Abbasalipour,, M., Khosravi,, M. A., Zeinali,, S., Khanahmad,, H., Karimipoor,, M., & Azadmanesh,, K. (2019). Improvement of K562 cell line transduction by FBS mediated attachment to the cell culture plate. BioMed Research International, 2019, 9540702. https://doi.org/10.1155/2019/9540702
Abu Lila,, A. S., Kiwada,, H., & Ishida,, T. (2013). The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. Journal of Controlled Release, 172(1), 38–47. https://doi.org/10.1016/j.jconrel.2013.07.026
Ahn,, J. C., Teng,, P.‐C., Chen,, P.‐J., Posadas,, E., Tseng,, H.‐R., Lu,, S. C., & Yang,, J. D. (2020). Detection of circulating tumor cells and their implications as a novel biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.31165
Aiewsakun,, P., & Simmonds,, P. (2018). The genomic underpinnings of eukaryotic virus taxonomy: Creating a sequence‐based framework for family‐level virus classification. Microbiome, 6, 38. https://doi.org/10.1186/s40168-018-0422-7
Ajithkumar,, K. C., & Pramod,, K. (2018). Artificial virus as trump‐card to resolve exigencies in targeted gene delivery. Mini‐Reviews in Medicinal Chemistry, 18(3), 276–286. https://doi.org/10.2174/1389557517666170529080316
Alam,, M. M., Jarvis,, C. M., Hincapie,, R., McKay,, C. S., Schimer,, J., Sanhueza,, C. A., … Kiessling,, L. L. (2020). Glycan‐modified virus‐like particles evoke T helper type 1‐like immune responses. ACS Nano. https://doi.org/10.1021/acsnano.0c03023
Amitai,, A., Chakraborty,, A. K., & Kardar,, M. (2018). The low spike density of HIV may have evolved because of the effects of T helper cell depletion on affinity maturation. PLoS Computational Biology, 14(8), 1006408. https://doi.org/10.1371/journal.pcbi.1006408
Andrés,, G., Charro,, D., Matamoros,, T., Dillard,, R. S., & Abrescia,, N. G. A. (2020). The cryo‐EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. The Journal of Biological Chemistry, 295(1), 1–12. https://doi.org/10.1074/jbc.AC119.011196
Ariston Gabriel,, A. N., Wang,, F., Jiao,, Q., Yvette,, U., Yang,, X., Al‐Ameri,, S. A., … Wang,, C. (2020). The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Molecular Cancer, 19(1), 132. https://doi.org/10.1186/s12943-020-01245-y
Barenholz,, Y. (2012). Doxil (R)—The first FDA‐approved nano‐drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
Bauer,, M., Lautenschlaeger,, C., Kempe,, K., Tauhardt,, L., Schubert,, U. S., & Fischer,, D. (2012). Poly(2‐ethyl‐2‐oxazoline) as alternative for the stealth polymer poly(ethylene glycol): Comparison of in vitro cytotoxicity and hemocompatibility. Macromolecular Bioscience, 12(7), 986–998. https://doi.org/10.1002/mabi.201200017
Biabanikhankandani,, R., Ho,, K. L., Alitheen,, N. B., & Tan,, W. S. (2018). A dual bioconjugated virus‐like nanoparticle as a drug delivery system and comparison with a pH‐responsive delivery system. Nanomaterials, 8(4), 236. https://doi.org/10.3390/nano8040236
Blondel,, D., Harmison,, G. G., & Schubert,, M. (1990). Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. Journal of Virology, 64(4), 1716–1725.
Bolli,, E., O`Rourke,, J. P., Conti,, L., Lanzardo,, S., Rolih,, V., Christen,, J. M., … Cavallo,, F. (2018). A virus‐like‐particle immunotherapy targeting epitope‐specific anti‐xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo. Oncoimmunology, 7(3), 1408746. https://doi.org/10.1080/2162402x.2017.1408746
Cai,, H., Shukla,, S., & Steinmetz,, N. F. (2020). The antitumor efficacy of CpG oligonucleotides is improved by encapsulation in plant virus‐like particles. Advanced Functional Materials, 30(15), 1908743. https://doi.org/10.1002/adfm.201908743
Cai,, R., Ren,, J., Ji,, Y., Wang,, Y., Liu,, Y., Chen,, Z., … Chen,, C. (2020). Corona of thorns: The surface chemistry‐mediated protein corona perturbs the recognition and immune response of macrophages. ACS Applied Materials %26 Interfaces, 12(2), 1997–2008. https://doi.org/10.1021/acsami.9b15910
Cai,, Y., Ran,, W., Zhai,, Y., Wang,, J., Zheng,, C., Li,, Y., & Zhang,, P. (2020). Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 8(4), 1045–1057. https://doi.org/10.1039/c9bm01380f
Chen,, S., & Chen,, R. (2016). A virus‐mimicking, endosomolytic liposomal system for efficient, pH‐triggered intracellular drug delivery. ACS Applied Materials %26 Interfaces, 8(34), 22457–22467. https://doi.org/10.1021/acsami.6b05041
Chen,, X., Zhang,, Q., Li,, J., Yang,, M., Zhao,, N., & Xu,, F.‐J. (2018). Rattle‐structured rough nanocapsules with in‐situ‐formed reil gold Nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano, 12(6), 5646–5656. https://doi.org/10.1021/acsnano.8b01440
Cheng,, X., Wang,, C., Su,, Y., Luo,, X., Liu,, X., Song,, Y., & Deng,, Y. (2018). Enhanced opsonization‐independent phagocytosis and high response ability to opsonized antigen‐antibody complexes: A new role of Kupffer cells in the accelerated blood clearance phenomenon upon repeated injection of PEGylated emulsions. Molecular Pharmaceutics, 15(9), 3755–3766.
Chojnacki,, J., Staudt,, T., Glass,, B., Bingen,, P., Engelhardt,, J., Anders,, M., … Kraeusslich,, H.‐G. (2012). Maturation‐dependent HIV‐1 surface protein redistribution revealed by fluorescence nanoscopy. Science, 338(6106), 524–528. https://doi.org/10.1126/science.1226359
Chung,, Y. H., Cai,, H., & Steinmetz,, N. F. (2020). Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 156, 214–235. https://doi.org/10.1016/j.addr.2020.06.024
Dai,, H., Lan,, P., Zhao,, D., Abou‐Daya,, K., Liu,, W., Chen,, W., … Lakkis,, F. G. (2020). PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science, 368(6495), 1122–1127. https://doi.org/10.1126/science.aax4040
Dams,, E. T. M., Laverman,, P., Oyen,, W. J. G., Storm,, G., Scherphof,, G. L., Van der Meer,, J. W. M., … Boerman,, O. C. (2000). Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1071–1079. https://doi.org/10.1083/jcb.200112067
de Ruiter,, M. V., van der Hee,, R. M., Driessen,, A. J. M., Keurhorst,, E. D., Hamid,, M., & Cornelissen,, J. J. L. M. (2019). Polymorphic assembly of virus‐capsid proteins around DNA and the cellular uptake of the resulting particles. Journal of Controlled Release, 307, 342–354. https://doi.org/10.1016/j.jconrel.2019.06.019
El Sayed,, M. M., Takata,, H., Shimizu,, T., Kawaguchi,, Y., Abu Lila,, A. S., Elsadek,, N. E., … Ishida,, T. (2020). Hepatosplenic phagocytic cells indirectly contribute to anti‐PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: Appearance of an unexplained mechanism in the ABC phenomenon. Journal of Controlled Release, 323, 102–109. https://doi.org/10.1016/j.jconrel.2020.04.011
Fang,, J.‐H., Lee,, Y.‐T., Chiang,, W.‐H., & Hu,, S.‐H. (2015). Magnetoresponsive virus‐mimetic nanocapsules with dual heat‐triggered sequential‐infected multiple drug‐delivery approach for combinatorial tumor therapy. Small, 11(20), 2417–2428. https://doi.org/10.1002/smll.201402969
Fejer,, S. N. (2020). Minimalistic coarse‐grained modeling of viral capsid assembly. Progress in Molecular Biology and Translational Science, 170, 405–434. https://doi.org/10.1016/bs.pmbts.2019.12.003
Feng,, X. J., Liu,, H. X., Chu,, X. J., Sun,, P. Y., Huang,, W. W., Liu,, C. B., … Ma,, Y. B. (2019). Recombinant virus‐like particles presenting IL‐33 successfully modify the tumor microenvironment and facilitate antitumor immunity in a model of breast cancer. Acta Biomaterialia, 100, 316–325. https://doi.org/10.1016/j.actbio.2019.09.024
Finbloom,, J. A., Aanei,, I. L., Bernard,, J. M., Klass,, S. H., Elledge,, S. K., Han,, K., … Francis,, M. B. (2018). Evaluation of three morphologically distinct virus‐like particles as nanocarriers for convection‐enhanced drug delivery to glioblastoma. Nanomaterials, 8(12), 1007. https://doi.org/10.3390/nano8121007
Freire,, J. M., Rego de Figueiredo,, I., Valle,, J., Veiga,, A. S., Andreu,, D., Enguita,, F. J., & Castanho,, M. A. R. B. (2017). siRNA‐cell‐penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Controlled Release, 245, 127–136. https://doi.org/10.1016/j.jconrel.2016.11.027
Gao,, J.‐Q., Eto,, Y., Yoshioka,, Y., Sekiguchi,, F., Kurachi,, S., Morishige,, T., … Nakagawa,, S. (2007). Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. Journal of Controlled Release, 122(1), 102–110. https://doi.org/10.1016/j.jconrel.2007.06.010
Gao,, X., Li,, S., Ding,, F., Fan,, H., Shi,, L., Zhu,, L., … Zhang,, C. (2019). Rapid detection of exosomal microRNAs using virus‐mimicking fusogenic vesicles. Angewandte Chemie‐International Edition, 58(26), 8719–8723. https://doi.org/10.1002/anie.201901997
Geng,, Y., Dalhaimer,, P., Cai,, S., Tsai,, R., Tewari,, M., Minko,, T., & Discher,, D. E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255. https://doi.org/10.1038/nnano.2007.70
Gerlier,, D., & Lyles,, D. S. (2011). Interplay between innate immunity and negative‐strand RNA viruses: Towards a rational model. Microbiology and Molecular Biology Reviews, 75(3), 468–490. https://doi.org/10.1128/MMBR.00007-11
Gomes,, A. C., Flace,, A., Saudan,, P., Zabel,, F., Cabral‐Miranda,, G., Turabi,, A. E., … Bachmann,, M. F. (2017). Adjusted particle size eliminates the need of linkage of antigen and adjuvants for appropriated T cell responses in virus‐like particle‐based vaccines. Frontiers in Immunology, 8, 226. https://doi.org/10.3389/fimmu.2017.00226
Gong,, J.‐H., Wang,, Y., Xing,, L., Cui,, P.‐F., Qiao,, J.‐B., He,, Y.‐J., & Jiang,, H.‐L. (2018). Biocompatible fluorinated poly(beta‐amino ester)s for safe and efficient gene therapy. International Journal of Pharmaceutics, 535(1–2), 180–193. https://doi.org/10.1016/j.ijpharm.2017.11.015
Hartzell,, E. J., Lieser,, R. M., Sullivan,, M. O., & Chen,, W. (2020). Modular hepatitis B virus‐like particle platform for biosensing and drug delivery. ACS Nano, 14(10), 12642–12651. https://doi.org/10.1021/acsnano.1029b08756
Hefferon,, K. L. (2018). Repurposing plant virus nanoparticles. Vaccine, 6(1), 11. https://doi.org/10.3390/vaccines6010011
Hinde,, E., Thammasiraphop,, K., Duong,, H. T. T., Yeow,, J., Karagoz,, B., Boyer,, C., … Gaus,, K. (2017). Pair correlation rnicroscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 12(1), 81–89. https://doi.org/10.1038/nnano.2016.160
Hu,, H., Masarapu,, H., Gu,, Y., Zhang,, Y., Yu,, X., & Steinmetz,, N. F. (2019). Physalis mottle virus‐like nanoparticles for targeted cancer imaging. ACS Applied Materials %26 Interfaces, 11(20), 18213–18223. https://doi.org/10.1021/acsami.9b03956
Hu,, H., Zhang,, Y., Shukla,, S., Gu,, Y., Yu,, X., & Steinmetz,, N. F. (2017). Dysprosium‐modified tobacco mosaic virus nanoparticles for ultra‐high‐field magnetic resonance and near‐infrared fluorescence imaging of prostate cancer. ACS Nano, 11(9), 9249–9258. https://doi.org/10.1021/acsnano.7b04472
Huo,, T., Yang,, Y., Qian,, M., Jiang,, H., Du,, Y., Zhang,, X., … Huang,, R. (2020). Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma‐targeted drug delivery. Biomaterials, 260, 120305. https://doi.org/10.1016/j.biomaterials.2020.120305
Ji,, T., Lang,, J., Ning,, B., Qi,, F., Wang,, H., Zhang,, Y., … Nie,, G. (2019). Enhanced natural killer cell immunotherapy by rationally assembling fc fragments of antibodies onto tumor membranes. Advanced Materials, 31(6), 1804395. https://doi.org/10.1002/adma.201804395
Jimenez‐Chavez,, A. D., Moreno‐Fierros,, L., & Bustos‐Jaimes,, I. (2019). Therapy with multi‐epitope virus‐like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine, 37(49), 7256–7268. https://doi.org/10.1016/j.vaccine.2019.09.068
Kaiser,, C. R., Flenniken,, M. L., Gillitzer,, E., Harmsen,, A. L., Harmsen,, A. G., Jutila,, M. A., … Young,, M. J. (2007). Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. International Journal of Nanomedicine, 2(4), 715–733 Retrieved from ://WOS:000252357400019.
Kasuya,, M. C. Z., Nakano,, S., Katayama,, R., & Hatanaka,, K. (2011). Evaluation of the hydrophobicity of perfluoroalkyl chains in amphiphilic compounds that are incorporated into cell membrane. Journal of Fluorine Chemistry, 132(3), 202–206. https://doi.org/10.1016/j.jfluchem.2011.01.004
Kerstetter‐Fogle,, A., Shukla,, S., Wang,, C., Beiss,, V., Harris,, P. L. R., Sloan,, A. E., & Steinmetz,, N. F. (2019). Plant virus‐like particle in situ vaccine for intracranial glioma immunotherapy. Cancers, 11(4), 515. https://doi.org/10.3390/cancers11040515
Kim,, G. B., Nam,, G.‐H., Hong,, Y., Woo,, J., Cho,, Y., Kwon,, I. C., … Kim,, I.‐S. (2020). Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Science Advances, 6(27), 2083. https://doi.org/10.1126/sciadv.aaz2083
Kim,, S.‐E., Jo,, S. D., Kwon,, K. C., Won,, Y.‐Y., & Lee,, J. (2017). Genetic assembly of double‐layered fluorescent protein nanoparticles for cancer targeting and imaging. Advanced Science, 4(5), 1600471. https://doi.org/10.1002/advs.201600471
Kozma,, G. T., Mészáros,, T., Vashegyi,, I., Fülöp,, T., Örfi,, E., Dézsi,, L., … Szebeni,, J. (2019). Pseudo‐anaphylaxis to polyethylene glycol (PEG)‐coated liposomes: Roles of anti‐PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano, 13(8), 9315–9324. https://doi.org/10.1021/acsnano.9b03942
Kozma,, G. T., Shimizu,, T., Ishida,, T., & Szebeni,, J. (2020). Anti‐PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano‐biopharmaceuticals. Advanced Drug Delivery Reviews, 154‐155, 163–175. https://doi.org/10.1016/j.addr.2020.07.024
Lee,, C., Hwang,, H. S., Lee,, S., Kim,, B., Kim,, J. O., Oh,, K. T., … Youn,, Y. S. (2017). Rabies virus‐inspired silica‐coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Advanced Materials, 29(13), 1605563. https://doi.org/10.1002/adma.201605563
Leopold,, P. L., & Crystal,, R. G. (2007). Intracellular trafficking of adenovirus: Many means to many ends. Advanced Drug Delivery Reviews, 59(8), 810–821. https://doi.org/10.1016/j.addr.2007.06.007
Li,, Y., Lin,, J., Wang,, P., Luo,, Q., Lin,, H., Zhang,, Y., … Liu,, X. (2019). Tumor microenvironment responsive shape reversal self‐targeting virus‐inspired nanodrug for imaging‐guided near‐infrared‐II photothermal chemotherapy. ACS Nano, 13(11), 12912–12928. https://doi.org/10.1021/acsnano.9b05425
Li,, Z., Li,, D., Li,, Q., Luo,, C., Li,, J., Kou,, L., … Sun,, J. (2018). In situ low‐immunogenic albumin‐conjugating‐corona guiding nanoparticles for tumor‐targeting chemotherapy. Biomaterials Science, 6(10), 2681–2693. https://doi.org/10.1039/c8bm00692j
Liu,, G., Zhao,, X., Zhang,, Y., Xu,, J., Xu,, J., Li,, Y., … Nie,, G. (2019). Engineering biomimetic platesomes for pH‐responsive drug delivery and enhanced antitumor activity. Advanced Materials, 31(32), 1900795. https://doi.org/10.1002/adma.201900795
Liu,, L., Zong,, Z.‐M., Liu,, Q., Jiang,, S.‐S., Zhang,, Q., Cen,, L.‐Q., … Yao,, H. (2018). A novel galactose‐PEG‐conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials, 184, 20–30. https://doi.org/10.1016/j.biomaterials.2018.08.064
Luo,, L., Yang,, Y., Du,, T., Kang,, T., Xiong,, M., Cheng,, H., … Gou,, M. (2018). Targeted nanoparticle‐mediated gene therapy mimics oncolytic virus for effective melanoma treatment. Advanced Functional Materials, 28(29), 1800173. https://doi.org/10.1002/adfm.201800173
Manchester,, M., & Singh,, P. (2006). Virus‐based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Advanced Drug Delivery Reviews, 58(14), 1505–1522. https://doi.org/10.1016/j.addr.2006.09.014
Manzenrieder,, F., Luxenhofer,, R., Retzlaff,, M., Jordan,, R., & Finn,, M. G. (2011). Stabilization of virus‐like particles with poly(2‐oxazoline)s. Angewandte Chemie‐International Edition, 50(11), 2601–2605. https://doi.org/10.1002/anie.201006134
Meier,, O., Boucke,, K., Hammer,, S. V., Keller,, S., Stidwill,, R. P., Hemmi,, S., & Greber,, U. F. (2002). Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin‐mediated uptake. The Journal of Cell Biology, 158(6), 1119–1131. https://doi.org/10.1083/jcb.200112067
Mercer,, J., Lee,, J. E., Saphire,, E. O., & Freeman,, S. A. (2020). SnapShot: Enveloped virus entry. Cell, 182(3), 786–786.e1. https://doi.org/10.1016/j.cell.2020.06.033
Minotti,, G., Menna,, P., Salvatorelli,, E., Cairo,, G., & Gianni,, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2), 185–229.
Mo,, J., Xu,, Y., Wang,, X., Wei,, W., & Zhao,, J. (2020). Exploiting the protein corona: Coating of black phosphorus nanosheets enables macrophage polarization via calcium influx. Nanoscale, 12(3), 1742–1748. https://doi.org/10.1039/c9nr08570j
Mohsen,, M. O., Heath,, M. D., Cabral‐Miranda,, G., Lipp,, C., Zeltins,, A., Sande,, M., … Bachmann,, M. F. (2019). Vaccination with nanoparticles combined with micro‐adjuvants protects against cancer. Journal for Immunotherapy of Cancer, 7(1), 114. https://doi.org/10.1186/s40425-019-0587-z
Morille,, M., Passirani,, C., Vonarbourg,, A., Clavreul,, A., & Benoit,, J.‐P. (2008). Progress in developing cationic vectors for non‐viral systemic gene therapy against cancer. Biomaterials, 29(24–25), 3477–3496. https://doi.org/10.1016/j.biomaterials.2008.04.036
Morrissey,, S. M., & Yan,, J. (2020). Exosomal PD‐L1: Roles in tumor progression and immunotherapy. Trends in Cancer, 6(7), 550–558. https://doi.org/10.1016/j.trecan.2020.03.002
Nagrath,, S., Sequist,, L. V., Maheswaran,, S., Bell,, D. W., Irimia,, D., Ulkus,, L., … Toner,, M. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239.
Netea,, M. G., Quintin,, J., & van der Meer,, J. W. M. (2011). Trained immunity: A memory for innate host defense. Cell Host %26 Microbe, 9(5), 355–361. https://doi.org/10.1016/j.chom.2011.04.006
Ni,, R., & Chau,, Y. (2020). Nanoassembly of oligopeptides and DNA mimics the sequential disassembly of a spherical virus. Angewandte Chemie‐International Edition, 59(9), 3578–3584. https://doi.org/10.1002/anie.201913611
Ni,, R., Zhou,, J., Hossain,, N., & Chau,, Y. (2016). Virus‐inspired nucleic acid delivery system: Linking virus and viral mimicry. Advanced Drug Delivery Reviews, 106, 3–26. https://doi.org/10.1016/j.addr.2016.07.005
Nishimura,, Y., Takeda,, K., Ezawa,, R., Ishii,, J., Ogino,, C., & Kondo,, A. (2014). A display of pH‐sensitive fusogenic GALA peptide facilitates endosomal escape from a bio‐nanocapsule via an endocytic uptake pathway. Journal of Nanobiotechnology, 12, 11. https://doi.org/10.1186/1477-3155-12-11
Niu,, Y., Yu,, M., Hartono,, S. B., Yang,, J., Xu,, H., Zhang,, H., … Yu,, C. (2013). Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Advanced Materials, 25(43), 6233–6237. https://doi.org/10.1002/adma.201302737
Pan,, H., Li,, P., Li,, G., Li,, W., Hu,, B., He,, H., … Jin,, Y. (2019). Glycometabolic bioorthogonal chemistry‐guided viral transduction for robust human T cell engineering. Advanced Functional Materials, 29(22), 1807528. https://doi.org/10.1002/adfm.201807528
Pang,, H.‐H., Chen,, P.‐Y., Wei,, K.‐C., Huang,, C.‐W., Shiue,, Y.‐L., Huang,, C.‐Y., & Yang,, H.‐W. (2019). Convection‐enhanced delivery of a virus‐like nanotherapeutic agent with dual‐modal imaging for besiegement and eradication of brain tumors. Theranostics, 9(6), 1752–1763. https://doi.org/10.7150/thno.30977
Pang,, H.‐H., Huang,, C.‐Y., Chou,, Y.‐W., Lin,, C.‐J., Zhou,, Z.‐L., Shiue,, Y.‐L., … Yang,, H.‐W. (2019). Bioengineering fluorescent virus‐like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale, 11(17), 8102–8109. https://doi.org/10.1039/c9nr01247h
Park,, T. G., Jeong,, J. H., & Kim,, S. W. (2006). Current status of polymeric gene delivery systems. Advanced Drug Delivery Reviews, 58(4), 467–486. https://doi.org/10.1016/j.addr.2006.03.007
Parodi,, A., Molinaro,, R., Sushnitha,, M., Evangelopoulos,, M., Martinez,, J. O., Arrighetti,, N., … Tasciotti,, E. (2017). Bio‐inspired engineering of cell‐ and virus‐like nanoparticles for drug delivery. Biomaterials, 147, 155–168. https://doi.org/10.1016/j.biomaterials.2017.09.020
Patrick,, M. J., Janjic,, J. M., Teng,, H., O`Hear,, M. R., Brown,, C. W., Stokum,, J. A., … Waggoner,, A. S. (2013). Intracellular pH measurements using perfluorocarbon nanoemulsions. Journal of the American Chemical Society, 135(49), 18445–18457. https://doi.org/10.1021/ja407573m
Phelan,, A., Elliott,, G., & O`Hare,, P. (1998). Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nature Biotechnology, 16(5), 440–443. https://doi.org/10.1038/nbt0598-440
Prapainop,, K., Witter,, D. P., & Wentworth,, P., Jr. (2012). A chemical approach for cell‐specific targeting of nanomaterials: Small‐molecule‐initiated misfolding of nanoparticle corona proteins. Journal of the American Chemical Society, 134(9), 4100–4103. https://doi.org/10.1021/ja300537u
Qiao,, C., Zhang,, R., Wang,, Y., Jia,, Q., Wang,, X., Yang,, Z., … Wang,, Z. (2020). Rabies virus‐inspired metal‐organic frameworks (MOFs) for targeted imaging and chemotherapy of glioma. Angewandte Chemie‐International Edition, 59, 16982–16988. https://doi.org/10.1002/anie.202007474
Raja,, K. S., Wang,, Q., Gonzalez,, M. J., Manchester,, M., Johnson,, J. E., & Finn,, M. G. (2003). Hybrid virus‐polymer materials. 1. Synthesis and properties of PEG‐decorated cowpea mosaic virus. Biomacromolecules, 4(3), 472–476. https://doi.org/10.1021/bm025740+
Ren,, E., Chu,, C., Zhang,, Y., Wang,, J., Pang,, X., Lin,, X., … Liu,, G. (2020). Mimovirus vesicle‐based biological orthogonal reaction for cancer diagnosis. Small Methods, 4(9), 2000291. https://doi.org/10.1002/smtd.202000291
Ribas,, A., & Wolchok,, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359(6382), 1350–1355. https://doi.org/10.1126/science.aar4060
Rossi,, E. M., Pylkkanen,, L., Koivisto,, A. J., Vippola,, M., Jensen,, K. A., Miettinen,, M., … Alenius,, H. (2010). Airway exposure to silica‐coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicological Sciences, 113(2), 422–433. https://doi.org/10.1093/toxsci/kfp254
Shan,, W. J., Zhang,, D. L., Wu,, Y. L., Lv,, X. L., Hu,, B., Zhou,, X., … Zhang,, X. Z. (2018). Modularized peptides modified HBc virus‐like particles for encapsulation and tumor‐targeted delivery of doxorubicin. Nanomedicine‐Nanotechnology Biology and Medicine, 14(3), 725–734. https://doi.org/10.1016/j.nano.2017.12.002
Shen,, L., Zhou,, J., Wang,, Y., Kang,, N., Ke,, X., Bi,, S., & Ren,, L. (2015). Efficient encapsulation of Fe₃O₄ nanoparticles into genetically engineered hepatitis B core virus‐like particles through a specific interaction for potential bioapplications. Small, 11(9–10), 1190–1196. https://doi.org/10.1002/smll.201401952
Shorter,, S. A., Gollings,, A. S., Gorringe‐Pattrick,, M. A. M., Coakley,, J. E., Dyer,, P. D. R., & Richardson,, S. C. W. (2017). The potential of toxin‐based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opinion on Drug Delivery, 14(5), 685–696. https://doi.org/10.1080/17425247.2016.1227781
Shukla,, S., Ablack,, A. L., Wen,, A. M., Lee,, K. L., Lewis,, J. D., & Steinmetz,, N. F. (2013). Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Molecular Pharmaceutics, 10(1), 33–42. https://doi.org/10.1021/mp300240m
Shukla,, S., & Steinmetz,, N. F. (2015). Virus‐based nanomaterials as positron emission tomography and magnetic resonance contrast agents: From technology development to translational medicine. Wiley Interdisciplinary Reviews‐Nanomedicine and Nanobiotechnology, 7(5), 708–721. https://doi.org/10.1002/wnan.1335
Siewert,, C., Haas,, H., Nawroth,, T., Ziller,, A., Nogueira,, S. S., Schroer,, M. A., … Langguth,, P. (2019). Investigation of charge ratio variation in mRNA ‐ DEAE‐dextran polyplex delivery systems. Biomaterials, 192, 612–620. https://doi.org/10.1016/j.biomaterials.2018.10.020
Simons,, B. W., Cannella,, F., Rowley,, D. T., & Viscidi,, R. P. (2020). Bovine papillomavirus prostate cancer antigen virus‐like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model. Cancer Immunology, Immunotherapy, 69(4), 641–651. https://doi.org/10.1007/s00262-020-02493-z
Singh,, P., Prasuhn,, D., Yeh,, R. M., Destito,, G., Rae,, C. S., Osborn,, K., … Manchester,, M. (2007). Bio‐distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. Journal of Controlled Release, 120(1–2), 41–50. https://doi.org/10.1016/j.jconrel.2007.04.003
Son,, K., Ueda,, M., Taguchi,, K., Maruyama,, T., Takeoka,, S., & Ito,, Y. (2020). Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. Journal of Controlled Release, 322, 209–216. https://doi.org/10.1016/j.jconrel.2020.03.022
Song,, C., Xiao,, Y., Ouyang,, Z., Shen,, M., & Shi,, X. (2020). Efficient co‐delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core‐shell tecto dendrimers formed via supramolecular host‐guest assembly. Journal of Materials Chemistry B, 8(14), 2768–2774. https://doi.org/10.1039/d0tb00346h
Suchanov,, J. Z., Hejtmankova,, A., Neburova,, J., Cigler,, P., Forstov,, J., & Spanielova,, H. (2020). The protein corona does not influence receptor‐mediated targeting of virus‐like particles. Bioconjugate Chemistry, 31(5), 1575–1585. https://doi.org/10.1021/acs.bioconjchem.0c00240
Tao,, J., Chen,, K., Su,, X., Ren,, L., Zhang,, J., Bao,, L., … Wang,, L. (2020). Virus‐mimicking mesoporous organosilica nanocapsules with soft framework and rough surface for enhanced cellular uptake and tumor penetration. Biomaterials Science, 8(8), 2227–2233. https://doi.org/10.1039/c9bm01559k
Tian,, Y., Zhang,, J., Tang,, S., Zhou,, L., & Yang,, W. (2016). Polypyrrole composite nanoparticles with morphology‐dependent photothermal effect and immunological responses. Small, 12(6), 721–726. https://doi.org/10.1002/smll.201503319
Tian,, Y., Zhou,, M., Shi,, H., Gao,, S., Xie,, G., Zhu,, M., … Niu,, Z. (2018). Integration of cell‐penetrating peptides with rod‐like bionanoparticles: virus‐inspired gene‐silencing technology. Nano Letters, 18(9), 5453–5460. https://doi.org/10.1021/acs.nanolett.8b01805
Wang,, C., de Avila,, B. E. F., Mundaca‐Uribe,, R., Lopez‐Ramirez,, M. A., Ramirez‐Herrera,, D. E., Shukla,, S., … Wang,, J. (2020). Active delivery of VLPs promotes anti‐tumor activity in a mouse ovarian tumor model. Small, 16(20), 1907150. https://doi.org/10.1002/smll.201907150
Wang,, M., Xue,, H., Gao,, M., Wang,, Q., & Yang,, H. (2019). Synthetic fluorinated polyamides as efficient gene vectors. Journal of Biomedical Materials Research Part B‐Applied Biomaterials, 107(6), 2132–2139. https://doi.org/10.1002/jbm.b.34307
Wang,, W., Wang,, P., Tang,, X., Elzatahry,, A. A., Wang,, S., Al‐Dahyan,, D., … Zhao,, D. (2017). Facile synthesis of uniform virus‐like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Central Science, 3(8), 839–846. https://doi.org/10.1021/acscentsci.7b00257
Wang,, Z., Qin,, W., Zhuang,, J., Wu,, M., Li,, Q., Fan,, C., & Zhang,, Y. (2019). Virus‐mimicking cell capture using heterovalency magnetic DNA nanoclaws. ACS Applied Materials %26 Interfaces, 11(13), 12244–12252. https://doi.org/10.1021/acsami.8b21998
Wannasarit,, S., Wang,, S., Figueiredo,, P., Trujillo,, C., Eburnea,, F., Simon‐Gracia,, L., … Li,, W. (2019). A virus‐mimicking pH‐responsive Acetalated dextran‐based membrane‐active polymeric nanoparticle for intracellular delivery of antitumor therapeutics. Advanced Functional Materials, 29(51), 1905352. https://doi.org/10.1002/adfm.201905352
Went,, P. T., Lugli,, A., Meier,, S., Bundi,, M., Mirlacher,, M., Sauter,, G., & Dirnhofer,, S. (2004). Frequent EpCam protein expression in human carcinomas. Human Pathology, 35(1), 122–128.
Wong,, J. J. W., Young,, T. A., Zhang,, J., Liu,, S., Leser,, G. P., Komives,, E. A., … Jardetzky,, T. S. (2017). Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 8(1), 781. https://doi.org/10.1038/s41467-017-00863-3
Wu,, H., Zhong,, D., Zhang,, Z., Li,, Y., Zhang,, X., Li,, Y., … Gu,, Z. (2020). Bioinspired artificial tobacco mosaic virus with combined oncolytic properties to completely destroy multidrug‐resistant cancer. Advanced Materials, 32(9), 1904958. https://doi.org/10.1002/adma.201904958
Xiong,, S.‐D., Li,, L., Jiang,, J., Tong,, L.‐P., Wu,, S., Xu,, Z.‐S., & Chu,, P. K. (2010). Cationic fluorine‐containing amphiphilic graft copolymers as DNA carriers. Biomaterials, 31(9), 2673–2685. https://doi.org/10.1016/j.biomaterials.2009.12.014
Yang,, B., Feng,, X., Liu,, H., Tong,, R., Wu,, J., Li,, C., … Zheng,, S. (2020). High‐metastatic cancer cells derived exosomal miR92a‐3p promotes epithelial‐mesenchymal transition and metastasis of low‐metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene, 39(42), 6529–6543. https://doi.org/10.1038/s41388-41020-01450-41385
Yang,, S., Ou,, C., Wang,, L., Liu,, X., Yang,, J., Wang,, X., … Gong,, C. (2020). Virus‐esque nucleus‐targeting nanoparticles deliver trojan plasmid for release of anti‐tumor shuttle protein. Journal of Controlled Release, 320, 253–264. https://doi.org/10.1016/j.jconrel.2020.01.037
Yang,, Y., Hong,, Y., Nam,, G.‐H., Chung,, J. H., Koh,, E., & Kim,, I.‐S. (2017). Virus‐mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Advanced Materials, 29(13), 1605604. https://doi.org/10.1002/adma.201605604
Yildiz,, I., Lee,, K. L., Chen,, K., Shukla,, S., & Steinmetz,, N. F. (2013). Infusion of imaging and therapeutic molecules into the plant virus‐based carrier cowpea mosaic virus: Cargo‐loading and delivery. Journal of Controlled Release, 172(2), 568–578. https://doi.org/10.1016/j.jconrel.2013.04.023
Yong,, S.‐B., Song,, Y., Kim,, H. J., Ul Ain,, Q., & Kim,, Y.‐H. (2017). Mononuclear phagocytes as a target, not a barrier, for drug delivery. Journal of Controlled Release, 259, 53–61. https://doi.org/10.1016/j.jconrel.2017.01.024
Zhang,, X., Xu,, X., Li,, Y., Hu,, C., Zhang,, Z., & Gu,, Z. (2018). Virion‐like membrane‐breaking nanoparticles with tumor‐activated cell‐and‐tissue dual‐penetration conquer impermeable cancer. Advanced Materials, 30(27), 1707240. https://doi.org/10.1002/adma.201707240
Zhang,, Z., Guan,, J., Jiang,, Z., Yang,, Y., Liu,, J., Hua,, W., … Zhan,, C. (2019). Brain‐targeted drug delivery by manipulating protein corona functions. Nature Communications, 10, 3561. https://doi.org/10.1038/s41467-019-11593-z
Zhao,, W., Yang,, Y., Song,, L., Kang,, T., Du,, T., Wu,, Y., … Gou,, M. (2018). A vesicular stomatitis virus‐inspired DNA nanocomplex for ovarian cancer therapy. Advanced Science, 5(3), 1700263. https://doi.org/10.1002/advs.201700263
Zhu,, J.‐Y., Zhang,, M.‐K., Ding,, X.‐G., Qiu,, W.‐X., Yu,, W.‐Y., Feng,, J., & Zhang,, X.‐Z. (2018). Virus‐inspired nanogenes free from man‐made materials for host‐specific transfection and bio‐aided MR imaging. Advanced Materials, 30(22), 1707459. https://doi.org/10.1002/adma.201707459
Zou,, Y., Ito,, S., Yoshino,, F., Suzuki,, Y., Zhao,, L., & Komatsu,, N. (2020). Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake. ACS Nano, 14(6), 7216–7226. https://doi.org/10.1021/acsnano.0c02289