Zhu, W. Isolation and characterization of bicoid‐interacting proteins: Bin1 a homolog of human SAP18 and Bin3, a putative protein methyltransferase. Ph.D. Thesis, Department of Biomedical Sciences, School of Public Health, State University of New York; 2000.
Singh, N, Morlock, H, Hanes, SD. The Bin3 RNA methyltransferase is required for repression of caudal translation in the Drosophila embryo. Dev Biol 2011, 352:104–115.
Jeronimo, C, Forget, D, Bouchard, A, Li, Q, Chua, G, Poitras, C, Therien, C, Bergeron, D, Bourassa, S, Greenblatt, J, Chabot, B, Poirier, GG, Hughes, TR, Blanchette, M, Price, DH, Coulombe, B. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 2007, 27:262–274.
Zhu, W, Hanes, SD. Identification of Drosophila Bicoid‐interacting proteins using a custom two‐hybrid selection. Gene 2000, 245:329–339.
Gelbart, WM, Emmert, DB. FlyBase High Throughput Expression Pattern Data Beta Version. Available at: http://flybase.org/reports/FBgn0263144.html. (Accessed October 13, 2010).
Kagan, RM, Clarke, S. Widespread occurrence of three sequence motifs in diverse S‐adenosylmethionine‐dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys. 1994, 310:417–427.
Driever, W, Nusslein‐Volhard, C. A gradient of bicoid protein in Drosophila embryos. Cell 1988, 54:83–93.
Driever, W, Nusslein‐Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration‐dependent manner. Cell 1988, 54: 95–104.
Driever, W, Nusslein‐Volhard, C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 1989, 337:138–143.
Dubnau, J, Struhl, G. RNA recognition and translational regulation by a homeodomain protein. Nature 1996, 379:694–699.
Rivera‐Pomar, R, Niessing, D, Schmidt‐Ott, U, Gehring, WJ, Jackle, H. RNA binding and translational suppression by bicoid. Nature 1996, 379:746–749.
Mlodzik, M, Gehring, WJ. Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell 1987, 48:465–478.
Mlodzik, M, Gibson, G, Gehring, WJ. Effects of ectopic expression of caudal during Drosophila development. Development 1990, 109:271–277.
Marz, M, Donath, A, Verstraete, N, Nguyen, VT, Stadler, PF, Bensaude, O. Evolution of 7SK RNA and its protein partners in metazoa. Mol Biol Evol 2009, 26:2821–2830.
Marchler‐Bauer, A, Lu, S, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese‐Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Lu, F, Marchler, GH, Mullokandov, M, Omelchenko, MV, Robertson, CL, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Zheng, C, Bryant, SH. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225–D229.
Chen, X, Sullivan, DS, Huffaker, TC. Two yeast genes with similarity to TCP‐1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA 1994, 91:9111–9115.
Shumyatsky, GP, Tillib, SV, Kramerov, DA. B2 RNA and 7SK RNA, RNA polymerase III transcripts, have a cap‐like structure at their 5′ end. Nucleic Acids Res 1990, 18:6347–6351.
Gupta, S, Busch, RK, Singh, R, Reddy, R. Characterization of U6 small nuclear RNA cap‐specific antibodies. Identification of gamma‐monomethyl‐GTP cap structure in 7SK and several other human small RNAs. J Biol Chem 1990, 265:19137–19142.
Hamm, J, Darzynkiewicz, E, Tahara, SM, Mattaj, IW. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 1990, 62:569–577.
Xue, Y, Yang, Z, Chen, R, Zhou, Q. A capping‐independent function of MePCE in stabilizing 7SK snRNA and facilitating the assembly of 7SK snRNP. Nucleic Acids Res 2010, 38:360–369.
Shuman, S. Transcriptional networking cap‐tures the 7SK RNA 5′‐gamma‐methyltransferase. Mol Cell 2007, 27:517–519.
Mattaj, IW. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 1986, 46:905–911.
Epstein, P, Reddy, R, Henning, D, Busch, H. The nucleotide sequence of nuclear U6 (4.7 S) RNA. J Biol Chem 1980, 255:8901–8906.
Singh, R, Gupta, S, Reddy, R. Capping of mammalian U6 small nuclear RNA in vitro is directed by a conserved stem‐loop and AUAUAC sequence: conversion of a noncapped RNA into a capped RNA. Mol Cell Biol 1990, 10:939–946.
Shimba, S, Reddy, R. Purification of human U6 small nuclear RNA capping enzyme. Evidence for a common capping enzyme for gamma‐monomethyl‐capped small RNAs. J Biol Chem 1994, 269:12419–12423.
http://www.sgc.utoronto.ca/pmwiki/pmwiki.php?n=Crystallography.HomePage (PDB ID 3G07)
http://swissmodel.expasy.org/
Zieve, G, Penman, S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 1976, 8:19–31.
Zieve, G, Benecke, BJ, Penman, S. Synthesis of two classes of small RNA species in vivo and in vitro. Biochemistry 1977, 16:4520–4525.
Murphy, S, Tripodi, M, Melli, M. A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Res 1986, 14:9243–9260.
Reddy, R, Henning, D, Subrahmanyam, CS, Busch, H. Primary and secondary structure of 7‐3 (K) RNA of Novikoff hepatoma. J Biol Chem 1984, 259: 12265–12270.
Prasanth, KV, Camiolo, M, Chan, G, Tripathi, V, Denis, L, Nakamura, T, Hubner, MR, Spector, DL. Nuclear organization and dynamics of 7SK RNA in regulating gene expression. Mol Biol Cell 2010, 21:4184–4196.
Chen, Y, Sinha, K, Perumal, K, Gu, J, Reddy, R. Accurate 3` end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro. J Biol Chem 1998, 273:35023–35031.
He, N, Jahchan, NS, Hong, E, Li, Q, Bayfield, MA, Maraia, RJ, Luo, K, Zhou, Q. A La‐related protein modulates 7SK snRNP integrity to suppress P‐TEFb‐dependent transcriptional elongation and tumorigenesis. Mol Cell 2008, 29:588–599.
Ullu, E, Esposito, V, Melli, M. Evolutionary conservation of the human 7 S RNA sequences. J Mol Biol 1982, 161:195–201.
Gruber, AR, Kilgus, C, Mosig, A, Hofacker, IL, Hennig, W, Stadler, PF. Arthropod 7SK RNA. Mol Biol Evol 2008, 25:1923–1930.
Copeland, CS, Marz, M, Rose, D, Hertel, J, Brindley, PJ, Santana, CB, Kehr, S, Attolini, CS, Stadler, PF. Homology‐based annotation of non‐coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 2009, 10:464.
Diribarne, G, Bensaude, O. 7SK RNA, a non‐coding RNA regulating P‐TEFb, a general transcription factor. RNABiology 2009, 6:122–128.
Kohoutek, J. P‐TEFb‐ the final frontier. Cell Division 2009, 4:19.
Peterlin, BM, Brogie, JE, Price, DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WIRes RNA 2012, 3:92–103.
Blencowe, BJ. Transcription: surprising role for an elusive small nuclear RNA. Curr Biol 2002, 12: R147–R149.
Wassarman, DA, Steitz, JA. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol 1991, 11:3432–3445.
Krueger, BJ, Jeronimo, C, Roy, BB, Bouchard, A, Barrandon, C, Byers, SA, Searcey, CE, Cooper, JJ, Bensaude, O, Cohen, EA, Coulombe, B, Price, DH. LARP7 is a stable component of the 7SK snRNP while P‐TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 2008, 36:2219–2229.
Krueger, BJ, Varzavand, K, Cooper, JJ, Price, DH. The mechanism of release of P‐TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PloS One 2010, 5:e12335.
Lebars, I, Martinez‐Zapien, D, Durand, A, Coutant, J, Kieffer, B, Dock‐Bregeon, AC. HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Nucleic Acids Res 2010, 38:7749–7763.
Nguyen, D, Krueger, BJ, Sedore, SC, Brogie, JE, Rogers, JT, Rajendra, TK, Saunders, A, Matera, AG, Lis, JT, Uguen, P, Price, DH. The Drosophila 7SK snRNP and the essential role of dHEXIM in development. Nucleic Acids Res 2012. In press.
Ding, Y, Chan, CY, Lawrence, CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004, 32:W135–W141.
Ding, Y, Lawrence, CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 2003, 31:7280–7301.
Ding, Y, Chan, CY, Lawrence, CE. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 2005, 11:1157–1166.
Markham, NR, Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 2008, 453:3–31.
Muse, GW, Gilchrist, DA, Nechaev, S, Shah, R, Parker, JS, Grissom, SF, Zeitlinger, J, Adelman, K. RNA polymerase is poised for activation across the genome. Nat Genet 2007, 39:1507–1511.
Zeitlinger, J, Stark, A, Kellis, M, Hong, JW, Nechaev, S, Adelman, K, Levine, M, Young, RA. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 2007, 39:1512–1516.
Nechaev, S, Fargo, DC, dos Santos, G, Liu, L, Gao, Y, Adelman, K. Global analysis of short RNAs reveals widespread promoter‐proximal stalling and arrest of Pol II in Drosophila. Science 2010, 327:335–338.
Yang, Z, Zhu, Q, Luo, K, Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001, 414:317–322.
Nguyen, VT, Kiss, T, Michels, AA, Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001, 414:322–325.
Michels, AA, Nguyen, VT, Fraldi, A, Labas, V, Edwards, M, Bonnet, F, Lania, L, Bensaude, O. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription‐dependent manner. Mol Cell Biol 2003, 23:4859–4869.
Yik, JH, Chen, R, Nishimura, R, Jennings, JL, Link, AJ, Zhou, Q. Inhibition of P‐TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 2003, 12:971–982.
Ouchida, R, Kusuhara, M, Shimizu, N, Hisada, T, Makino, Y, Morimoto, C, Handa, H, Ohsuzu, F, Tanaka, H. Suppression of NF‐kappaB‐dependent gene expression by a hexamethylene bisacetamide‐inducible protein HEXIM1 in human vascular smooth muscle cells. Genes Cells 2003, 8:95–107.
Markert, A, Grimm, M, Martinez, J, Wiesner, J, Meyerhans, A, Meyuhas, O, Sickmann, A, Fischer, U. The La‐related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 2008, 9:569–575.
Michels, AA, Fraldi, A, Li, Q, Adamson, TE, Bonnet, F, Nguyen, VT, Sedore, SC, Price, JP, Price, DH, Lania, L, Bensaude, O. Binding of the 7SK snRNA turns the HEXIM1 protein into a P‐TEFb (CDK9/cyclin T) inhibitor. EMBO J 2004, 23:2608–2619.
Van Herreweghe, E, Egloff, S, Goiffon, I, Jady, BE, Froment, C, Monsarrat, B, Kiss, T. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P‐TEFb. EMBO J 2007, 26:3570–3580.
Barrandon, C, Bonnet, F, Nguyen, VT, Labas, V, Bensaude, O. The transcription‐dependent dissociation of P‐TEFb‐HEXIM1‐7SK RNA relies upon formation of hnRNP‐7SK RNA complexes. Mol Cell Biol 2007, 27:6996–7006.
Conaway, JW, Conaway, RC. Transcription elongation and human disease. Ann Rev Biochem 1999, 68:301–319.
Romano, G, Giordano, A. Role of the cyclin‐dependent kinase 9‐related pathway in mammalian gene expression and human diseases. Cell Cycle 2008, 7:3664–3668.
Espinoza‐Derout, J, Wagner, M, Salciccioli, L, Lazar, JM, Bhaduri, S, Mascareno, E, Chaqour, B, Siddiqui, MA. Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein‐1. Circ Res 2009, 104:1347–1354.
Ai, N, Hu, X, Ding, F, Yu, B, Wang, H, Lu, X, Zhang, K, Li, Y, Han, A, Lin, W, Liu, R, Chen, R. Signal‐induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation. Nucleic Acids Res 2011, 39:9592–9604.
Kim, YK, Mbonye, U, Hokello, J, Karn, J. T‐cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P‐TEFb through an ERK‐dependent pathway. J Mol Biol 2011, 410:896–916.
Contreras, X, Barboric, M, Lenasi, T, Peterlin, BM. HMBA releases P‐TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog 2007, 3:1459–1469.
Zhu, Y, Pe`ery, T, Peng, J, Ramanathan, Y, Marshall, N, Marshall, T, Amendt, B, Mathews, MB, Price, DH. Transcription elongation factor P‐TEFb is required for HIV‐1 tat transactivation in vitro. Genes Dev 1997, 11:2622–2632.
Mancebo, HS, Lee, G, Flygare, J, Tomassini, J, Luu, P, Zhu, Y, Peng, J, Blau, C, Hazuda, D, Price, D, Flores, O. P‐TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997, 11:2633–2644.
Cho, S, Schroeder, S, Ott, M. CYCLINg through transcription: posttranslational modifications of P‐TEFb regulate transcription elongation. Cell Cycle 2010, 9:1697–1705.
Huang, HD, Lee, TY, Tzeng, SW, Horng, JT. KinasePhos: a web tool for identifying protein kinase‐specific phosphorylation sites. Nucleic Acids Res 2005, 33:W226–W229.
Marshall, NF, Price, DH. Purification of P‐TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 1995, 270:12335–12338.
de la Mata, M, Alonso, CR, Kadener, S, Fededa, JP, Blaustein, M, Pelisch, F, Cramer, P, Bentley, D, Kornblihtt, AR. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003, 12:525–532.
Bird, G, Zorio, DA, Bentley, DL. RNA polymerase II carboxy‐terminal domain phosphorylation is required for cotranscriptional pre‐mRNA splicing and 3`‐end formation. Mol Cell Biol 2004, 24:8963–8969.
Kornblihtt, AR. Coupling transcription and alternative splicing. Adv Expt Med Biol 2007, 623:175–189.
Dutertre, M, Sanchez, G, De Cian, MC, Barbier, J, Dardenne, E, Gratadou, L, Dujardin, G, Le Jossic‐Corcos, C, Corcos, L, Auboeuf, D. Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol 2010, 17:1358–1366.
Lenasi, T, Barboric, M. P‐TEFb stimulates transcription elongation and pre‐mRNA splicing through multilateral mechanisms. RNA Biol 2010, 7:145–150.
Barboric, M, Lenasi, T, Chen, H, Johansen, EB, Guo, S, Peterlin, BM. 7SK snRNP/P‐TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc Natl Acad Sci USA 2009, 106:7798–7803.
Eilebrecht, S, Brysbaert, G, Wegert, T, Urlaub, H, Benecke, BJ, Benecke, A. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res 2011, 39:2057–2072.
Cleynen, I, Van de Ven, WJ. The HMGA proteins: a myriad of functions (Review). Int J Oncol 2008, 32:289–305.
Eilebrecht, S, Becavin, C, Leger, H, Benecke, BJ, Benecke, A. HMGA1‐dependent and independent 7SK RNA gene regulatory activity. RNA Biology 2011, 8:143–157.
Sonenberg, N, Hinnebusch, AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731–745.
Burrows, C, Latip, NA, Lam, SJ, Carpenter, L, Sawicka, K, Tzolovsky, G, Gabra, H, Bushell, M, Glover, DM, Willis, AE, Blagden, SP. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res 2009, 38:5542–5553.
Filipowicz, W, Bhattacharyya, SN, Sonenberg, N. Mechanisms of post‐transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9:102–114.
Duncan, KE, Strein, C, Hentze, MW. The SXL‐UNR corepressor complex uses a PABP‐mediated mechanism to inhibit ribosome recruitment to msl‐2 mRNA. Mol Cell 2009, 36:571–582.
Kawahara, H, Imai, T, Imataka, H, Tsujimoto, M, Matsumoto, K, Okano, H. Neural RNA‐binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. J Cell Biol 2008, 181:639–653.
Clouse, KN, Ferguson, SB, Schupbach, T. Squid, Cup, and PABP55B function together to regulate gurken translation in Drosophila. Dev Biol 2008, 313:713–724.
Kugler, JM, Lasko, P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 2009, 3:15–28.
Lasko, P. Posttranscriptional regulation in Drosophila oocytes and early embryos. WIRes RNA 2011, 2:408–416.
Chopra, VS, Hong, JW, Levine, M. Regulation of Hox gene activity by transcriptional elongation in Drosophila. Curr Biol 2009, 19:688–693.
Harbison, ST, Carbone, MA, Ayroles, JF, Stone, EA, Lyman, RF, Mackay, TF. Co‐regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet 2009, 41:371–375.
Wery, M, Kwapisz, M, Morillon, A. Noncoding RNAs in gene regulation. WIRes Syst Biol Med 2011, 3:728–738.
Wang, KC, Chang, HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011, 43:904–914.