Holland, GN, Bottomley, PA, Hinshaw, WS. 19F magnetic resonance imaging. J Magn Reson 1977, 28: 133–136.
Lauterbur, PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973, 242: 190–191.
Bachert, P. Pharmacokinetics using fluorine NMR in vivo. Prog Nucl Magn Reson Spectrosc 1998, 33: 1–56.
Reid, DG, Murphy, PS. Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov Today 2008, 13: 473–480.
Kaneda, MM, Caruthers, S, Lanza, GM, Wickline, SA. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 2009, 37: 1922–1933.
Wolf, W, Presant, CA, Waluch, V. 19F‐MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 2000, 41: 55–74.
Code, RF, Harrison, JE, McNeill, KG, Szyjkowski, M. In vivo 19F spin relaxation in index finger bones. Magn Reson Med 1990, 13: 358–369.
Yu, JX, Kodibagkar, VD, Cui, W, Mason, RP. 19F: a versatile reporter for non‐invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 2005, 12: 819–848.
Yu, JX, Cui, W, Zhao, D, Mason, RP. Non‐invasive physiology and pharmacology using 19F magnetic resonance. In: Tressaud, A, Haufe, G, eds. Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals. Oxford, UK: Elsevier Science %26 Technology; 2008; 198–276.
Morawski, AM, Winter, PM, Yu, X, Fuhrhop, RW, Scott, MJ, et al. Quantitative magnetic resonance immunohistochemistry with ligand‐targeted (19)F nanoparticles. Magn Reson Med 2004, 52: 1255–1262.
Southworth, R, Kaneda, M, Chen, J, Zhang, L, Zhang, H, et al. Renal vascular inflammation induced by western diet in ApoE‐ mice quantified by (19)F NMR of VCAM‐1 targeted nanobeacons. Nanomedicine 2009, 5: 359–367.
Spiess, BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol 2009, 106: 1444–1452.
Thomas, SR, Clark, LC, Ackerman, JL, Pratt, RG, Hoffmann, RE, et al. MR imaging of the lung using liquid perfluorocarbons. J Comput Assist Tomogr 1986, 10: 1–9.
Mattrey, RF, Long, DC. Potential role of PFOB in diagnostic imaging. Invest Radiol 1988, 23(1): S298–S301.
Keipert, PE, Otto, S, Flaim, SF, Weers, JG, Schutt, EA, et al. Influence of perflubron emulsion particle size on blood half‐life and febrile response in rats. Artif Cells Blood Substit Immobil Biotechnol 1994, 22: 1169–1174.
Morawski, AM, Winter, PM, Crowder, KC, Caruthers, SD, Fuhrhop, RW, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 2004, 51: 480–486.
Caruthers, SD, Neubauer, AM, Hockett, FD, Lamerichs, R, Winter, PM, et al. In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla. Invest Radiol 2006, 41: 305–312.
Ruiz‐Cabello, J, Walczak, P, Kedziorek, DA, Chacko, VP, Schmieder, AH, et al. In vivo hot spot MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 2008, 60: 1506–1511.
Fan, X, River, JN, Muresan, AS, Popescu, C, Zamora, M, et al. MRI of perfluorocarbon emulsion kinetics in rodent mammary tumours. Phys Med Biol 2006, 51: 211–220.
Zhao, D, Jiang, L, Mason, RP. Measuring changes in tumor oxygenation. Methods Enzymol 2004, 386: 378–418.
Lanza, GM, Wallace, KD, Scott, MJ, Cacheris, WP, Abendschein, DR, et al. A novel site‐targeted ultrasonic contrast agent with broad biomedical application. Circulation 1996, 94: 3334–3340.
Wickline, SA, Neubauer, AM, Winter, P, Caruthers, S, Lanza, G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 2006, 26: 435–441.
Winter, PM, Morawski, AM, Caruthers, SD, Fuhrhop, RW, Zhang, H, et al. Molecular imaging of angiogenesis in early‐stage atherosclerosis with alpha(v)beta3‐integrin‐targeted nanoparticles. Circulation 2003, 108: 2270–2274.
Winter, PM, Neubauer, AM, Caruthers, SD, Harris, TD, Robertson, JD, et al. Endothelial alpha(v)beta3 integrin‐targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26: 2103–2109.
Brown, JM. The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999, 59: 5863–5870.
Kennedy, KA, Teicher, BA, Rockwell, S, Sartorelli, AC. The hypoxic tumor cell: a target for selective cancer chemotherapy. Biochem Pharmacol 1980, 29: 1–8.
Kizaka‐Kondoh, S, Inoue, M, Harada, H, Hiraoka, M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003, 94: 1021–1028.
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 2007, 26: 341–352.
Davda, S, Bezabeh, T. Advances in methods for assessing tumor hypoxia in vivo: implications for treatment planning. Cancer Metastasis Rev 2006, 25: 469–480.
Krohn, KA, Link, JM, Mason, RP. Molecular imaging of hypoxia. J Nucl Med 2008, 49(2): 129S–148S.
Mason, RP, Ran, S, Thorpe, PE. Quantitative assessment of tumor oxygen dynamics: molecular imaging for prognostic radiology. J Cell Biochem Suppl 2002, 39: 45–53.
Haacke, EM, Lai, S, Yablonskiy, DA, Lin, W. In vivo validation of the bold mechanism: a review of signal changes in gradient echo functional MRI in the presence of flow. Int J Imaging Syst Technol 1995, 6: 153–163.
Parhami, P, Fung, BM. Fluorine‐19 relaxation study of perfluoro chemicals as oxygen carriers. J Phys Chem 1983, 87: 1928–1931.
Zhang, W, Ito, Y, Berlin, E, Roberts, R, Berkowitz, BA. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 2003, 44: 3119–3123.
Kodibagkar, VD, Wang, X, Mason, RP. Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci 2008, 13: 1371–1384.
Zhao, D, Ran, S, Constantinescu, A, Hahn, EW, Mason, RP. Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia 2003, 5: 308–318.
Mason, RP, Constantinescu, A, Hunjan, S, Le, D, Hahn, EW, et al. Regional tumor oxygenation and measurement of dynamic changes. Radiat Res 1999, 152: 239–249.
Zhao, D, Constantinescu, A, Hahn, EW, Mason, RP. Tumor oxygen dynamics with respect to growth and respiratory challenge: investigation of the Dunning prostate R3327‐HI tumor. Radiat Res 2001, 156(5 Pt 1): 510–520.
Kim, JG, Zhao, D, Song, Y, Constantinescu, A, Mason, RP, et al. Interplay of tumor vascular oxygenation and tumor pO2 observed using near‐infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. J Biomed Opt 2003, 8: 53–62.
Xia, M, Kodibagkar, V, Liu, H, Mason, RP. Tumour oxygen dynamics measured simultaneously by near‐infrared spectroscopy and 19F magnetic resonance imaging in rats. Phys Med Biol 2006, 51: 45–60.
Mason, RP, Antich, PP, Babcock, EE, Constantinescu, A, Peschke, P, et al. Non‐invasive determination of tumor oxygen tension and local variation with growth. Int J Radiat Oncol Biol Phys 1994, 29: 95–103.
Mason, RP, Antich, PP, Babcock, EE, Gerberich, JL, Nunnally, RL. Perfluorocarbon imaging in vivo: a 19F MRI study in tumor‐bearing mice. Magn Reson Imaging 1989, 7: 475–485.
McIntyre, DJO, McCoy, CL, Griffiths, JR. Tumor oxygen measurement by 19F magnetic resonance imaging of perfluorocarbons. Curr Sci 1999, 76: 753–762.
Zhao, D, Constantinescu, A, Jiang, L, Hahn, EW, Mason, RP. Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI. Am J Clin Oncol 2001, 24: 462–466.
Noth, U, Rodrigues, LM, Robinson, SP, Jork, A, Zimmermann, U, et al. In vivo determination of tumor oxygenation during growth and in response to carbogen breathing using 15C5‐loaded alginate capsules as fluorine‐19 magnetic resonance imaging oxygen sensors. Int J Radiat Oncol Biol Phys 2004, 60: 909–919.
Noth, U, Grohn, P, Jork, A, Zimmermann, U, Haase, A, et al. 19F‐MRI in vivo determination of the partial oxygen pressure in perfluorocarbon‐loaded alginate capsules implanted into the peritoneal cavity and different tissues. Magn Reson Med 1999, 42: 1039–1047.
Hunjan, S, Zhao, D, Constantinescu, A, Hahn, EW, Antich, PP, et al. Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine‐19 echo planar magnetic resonance imaging in the Dunning prostate R3327‐AT1 rat tumor. Int J Radiat Oncol Biol Phys 2001, 49: 1097–1108.
Jordan, BF, Cron, GO, Gallez, B. Rapid monitoring of oxygenation by 19F magnetic resonance imaging: simultaneous comparison with fluorescence quenching. Magn Reson Med 2009, 61: 634–638.
Song, Y, Constantinescu, A, Mason, RP. Dynamic breast tumor oximetry: the development of prognostic radiology. Technol Cancer Res Treat 2002, 1: 471–478.
Zhao, D, Constantinescu, A, Chang, CH, Hahn, EW, Mason, RP. Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327‐HI tumor. Radiat Res 2003, 159: 621–631.
McNab, JA, Yung, AC, Kozlowski, P. Tissue oxygen tension measurements in the Shionogi model of prostate cancer using 19F MRS and MRI. MAGMA 2004, 17: 288–295.
Bourke, VA, Zhao, D, Gilio, J, Chang, CH, Jiang, L, et al. Correlation of radiation response with tumor oxygenation in the Dunning prostate R3327‐AT1 tumor. Int J Radiat Oncol Biol Phys 2007, 67: 1179–1186.
Neubauer, AM, Myerson, J, Caruthers, SD, Hockett, FD, Winter, PM, et al. Gadolinium‐modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 2008, 60: 1066–1072.
Waters, EA, Chen, J, Allen, JS, Zhang, H, Lanza, GM, et al. Detection and quantification of angiogenesis in experimental valve disease with integrin‐targeted nanoparticles and 19‐fluorine MRI/MRS. J Cardiovasc Magn Reson 2008, 10: 43.
Waters, EA, Chen, J, Yang, X, Zhang, H, Neumann, R, et al. Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magn Reson Med 2008, 60: 1232–1236.
Ferreira, L, Karp, JM, Nobre, L, Langer, R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008, 3: 136–146.
Budde, MD, Frank, JA. Magnetic tagging of therapeutic cells for MRI. J Nucl Med 2009, 50: 171–174.
Frank, JA, Anderson, SA, Kalsih, H, Jordan, EK, Lewis, BK, et al. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 2004, 6: 621–625.
Arbab, AS, Yocum, GT, Rad, AM, Khakoo, AY, Fellowes, V, et al. Labeling of cells with ferumoxides–protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 2005, 18: 553–559.
Modo, M, Mellodew, K, Cash, D, Fraser, SE, Meade, TJ, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 2004, 21: 311–317.
Daldrup‐Link, HE, Meier, R, Rudelius, M, Piontek, G, Piert, M, et al. In vivo tracking of genetically engineered, anti‐HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005, 15: 4–13.
van den Bos, EJ, Wagner, A, Mahrholdt, H, Thompson, RB, Morimoto, Y, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 2003, 12: 743–756.
Walczak, P, Kedziorek, DA, Gilad, AA, Lin, S, Bulte, JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 2005, 54: 769–774.
Shapiro, EM, Sharer, K, Skrtic, S, Koretsky, AP. In vivo detection of single cells by MRI. Magn Reson Med 2006, 55: 242–249.
Bulte, JW. Hot spot MRI emerges from the background. Nat Biotechnol 2005, 23: 945–946.
Ahrens, ET, Flores, R, Xu, H, Morel, PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005, 23: 983–987.
Partlow, KC, Chen, J, Brant, JA, Neubauer, AM, Meyerrose, TE, et al. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 2007, 21: 1647–1654.
Srinivas, M, Morel, PA, Ernst, LA, Laidlaw, DH, Ahrens, ET. Fluorine‐19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 2007, 58: 725–734.
Janjic, JM, Srinivas, M, Kadayakkara, DK, Ahrens, ET. Self‐delivering nanoemulsions for dual fluorine‐19 MRI and fluorescence detection. J Am Chem Soc 2008, 130: 2832–2841.
Srinivas, M, Turner, MS, Janjic, JM, Morel, PA, Laidlaw, DH, et al. In vivo cytometry of antigen‐specific t cells using 19F MRI. Magn Reson Med 2009, 62: 747–753.
Flogel, U, Ding, Z, Hardung, H, Jander, S, Reichmann, G, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 2008, 118: 140–148.
Higuchi, M, Iwata, N, Matsuba, Y, Sato, K, Sasamoto, K, et al. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 2005, 8: 527–533.
Porcari, P, Capuani, S, Campanella, R, La Bella, A, Migneco, LM, et al. Multi‐nuclear MRS and 19F MRI of 19F‐labelled and 10B‐enriched p‐boronophenylalanine–fructose complex to optimize boron neutron capture therapy: phantom studies at high magnetic fields. Phys Med Biol 2006, 51: 3141–3154.
Porcari, P, Capuani, S, D`Amore, E, Lecce, M, La Bella, A, et al. In vivo (19)F MRI and (19)F MRS of (19)F‐labelled sboronophenylalanine‐fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT). Phys Med Biol 2008, 53: 6979–6989.
Porcari, P, Capuani, S, D`Amore, E, Lecce, M, La Bella, A, et al. In vivo (19)F MR imaging and spectroscopy for the BNCT optimization. Appl Radiat Isot 2009, 67(7–8 Supppl): 365–368.
Jacob, RE, Chang, YV, Choong, CK, Bierhals, A, Zheng Hu, D, et al. 19F MR imaging of ventilation and diffusion in excised lungs. Magn Reson Med 2005, 54: 577–585.
Kuethe, DO, Caprihan, A, Fukushima, E, Waggoner, RA. Imaging lungs using inert fluorinated gases. Magn Reson Med 1998, 39: 85–88.
Perez‐Sanchez, JM, Perez de Alejo, R, Rodriguez, I, Cortijo, M, Peces‐Barba, G, et al. In vivo diffusion weighted 19F MRI using SF6. Magn Reson Med 2005, 54: 460–463.