Atkinson, AJ Jr., Colburn, WA, De Gruttola, VG, De Mets, DL, Downing, GJ, Hoth, DF, Oates, JA, Peck, CC, Schooley, RT, Spilker, BA, Woodcock J, Zeger, SL. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69(3): 89–95.
Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285(21): 1182–1186.
Dvorak, HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002, 20(21): 4368–4380.
Miller, KD. Recent translational research: antiangiogenic therapy for breast cancer–where do we stand? Breast Cancer Res 2004, 6(3): 128–132.
Siemann, DW, Bibby, MC, Dark, GG, Dicker, AP, Eskens, FA, et al. Differentiation and definition of vascular‐targeted therapies. Clin Cancer Res 2005, 11(2Pt1): 416–420.
Banerjee, S, Dowsett, M, Ashworth, A, Martin, LA. Mechanisms of disease: angiogenesis and the management of breast cancer. Nat Clin Pract Oncol 2007, 4(9): 536–550.
Batchelor, TT, Sorensen, AG, di Tomaso, E, Zhang, WT, Duda, DG, et al. AZD2171, a pan‐VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11(1): 83–95.
Miller, KD. E2100: A randomized phase III trial of paclitaxel versus paclitaxel plus bevacizumab as first‐line therapy for locally recurrent or metastatic breast cancer. 41st Annual Meeting of the American Society of Clinical Oncology. Orlando, FL; 2005.
Jain, RK, Duda, DG, Clark, JW, Loeffler, JS. Lessons from phase iii clinical trials on anti‐vegf therapy for cancer. Nat Clin Pract Oncol 2006, 3(1): 24–40.
Le Serve, AW, Hellmann, K. Metastases and the normalization of tumour blood vessels by ICRF159: a new type of drug action. Br Med J 1972, 1(5800): 597–601.
Jain, RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307(5706): 58–62.
Gasparini, G. Clinical significance of determination of surrogate markers of angiogenesis in breast cancer. Crit Rev Oncol Hematol 2001, 37(2): 97–114.
Hlatky, L, Hahnfeldt, P, Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 2002, 94(12): 883–893.
Pathak, AP, Gimi, B, Glunde, K, Ackerstaf, E, Artemov, D, et al. Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 2004, 386: 3–60.
Schenck, JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996, 23(6): 815–850.
Rosen, BR. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 1991, 22: 293–299.
Villringer, A, Rosen, BR, Belliveau, JW, Ackerman, JL, Lauffer, RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988, 6: 164–174.
Zierler, KL. Theoretical basis of indicator‐dilution methods for measuring flow and volume. Circ Res 1962, 10: 393–407.
Fisel, CR, Ackerman, JL, Buxton, RB, Garrido, L, Belliveau, JW, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 1991, 17: 336–347.
Kennan, RP. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994, 31: 9–21.
Boxerman, JL, Hamberg, LM, Rosen, BR, Weisskoff, RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995, 34: 555–566.
Yablonskiy, DA. Quantitation of intrinsic magnetic susceptibility‐related effects in a tissue matrix: phantom study. Magn Reson Med 1998, 39: 417–428.
Kiselev, VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001, 46: 1113–1122.
Corot, C, Robert, P, Idee, JM, Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006, 58(14): 1471–1504.
Wang, YX, Hussain, SM, Krestin, GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001, 11(11): 2319–2331.
Weissleder, R, Elizondo, G, Wittenberg, J, Rabito, CA, Bengele, HH, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990, 175(2): 489–493.
Weisskoff, RM, Zuo, CS, Boxerman, JL, Rosen, BR. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994, 31: 601–610.
Tropres, I, Grimault, S, Vaeth, A, Grillon, E, Julien, C, et al. Vessel size imaging. Magn Reson Med 2001, 45(3): 397–408.
Saini, S, Frankel, RB, Stark, DD, Ferrucci, JT. Magnetism: a primer and review. Am J Roentgenol 1988, 150: 735–743.
Cullity, BD. Definitions and units. Introduction to Magnetic Materials: Reading, MA: Addison‐Wesley; 1972, 1–18.
Josephson, L, Lewis, J, Jacobs, P, Hahn, PF, Stark, DD. The effects of iron oxides on proton relaxivity. Magn Reson Imaging 1988, 6(6): 647–653.
Pouliquen, D, Perroud, H, Calza, F, Jallet, P, Le Jeune, JJ. Investigation of the magnetic properties of iron oxide nanoparticles used as contrast agent for MRI. Magn Reson Med 1992, 24(1): 75–84.
Tanimoto, A, Oshio, K, Suematsu, M, Pouliquen, D, Stark, DD. Relaxation effects of clustered particles. J Magn Reson Imaging 2001, 14(1): 72–77.
Virchow, R: In: Hirschwald, A: ed. Die krankhaften geschwulste. Berlin: August Hirschwald; 1863.
Konerding, M, van Ackern, C, Fait, E, Steinberg, F, Streffer, C. Morphological aspects of tumor angiogenesis and microcirculation. In: Molls, M, Vaupel, P, Brady, LW, Heilmann, HP: eds. Blood Perfusion and Microenvironment of Human Tumors: Implications for Clinical Radiooncology (Medical Radiology). New York: Springer Verlag; 2000: 5–17.
Jain, RK. Determinants of tumor blood flow: a review. Cancer Res 1988, 48: 2641–2658.
Maeda, M, Itoh, S, Kimura, H, Iwasaki, T, Hayashi, N, et al. Tumor vascularity in the brain: evaluation with dynamic susceptibility‐contrast MR imaging. Radiology 1993, 189: 233–238.
Pathak, AP, Schmainda, KM, Ward, BD, Linderman, JR, Rebro, KJ, et al. MR‐derived cerebral blood volume maps: Issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 2001, 46(4): 735–747.
Aronen, HJ, Gazit, IE, Louis, DN, Buchbinder, BR, Pardo, FS, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histological findings. Radiology 1994, 191: 41–51.
Donahue, KM, Krouwer, HG, Rand, SD, Pathak, AP, Marszalkowski, CS, et al. Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000, 43(6): 845–853.
Schmainda, KM, Rand, SD, Joseph, AM, Lund, R, Ward, BD, et al. Characterization of a first‐pass gradient‐echo spin‐echo method to predict brain tumor grade and angiogenesis. Am J Neuroradiol 2004, 25(9): 1524–1532.
Pathak, AP, Rand, SD, Schmainda, KM. The effect of brain tumor angiogenesis on the in vivo relationship between the gradient‐echo relaxation rate change (deltar2*) and contrast agent (MION) dose. J Magn Reson Imaging 2003, 18(4): 397–403.
Barbier, EL, Lamalle, L, Decorps, M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001, 13(4): 496–520.
Ostergaard, L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 2005, 22(6): 710–717.
Thompson, HKJ, Starmer, CF, Whalen, RE, McIntosh, HD. Indicator transit time considered as a gamma‐variate. Circ Res 1964, 14: 502–515.
Weisskoff, RM. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 1993, 29: 553–559.
Quarles, CC, Schmainda, KM. Assessment of the morphological and functional effects of the anti‐angiogenic agent su11657 on 9l gliosarcoma vasculature using dynamic susceptibility contrast MRI. Magn Reson Med 2007, 57(4): 680–687.
Le Duc, G, Peoc`h, M, Remy, C, Charpy, O, Muller, RN, et al. Use of T(2)‐weighted susceptibility contrast MRI for mapping the blood volume in the glioma‐bearing rat brain. Magn Reson Med 1999, 42(4): 754–761.
Dennie, J, Mandeville, JB, Boxerman, JL, Packard, SD, Rosen, BR, et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998, 40: 793–799.
Shen, T, Weissleder, R, Papisov, M, Bogdanov, A Jr, Brady, TJ. Monocrystalline iron oxide nanoparticles (MION): physiochemical properties. Magn Reson Med 1993, 29: 599–604.
Wu, EX, Tang, H, Jensen, JH. Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models. NMR Biomed 2004, 17(7): 478–483.
Bremer, C, Mustafa, M, Bogdanov, A Jr, Ntziachristos, V, Petrovsky, A, et al. Steady‐state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. Radiology 2003, 226(1): 214–220.
Ogawa, S. Oxygenation‐sensitive contrast in MR image of rodent brain at high magnetic fields. Magn Reson Med 1990, 14: 68–78.
Robinson, SP, Rijken, PF, Howe, FA, McSheehy, PM, van der Sanden, BP, et al. Tumor vascular architecture and function evaluated by non‐invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging 2003, 17(4): 445–454.
Persigehl, T, Bieker, R, Matuszewski, L, Wall, A, Kessler, T, et al. Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO‐enhanced MR imaging in mice. Radiology 2007, 244(2): 449–456.
Robinson, SP, Howe, FA, Griffiths, JR, Ryan, AJ, Waterton, JC. Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent zd6126. Int J Radiat Oncol Biol Phys 2007, 69(3): 872–879.
Kostourou, V, Robinson, SP, Whitley, GS, Griffiths, JR. Effects of overexpression of dimethylarginine dimethylaminohydrolase on tumor angiogenesis assessed by susceptibility magnetic resonance imaging. Cancer Res 2003, 63(16): 4960–4966.
Reichardt, W, Hu‐Lowe, D, Torres, D, Weissleder, R, Bogdanov, A Jr. Imaging of vegf receptor kinase inhibitor‐induced antiangiogenic effects in drug‐resistant human adenocarcinoma model. Neoplasia 2005, 7(9): 847–853.
Leenders, WP, Kusters, B, Verrijp, K, Maass, C, Wesseling, P, et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co‐option. Clin Cancer Res 2004, 10(18Pt1): 6222–6230.
Ferretti, S, Allegrini, PR, O`Reilly, T, Schnell, C, Stumm, M, et al. Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure. Clin Cancer Res 2005, 11(21): 7773–7784.
Robinson, SP, Ludwig, C, Paulsson, J, Ostman, A. The effects of tumor‐derived platelet‐derived growth factor on vascular morphology and function in vivo revealed by susceptibility MRI. Int J Cancer 2008, 122(7): 1548–1556.
Pathak, AP, Schmainda, KM, Ward, BD, Rebro, KJ, Rand, SD: Assessing tumor angiogenesis with dynamic susceptibility contrast fMRI: which morphologic correlates are relevant? Ninth Annual Meeting of the International Society for Magnetic Resonance in Medicine. Glasgow; 2001.
Yablonskiy, DA, Haacke, EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994, 32(6): 749–763.
Kiselev, VG, Posse, S. Analytical model of susceptibility‐induced MR signal dephasing: effect of diffusion in a microvascular network. Magn Reson Med 1999, 41(3): 499–509.
Jensen, JH, Chandra, R. MR imaging of microvasculature. Magn Reson Med 2000, 44(2): 224–230.
Wu, EX, Tang, H, Jensen, JH. High‐resolution MR imaging of mouse brain microvasculature using the relaxation rate shift index q. NMR Biomed 2004, 17(7): 507–512.
Hahn, PF, Stark, DD, Weissleder, R, Elizondo, G, Saini, S, et al. Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors. Radiology 1990, 174(2): 361–366.
Ichikawa, T, Arbab, AS, Araki, T, Touyama, K, Haradome, H, et al. Perfusion MR imaging with a superparamagnetic iron oxide using T2‐weighted and susceptibility‐sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma. Am J Roentgenol 1999, 173(1): 207–213.
Neuwelt, EA, Varallyay, CG, Manninger, S, Solymosi, D, Haluska, M, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 2007, 60(4): 601–611, discussion 611‐2.
Kiselev, VG. Transverse relaxation effect of mri contrast agents: a crucial issue for quantitative measurements of cerebral perfusion. J Magn Reson Imaging 2005, 22(6): 693–696.
Marques, JP, Bowtell, RW: Simulations of the bold effect using a realistic model of the vasculature. ISMRM, 12th Annual Meeting. Kyoto; 2004.
Pathak, AP, Ward, BD, Schmainda, KM. A novel technique for modeling susceptibility‐based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage 2008, 40(3): 1130–1143.