Journal of Nanomedicine, 11, 93–105. https://doi.org/10.2147/ijn.S81156
Li,, X., Zhen,, M., Deng,, R., Yu,, T., Li,, J., Zhang,, Y., … Wang,, C. (2018). RF‐assisted gadofullerene nanoparticles induces rapid tumor vascular disruption by down‐expression of tumor vascular endothelial cadherin. Biomaterials, 163, 142–153. https://doi.org/10.1016/j.biomaterials.2018.02.028
Li,, Y., Wu,, Y., Huang,, L., Miao,, L., Zhou,, J., Satterlee,, A. B., & Yao,, J. (2016). Sigma receptor‐mediated targeted delivery of anti‐angiogenic multifunctional nanodrugs for combination tumor therapy. Journal of Controlled Release, 228, 107–119. https://doi.org/10.1016/j.jconrel.2016.02.044
Liang,, Y., Hao,, Y., Wu,, Y., Zhou,, Z., Li,, J., Sun,, X., & Liu,, Y. N. (2019). Integrated hydrogel platform for programmed antitumor therapy based on near‐infrared‐triggered hyperthermia and vascular disruption. ACS Applied Materials %26 Interfaces, 11(24), 21381–21390. https://doi.org/10.1021/acsami.9b05536
Lin,, C. Y., Tseng,, H. C., Shiu,, H. R., Wu,, M. F., Chou,, C. Y., & Lin,, W. L. (2012). Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug. International Journal of Nanomedicine, 7, 2143–2152. https://doi.org/10.2147/ijn.S29514
Liu,, T., Zhang,, D., Song,, W., Tang,, Z., Zhu,, J., Ma,, Z., … Tong,, T. (2017). A poly(L‐glutamic acid)‐combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor. Acta Biomaterialia, 53, 179–189. https://doi.org/10.1016/j.actbio.2017.02.001
Liu,, Y., Kim,, Y. J., Siriwon,, N., Rohrs,, J. A., Yu,, Z., & Wanga,, P. (2018). Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature. Biotechnology and Bioengineering, 115(6), 1403–1415. https://doi.org/10.1002/bit.26566
Liu,, Y., Yang,, D., Hong,, Z., Guo,, S., Liu,, M., Zuo,, D., … Sun,, D. (2018). Synthesis and biological evaluation of 4,6‐diphenyl‐2‐(1H‐pyrrol‐1‐yl)nicotinonitrile analogues of crolibulin and combretastatin A‐4. European Journal of Medicinal Chemistry, 146, 185–193. https://doi.org/10.1016/j.ejmech.2018.01.052
Liu,, Z., Shen,, N., Tang,, Z., Zhang,, D., Ma,, L., Yang,, C., & Chen,, X. (2019). An eximious and affordable GSH stimulus‐responsive poly(α‐lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomaterials Science, 7(7), 2803–2811. https://doi.org/10.1039/c9bm00002j
Liu,, Z., Tang,, Z., Zhang,, D., Wu,, J., Si,, X., Shen,, N., & Chen,, X. (2020). A novel GSH responsive poly(α‐lipoic acid) nanocarrier bonding with the honokiol‐DMXAA conjugate for combination therapy. Science China Materials, 63(2), 307–315. https://doi.org/10.1007/s40843-019-1183-0
Lominadze,, D., & McHedlishvili,, G. (1999). Red blood cell behavior at low flow rate in microvessels. Microvascular Research, 58(2), 187–189. https://doi.org/10.1006/mvre.1999.2160
Lu,, Z., Jia,, W., Deng,, R., Zhou,, Y., Li,, X., Yu,, T., … Wang,, C. (2020). Light‐assisted gadofullerene nanoparticles disrupt tumor vasculatures for potent melanoma treatment. Journal of Materials Chemistry B, 8(12), 2508–2518. https://doi.org/10.1039/c9tb02752a
Luo,, X., Zhang,, H., Chen,, M., Wei,, J., Zhang,, Y., & Li,, X. (2014). Antimetastasis and antitumor efficacy promoted by sequential release of vascular disrupting and chemotherapeutic agents from electrospun fibers. International Journal of Pharmaceutics, 475(1–2), 438–449. https://doi.org/10.1016/j.ijpharm.2014.09.006
Lv,, S., Tang,, Z., Song,, W., Zhang,, D., Li,, M., Liu,, H., … Chen,, X. (2017). Inhibiting solid tumor growth in vivo by non‐tumor‐penetrating nanomedicine. Small, 13(12), 1600954. https://doi.org/10.1002/smll.201600954
Ma,, H., Jiang,, W., Ding,, J., Li,, M., Cheng,, Y., Sun,, S., … Liu,, Y. (2016). Polymer nanoparticle‐based chemotherapy for spinal malignancies. Journal of Nanomaterials, 2, 1–14. https://doi.org/10.1155/2016/4754190
Min,, H., Wang,, J., Qi,, Y., Zhang,, Y., Han,, X., Xu,, Y., … Nie,, G. (2019). Biomimetic metal‐organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Advanced Materials, 31(15), 1808200. https://doi.org/10.1002/adma.201808200
Montecinos,, V. P., Morales,, C. H., Fischer,, T. H., Burns,, S., San Francisco,, I. F., Godoy,, A. S., & Smith,, G. J. (2015). Selective targeting of bioengineered platelets to prostate cancer vasculature: New paradigm for therapeutic modalities. Journal of Cellular and Molecular Medicine, 19(7), 1530–1537. https://doi.org/10.1111/jcmm.12515
Mukherjee,, P., Bhattacharya,, R., Wang,, P., Wang,, L., Basu,, S., Nagy,, J. A., … Soker,, S. (2005). Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 11(9), 3530–3534. https://doi.org/10.1158/1078-0432.Ccr-04-2482
Murugan,, A. K. (2019). mTOR: Role in cancer, metastasis and drug resistance. Seminars in Cancer Biology, 59, 92–111. https://doi.org/10.1016/j.semcancer.2019.07.003
Nagase,, K., Hasegawa,, M., Ayano,, E., Maitani,, Y., & Kanazawa,, H. (2019). Effect of polymer phase transition behavior on temperature‐responsive polymer‐modified liposomes for siRNA transfection. International Journal of Molecular Sciences, 20(2), 430. https://doi.org/10.3390/ijms20020430
Naret,, T., Khelifi,, I., Provot,, O., Bignon,, J., Levaique,, H., Dubois,, J., … Hamze,, A. (2019). 1,1‐Diheterocyclic ethylenes derived from quinaldine and carbazole as new tubulin‐polymerization inhibitors: Synthesis, metabolism, and biological evaluation. Journal of Medicinal Chemistry, 62(4), 1902–1916. https://doi.org/10.1021/acs.jmedchem.8b01386
Naumov,, G. N., Akslen,, L. A., & Folkman,, J. (2006). Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle, 5(16), 1779–1787. https://doi.org/10.4161/cc.5.16.3018
Nethi,, S. K., Barui,, A. K., Mukherjee,, S., & Petra,, C. R. (2019). Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxidants %26 Redox Signaling, 30(5), 786–809. https://doi.org/10.1089/ars.2017.7383
Ngwa,, W., Makrigiorgos,, G. M., & Berbeco,, R. I. (2010). Applying gold nanoparticles as tumor‐vascular disrupting agents during brachytherapy: Estimation of endothelial dose enhancement. Physics in Medicine and Biology, 55(21), 6533–6548. https://doi.org/10.1088/0031-9155/55/21/013
Ngwa,, W., Makrigiorgos,, G. M., & Berbeco,, R. I. (2012). Gold nanoparticle‐aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Medical Physics, 39(1), 392–398. https://doi.org/10.1118/1.3671905
O`Connell,, C. B., & Khodjakov,, A. L. (2007). Cooperative mechanisms of mitotic spindle formation. Journal of Cell Science, 120(10), 1717–1722. https://doi.org/10.1242/jcs.03442
Paku,, S., & Paweletz,, N. (1991). First steps of tumor‐related angiogenesis. Laboratory Investigation, 65(3), 334–346.
Pal,, K., Madamsetty,, V. S., Dutta,, S. K., Wang,, E., Angom,, R. S., & Mukhopadhyay,, D. (2019). Synchronous inhibition of mTOR and VEGF/NRP1 axis impedes tumor growth and metastasis in renal cancer. Precision Oncology, 3, 31. https://doi.org/10.1038/s41698-019-0105-2
Pan,, Y., Ding,, H., Qin,, L., Zhao,, X., Cai,, J., & Du,, B. (2013). Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis. Journal of Biomedical Nanotechnology, 9(10), 1746–1756. https://doi.org/10.1166/jbn.2013.1678
Qin,, H., Yu,, H., Sheng,, J., Zhang,, D., Shen,, N., Liu,, L., … Chen,, X. (2019). PI3Kgamma inhibitor attenuates immunosuppressive effect of poly(L‐glutamic acid)‐combretastatin A4 conjugate in metastatic breast cancer. Advanced Science, 6(12), 2198–3844. https://doi.org/10.1002/advs.201900327
Rajaram,, P., Chandra,, P., Ticku,, S., Pallavi,, B. K., Rudresh,, K. B., & Mansabdar,, P. (2017). Epidermal growth factor receptor: Role in human cancer. Indian Journal of Dental Research, 28(6), 687–694. https://doi.org/10.4103/ijdr.IJDR_534_16
Repetto,, O., & De Re,, V. (2017). Coagulation and fibrinolysis in gastric cancer. Annals of the New York Academy of Sciences, 1404(1), 27–48. https://doi.org/10.1111/nyas.13454
Rini,, B. I., Escudier,, B., Tomczak,, P., Kaprin,, A., Szczylik,, C., Hutson,, T. E., … Motzer,, R. J. (2011). Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet, 378(9807), 1931–1939. https://doi.org/10.1016/s0140-6736(11)61613-9
Schmitt,, F., Gold,, M., Rothemund,, M., Andronache,, I., Biersack,, B., Schobert,, R., & Mueller,, T. (2019). New naphthopyran analogues of LY290181 as potential tumor vascular‐disrupting agents. European Journal of Medicinal Chemistry, 163, 160–168. https://doi.org/10.1016/j.ejmech.2018.11.055
Seo,, S. J., Lee,, S. H., Kim,, K. H., & Kim,, J. K. (2019). Anti‐Flt1 peptide and cyanine‐conjugated gold nanoparticles for the concurrent antiangiogenic and endothelial cell proton treatment. Journal of Biomedical Materials Research, 107(4), 1272–1283. https://doi.org/10.1002/jbm.b.34220
Serrano,, M. J., Alvarez‐Cubero,, M. J., De Miguel Pérez,, D., Rodríguez‐Martínez,, A., Gonzalez‐Herrera,, L., Robles‐Fernandez,, I., … Lorente,, J. A. (2017). Significance of EGFR expression in circulating tumor cells. Advances in Experimental Medicine and Biology, 994, 285–296. https://doi.org/10.1007/978-3-319-55947-6_16
Setyawati,, M. I., & Leong,, D. T. (2017). Mesoporous silica nanoparticles as an antitumoral‐angiogenesis strategy. ACS Applied Materials %26 Interfaces, 9(8), 6690–6703. https://doi.org/10.1021/acsami.6b12524
Shao,, Y., Guo,, L., Li,, A., Zhang,, K., Liu,, W., Shi,, J., … Zhang,, Z. (2019). US‐triggered ultra‐sensitive "thrombus constructor" for precise tumor therapy. Journal of Controlled Release, 318, 136–144. https://doi.org/10.1016/j.jconrel.2019.12.029
Shi,, K., Zhao,, Y., Miao,, L., Satterlee,, A., Haynes,, M., Luo,, C., … Huang,, L. (2017). Dual functional lipoMET mediates envelope‐type nanoparticles to combinational oncogene silencing and tumor growth inhibition. Molecular Therapy, 25(7), 1567–1579. https://doi.org/10.1016/j.ymthe.2017.02.008
Si,, X., Ma,, S., Xu,, Y., Zhang,, D., Shen,, N., Yu,, H., … Chen,, X. (2020). Hypoxia‐sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease a as a breast cancer therapeutic. Journal of Controlled Release, 320, 83–95. https://doi.org/10.1016/j.jconrel.2020.01.021
Silvis,, S. M., de Sousa,, D. A., Ferro,, J. M., & Coutinho,, J. M. (2017). Cerebral venous thrombosis. Nature Reviews Neurology, 13(9), 555–565. https://doi.org/10.1038/nrneurol.2017.104
Song,, H., Wang,, W., Zhao,, P., Qi,, Z., & Zhao,, S. (2014). Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale, 6(6), 3206–3216. https://doi.org/10.1039/c3nr04363k
Song,, W., Tang,, Z., Zhang,, D., Li,, M., Gu,, J., & Chen,, X. (2016). A cooperative polymeric platform for tumor‐targeted drug delivery. Chemical Science, 7(1), 728–736. https://doi.org/10.1039/c5sc01698c
Song,, W., Tang,, Z., Zhang,, D., Wen,, X., Lv,, S., Liu,, Z., … Chen,, X. (2016). Solid tumor therapy using a cannon and pawn combination strategy. Theranostics, 6(7), 1023–1030. https://doi.org/10.7150/thno.14741
Song,, W., Tang,, Z., Zhang,, D., Yu,, H., & Chen,, X. (2015). Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions. Small, 11(31), 3755–3761. https://doi.org/10.1002/smll.201500324
Spear,, M. A., LoRusso,, P., Mita,, A., & Mita,, M. (2011). Vascular disrupting agents (VDA) in oncology: Advancing towards new therapeutic paradigms in the clinic. Current Drug Targets, 12(14), 2009–2015. https://doi.org/10.2174/138945011798829366
Sun,, W., Wang,, Y., Cai,, M., Lin,, L., Chen,, X., Cao,, Z., … Shuai,, X. (2017). Codelivery of sorafenib and GPC3 siRNA with PEI‐modified liposomes for hepatoma therapy. Biomaterials Science, 5(12), 2468–2479. https://doi.org/10.1039/c7bm00866j
Tang,, Z., & Chen,, X. (2019). Tumor‐targeting drug delivery systems based on poly(L‐glutamic acid)‐g‐poly(ethylene glycol). Acta Polymerica Sinica, 50(6), 543–552. https://doi.org/10.11777/j.issn1000-3304.2019.19036
Thebault,, C. J., Ramniceanu,, G., Boumati,, S., Michel,, A., Seguin,, J., Larrat,, B., … Doan,, B. T. (2020). Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. Journal of Controlled Release, 322, 137–148. https://doi.org/10.1016/j.jconrel.2020.03.003
Tian,, F., Dahmani,, F. Z., Qiao,, J., Ni,, J., Xiong,, H., Liu,, T., … Yao,, J. (2018). A targeted nanoplatform co‐delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomaterialia, 75, 398–412. https://doi.org/10.1016/j.actbio.2018.05.050
Tozer,, G. M., Kanthou,, C., & Baguley,, B. C. (2005). Disrupting tumour blood vessels. Nature Reviews Cancer, 5(6), 423–435. https://doi.org/10.1038/nrc1628
Wakaskar,, R. R., Bathena,, S. P. R., Tallapaka,, S. B., Ambardekar,, V. V., Gautam,, N., Thakare,, R., … Vetro,, J. A. (2015). Peripherally cross‐linking the shell of core‐shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration. Pharmaceutical Research, 32(3), 1028–1044. https://doi.org/10.1007/s11095-014-1515-z
Wang,, J., Guo,, F., Yu,, M., Liu,, L., Tan,, F., Yan,, R., & Li,, N. (2016). Rapamycin/DiR loaded lipid‐polyaniline nanoparticles for dual‐modal imaging guided enhanced photothermal and antiangiogenic combination therapy. Journal of Controlled Release, 237, 23–34. https://doi.org/10.1016/j.jconrel.2016.07.005
Wang,, S., Kurepa,, J., & Smalle,, J. A. (2011). Ultra‐small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell and Environment, 34(5), 811–820. https://doi.org/10.1111/j.1365-3040.2011.02284.x
Wang,, S., Yuan,, J., Yang,, J., Li,, N., Liu,, R., Luan,, J., & Ye,, D. (2018). Advancement of platelet‐inspired nanomedicine. Platelets, 29(7), 690–694. https://doi.org/10.1080/09537104.2018.1475633
Wang,, Z., & Ho,, P. C. (2010). Self‐assembled core‐shell vascular‐targeted nanocapsules for temporal antivasculature and anticancer activities. Small, 6(22), 2576–2583. https://doi.org/10.1002/smll.201001122
Weaver,, B. A. (2014). How taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 25(18), 2677–2681. https://doi.org/10.1091/mbc.E14-04-0916
Wei,, L., Chen,, J., Zhao,, S., Ding,, J., & Chen,, X. (2017). Thermo‐sensitive polypeptide hydrogel for locally sequential delivery of two‐pronged antitumor drugs. Acta Biomaterialia, 58, 44–53. https://doi.org/10.1016/j.actbio.2017.05.053
Wierzbicki,, M., Sawosz,, E., Strojny,, B., Jaworski,, S., Grodzik,, M., & Chwalibog,, A. (2018). NF‐κB‐related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Scientific Reports, 8, 14733. https://doi.org/10.1038/s41598-018-33179-3
Winter,, W. E., Flax,, S. D., & Harris,, N. S. (2017). Coagulation testing in the core laboratory. Laboratory Medicine, 48(4), 295–313. https://doi.org/10.1093/labmed/lmx050
Wu,, L., & Qiu,, L. (2016). Reverse micelles‐in‐microspheres with sustained release of water‐soluble combretastatin A4 phosphate for S180 tumor treatment. Journal of Materials Chemistry B, 4(4), 760–767. https://doi.org/10.1039/c5tb02468d
Wu,, X., Tan,, Y., Mao,, H., & Zhang,, M. (2010). Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. International Journal of Nanomedicine, 5, 385–399. https://doi.org/10.2147/IJN.S10458
Wu,, X. Y., Ma,, W., Gurung,, K., & Guo,, C. H. (2013). Mechanisms of tumor resistance to small molecule vascular disrupting agents: Treatment and rationale of combination therapy. Journal of the Formosan Medical Association, 112(3), 115–124. https://doi.org/10.1016/j.jfma.2012.09.017
Xiong,, Q., Lee,, G. Y., Ding,, J., Li,, W., & Shi,, J. (2018). Biomedical applications of mRNA nanomedicine. Nano Research, 11(10), 5281–5309. https://doi.org/10.1007/s12274-018-2146-1
Xu,, B., Jin,, Q., Zeng,, J., Yu,, T., Chen,, Y., Li,, S., … Song,, X. (2016). Combined tumor‐ and neovascular‐ "dual targeting" gene/chemo‐therapy suppresses tumor growth and angiogenesis. ACS Applied Materials %26 Interfaces, 8(39), 25753–25769. https://doi.org/10.1021/acsami.6b08603
Xu,, P., Zou,, M., Wang,, S., Li,, T., Liu,, C., Wang,, L., … Yan,, J. (2019). Construction and characterization of a truncated tissue factor‐coagulation‐based composite system for selective thrombosis in tumor blood vessels. International Journal of Oncology, 55(4), 823–832. https://doi.org/10.3892/ijo.2019.4855
Xu,, Y. Y., Yang,, J., Shen,, T., Zhou,, F., Xia,, Y., Fu,, J. Y., … Zhu,, X. Q. (2012). Intravenous administration of multi‐walled carbon nanotubes affects the formation of atherosclerosis in Sprague‐Dawley rats. Journal of Occupational Health, 54(5), 361–369. https://doi.org/10.1539/joh.12-0019-OA
Yang,, P. P., Zhang,, K., He,, P. P., Fan,, Y., Gao,, X. J., Gao,, X., … Wang,, H. (2020). A biomimetic platelet based on assembling peptides initiates artificial coagulation. Science Advances, 6(22), eaaz4107. https://doi.org/10.1126/sciadv.aaz4107
Yang,, S., Tang,, Z., Hu,, C., Zhang,, D., Shen,, N., Yu,, H., & Chen,, X. (2019). Selectively potentiating hypoxia levels by combretastatin A4 nanomedicine: Toward highly enhanced hypoxia‐activated prodrug tirapazamine therapy for metastatic tumors. Advanced Materials, 31(11), 1805955. https://doi.org/10.1002/adma.201805955
Yang,, T., Yao,, Q., Cao,, F., Liu,, Q., Liu,, B., & Wang,, X. (2016). Silver nanoparticles inhibit the function of hypoxia‐inducible factor‐1 and target genes: Insight into the cytotoxicity and antiangiogenesis. International Journal of Nanomedicine, 11, 6679–6692. https://doi.org/10.2147/ijn.S109695
Yang,, Z., Xiang,, B., Dong,, D., Wang,, Z., Li,, J., & Qi,, X. (2014). Dual receptor‐specific peptides modified liposomes as VEGF siRNA vector for tumor‐targeting therapy. Current Gene Therapy, 14(4), 289–299. https://doi.org/10.2174/1566523214666140612151726
Yang,, Z. Z., Li,, J. Q., Wang,, Z. Z., Dong,, D. W., & Qi,, X. R. (2014). Tumor‐targeting dual peptides‐modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials, 35(19), 5226–5239. https://doi.org/10.1016/j.biomaterials.2014.03.017
Yao,, Y., Wang,, T., Liu,, Y., & Zhang,, N. (2019). Co‐delivery of sorafenib and VFGF‐siRNA via pH‐sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artificial Cells Nanomedicine and Biotechnology, 47(1), 1374–1383. https://doi.org/10.1080/21691401.2019.1596943
Yu,, H., Shen,, N., Bao,, Y., Chen,, L., & Tang,, Z. (2020). Tumor regression and potentiation of polymeric vascular disrupting therapy through reprogramming of a hypoxia microenvironment with temsirolimus. Biomaterials Science, 8(1), 325–332. https://doi.org/10.1039/c9bm01398a
Yu,, Q., Liu,, Y., Cao,, C., Le,, F., Qin,, X., Sun,, D., & Liu,, J. (2014). The use of pH‐sensitive functional selenium nanoparticles shows enhanced in vivo VEGF‐siRNA silencing and fluorescence imaging. Nanoscale, 6(15), 9279–9292. https://doi.org/10.1039/c4nr02423k
Yu,, S., Wei,, S., Liu,, L., Qi,, D., Wang,, J., Chen,, G., … Gu,, Z. (2019). Enhanced local cancer therapy using a CA4P and CDDP co‐loaded polypeptide gel depot. Biomaterials Science, 7(3), 860–866. https://doi.org/10.1039/c8bm01442f
Zabiulla,, Vigneshwaran,, V., Bushra,, A. B., Pavankumar,, G. S., Prabhakar,, B. T., & Khanum,, S. A. (2017). Design and synthesis of conjugated azo‐hydrazone analogues using nano BF3 center dot SiO2 targeting ROS homeostasis in oncogenic and vascular progression. Biomedicine %26 Pharmacotherapy, 95, 419–428. https://doi.org/10.1016/j.biopha.2017.08.076
Zhang,, B., Pang,, Z., & Hu,, Y. (2020). Targeting hemostasis‐related moieties for tumor treatment. Thrombosis Research, 187, 186–196. https://doi.org/10.1016/j.thromres.2020.01.019
Zhang,, L., Liu,, Z., Yang,, K., Kong,, C., Liu,, C., Chen,, H., … Qian,, F. (2017). Tumor progression of non‐small cell lung cancer controlled by albumin and micellar nanoparticles of itraconazole, a multitarget angiogenesis inhibitor. Molecular Pharmaceutics, 14(12), 4705–4713. https://doi.org/10.1021/acs.molpharmaceut.7b00855
Zhang,, M., Ye,, J. J., Xia,, Y., Wang,, Z. Y., Li,, C. X., Wang,, X. S., … Zhang,, X. Z. (2019). Platelet‐mimicking biotaxis targeting vasculature‐disrupted tumors for cascade amplification of hypoxia‐sensitive therapy. ACS Nano, 13(12), 14230–14240. https://doi.org/10.1021/acsnano.9b07330
Zhang,, S., Liao,, S., Cao,, Y., Wang,, J., Li,, R., Wang,, Z., & Wang,, Y. (2017). NIR light‐triggered expansive starch particles for use as artificial thrombi. Journal of Materials Chemistry B, 5(25), 4966–4972. https://doi.org/10.1039/c7tb01094j
Zhao,, Y., Wang,, W., Guo,, S., Wang,, Y., Miao,, L., Xiong,, Y., & Huang,, L. (2016). PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nature Communications, 7, 11822. https://doi.org/10.1038/ncomms11822
Zhen,, M., Shu,, C., Li,, J., Zhang,, G., Wang,, T., Luo,, Y., … Bai,, C. (2015). A highly efficient and tumor vascular‐targeting therapeutic technique with size‐expansible gadofullerene nanocrystals. Science China Materials, 58(10), 799–810. https://doi.org/10.1007/s40843-015-0089-3
Zheng,, K., Kros,, J. M., Li,, J., & Zheng,, P. P. (2020). DNA‐nanorobot‐guided thrombin‐inducing tumor infarction: Raising new potential clinical concerns. Drug Discovery Today, 25(6), 951–955. https://doi.org/10.1016/j.drudis.2020.03.005
Zhou,, Y., Deng,, R., Zhen,, M., Li,, J., Guan,, M., Jia,, W., … Wang,, C. (2017). Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials, 133, 107–118. https://doi.org/10.1016/j.biomaterials.2017.04.025
Zou,, M., Xu,, P., Wang,, L., Wang,, L., Li,, T., Liu,, C., … Yan,, J. (2020). Design and construction of a magnetic targeting pro‐coagulant protein for embolic therapy of solid tumors. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 116–128. https://doi.org/10.1080/21691401.2019.1699817