Wu, X, Brewer, G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012, 500:10–21.
Muller‐McNicoll, M, Neugebauer, KM. How cells get the message: dynamic assembly and function of mRNA‐protein complexes. Nat Rev Genet 2013, 14:275–287.
Hieronymus, H, Silver, PA. A systems view of mRNP biology. Genes Dev 2004, 18:2845–2860.
Hollams, EM, Giles, KM, Thomson, AM, Leedman, PJ. MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002, 27:957–980.
Goodarzi, H, Najafabadi, HS, Oikonomou, P, Greco, TM, Fish, L, Salavati, R, Cristea, IM, Tavazoie, S. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 2012, 485:264–268.
Proudfoot, NJ, Furger, A, Dye, MJ. Integrating mRNA processing with transcription. Cell 2002, 108:501–512.
Goler‐Baron, V, Selitrennik, M, Barkai, O, Haimovich, G, Lotan, R, Choder, M. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev 2008, 22:2022–2027.
Schoenberg, DR, Maquat, LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet 2012, 13:246–259.
Duret, L, Dorkeld, F, Gautier, C. Strong conservation of non‐coding sequences during vertebrates evolution: potential involvement in post‐transcriptional regulation of gene expression. Nucleic Acids Res 1993, 21:2315–2322.
Ho, JJ, Robb, GB, Tai, SC, Turgeon, PJ, Mawji, IA, Man, HS, Marsden, PA. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. Mol Cell Biol 2013, 33:2029–2046.
McQuillan, LP, Leung, GK, Marsden, PA, Kostyk, SK, Kourembanas, S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol 1994, 267:H1921–H1927.
Phelan, MW, Faller, DV. Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells. J Cell Physiol 1996, 167:469–476.
Yan, G, You, B, Chen, SP, Liao, JK, Sun, J. Tumor necrosis factor‐α downregulates endothelial nitric oxide synthase mRNA stability via translation elongation factor 1‐α 1. Circ Res 2008, 103:591–597.
Flowers, MA, Wang, Y, Stewart, RJ, Patel, B, Marsden, PA. Reciprocal regulation of endothelin‐1 and endothelial constitutive NOS in proliferating endothelial cells. Am J Physiol 1995, 269:H1988–H1997.
Liao, JK, Shin, WS, Lee, WY, Clark, SL. Oxidized low‐density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995, 270:319–324.
Bartel, DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281–297.
Bartel, DP. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215–233.
Friedman, RC, Farh, KK, Burge, CB, Bartel, DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92–105.
Cesana, M, Cacchiarelli, D, Legnini, I, Santini, T, Sthandier, O, Chinappi, M, Tramontano, A, Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011, 147:358–369.
Johnsson, P, Ackley, A, Vidarsdottir, L, Lui, WO, Corcoran, M, Grander, D, Morris, KV. A pseudogene long‐noncoding‐RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 2013, 20:440–446.
Wang, Y, Xu, Z, Jiang, J, Xu, C, Kang, J, Xiao, L, Wu, M, Xiong, J, Guo, X, Liu, H. Endogenous miRNA Sponge lincRNA‐RoR Regulates Oct4, Nanog, and Sox2 in Human Embryonic Stem Cell Self‐Renewal. Dev Cell 2013, 25:69–80.
Holcik, M, Liebhaber, SA. Four highly stable eukaryotic mRNAs assemble 3` untranslated region RNA‐protein complexes sharing cis and trans components. Proc Natl Acad Sci U S A 1997, 94:2410–2414.
Mohr, E, Richter, D. Messenger RNA on the move: implications for cell polarity. Int J Biochem Cell Biol 2001, 33:669–679.
Aoki, K, Matsumoto, K, Tsujimoto, M. Xenopus cold‐inducible RNA‐binding protein 2 interacts with ElrA, the Xenopus homolog of HuR, and inhibits deadenylation of specific mRNAs. J Biol Chem 2003, 278:48491–48497.
Ambros, V. The functions of animal microRNAs. Nature 2004, 431:350–355.
He, L, Hannon, GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5:522–531.
Pasquinelli, AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012, 13:271–282.
Lee, RC, Feinbaum, RL, Ambros, V. The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell 1993, 75:843–854.
Wightman, B, Ha, I, Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin‐14 by lin‐4 mediates temporal pattern formation in C. elegans. Cell 1993, 75:855–862.
Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011, 12:846–860.
Farh, KK, Grimson, A, Jan, C, Lewis, BP, Johnston, WK, Lim, LP, Burge, CB, Bartel, DP. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005, 310:1817–1821.
Mukherji, S, Ebert, MS, Zheng, GX, Tsang, JS, Sharp, PA, van Oudenaarden, A. MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011, 43:854–859.
Leung, AK, Sharp, PA. MicroRNA functions in stress responses. Mol Cell 2010, 40:205–215.
Kim, VN, Han, J, Siomi, MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10:126–139.
Denli, AM, Tops, BB, Plasterk, RH, Ketting, RF, Hannon, GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004, 432:231–235.
Gregory, RI, Yan, KP, Amuthan, G, Chendrimada, T, Doratotaj, B, Cooch, N, Shiekhattar, R. The microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235–240.
Bernstein, E, Caudy, AA, Hammond, SM, Hannon, GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363–366.
Dueck, A, Ziegler, C, Eichner, A, Berezikov, E, Meister, G. microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res 2012, 40:9850–9862.
Wang, D, Zhang, Z, O`Loughlin, E, Lee, T, Houel, S, O`Carroll, D, Tarakhovsky, A, Ahn, NG, Yi, R. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 2012, 26:693–704.
Yang, JS, Phillips, MD, Betel, D, Mu, P, Ventura, A, Siepel, AC, Chen, KC, Lai, EC. Widespread regulatory activity of vertebrate microRNA* species. RNA 2011, 17:312–326.
Marco, A, Macpherson, JI, Ronshaugen, M, Griffiths‐Jones, S. MicroRNAs from the same precursor have different targeting properties. Silence 2012, 3:8.
Yang, JS, Lai, EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 2011, 43:892–903.
Yang, JS, Maurin, T, Robine, N, Rasmussen, KD, Jeffrey, KL, Chandwani, R, Papapetrou, EP, Sadelain, M, O`Carroll, D, Lai, EC. Conserved vertebrate mir‐451 provides a platform for Dicer‐independent, Ago2‐mediated microRNA biogenesis. Proc Natl Acad Sci U S A 2010, 107:15163–15168.
Huntzinger, E, Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12:99–110.
Fabian, MR, Sonenberg, N. The mechanics of miRNA‐mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012, 19:586–593.
Baek, D, Villen, J, Shin, C, Camargo, FD, Gygi, SP, Bartel, DP. The impact of microRNAs on protein output. Nature 2008, 455:64–71.
Selbach, M, Schwanhausser, B, Thierfelder, N, Fang, Z, Khanin, R, Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58–63.
Guo, H, Ingolia, NT, Weissman, JS, Bartel, DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835–840.
Lim, LP, Lau, NC, Garrett‐Engele, P, Grimson, A, Schelter, JM, Castle, J, Bartel, DP, Linsley, PS, Johnson, JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769–773.
Behm‐Ansmant, I, Rehwinkel, J, Doerks, T, Stark, A, Bork, P, Izaurralde, E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 2006, 20:1885–1898.
Wu, L, Fan, J, Belasco, JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 2006, 103:4034–4039.
Fabian, MR, Cieplak, MK, Frank, F, Morita, M, Green, J, Srikumar, T, Nagar, B, Yamamoto, T, Raught, B, Duchaine, TF, et al. miRNA‐mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4‐NOT. Nat Struct Mol Biol 2011, 18:1211–1217.
Bethune, J, Artus‐Revel, CG, Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA‐mediated silencing in mammalian cells. EMBO Rep 2012, 13:716–723.
Djuranovic, S, Nahvi, A, Green, R. miRNA‐mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012, 336:237–240.
Bazzini, AA, Lee, MT, Giraldez, AJ. Ribosome profiling shows that miR‐430 reduces translation before causing mRNA decay in zebrafish. Science 2012, 336:233–237.
Choe, J, Cho, H, Lee, HC, Kim, YK. microRNA/Argonaute 2 regulates nonsense‐mediated messenger RNA decay. EMBO Rep 2010, 11:380–386.
Forman, JJ, Coller, HA. The code within the code: microRNAs target coding regions. Cell Cycle 2010, 9:1533–1541.
Lewis, BP, Shih, IH, Jones‐Rhoades, MW, Bartel, DP, Burge, CB. Prediction of mammalian microRNA targets. Cell 2003, 115:787–798.
Grimson, A, Farh, KK, Johnston, WK, Garrett‐Engele, P, Lim, LP, Bartel, DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91–105.
Stalder, L, Heusermann, W, Sokol, L, Trojer, D, Wirz, J, Hean, J, Fritzsche, A, Aeschimann, F, Pfanzagl, V, Basselet, P, et al. The rough endoplasmatic reticulum is a central nucleation site of siRNA‐mediated RNA silencing. EMBO J 2013, 32:1115–1127.
Cammas, A, Lewis, SM, Vagner, S, Holcik, M. Post‐transcriptional control of gene expression through subcellular relocalization of mRNA binding proteins. Biochem Pharmacol 2008, 76:1395–1403.
Miller, AD, Curran, T, Verma, IM. c‐fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 1984, 36:51–60.
Shaw, G, Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM‐CSF mRNA mediates selective mRNA degradation. Cell 1986, 46:659–667.
Gillis, P, Malter, JS. The adenosine‐uridine binding factor recognizes the AU‐rich elements of cytokine, lymphokine, and oncogene mRNAs. J Biol Chem 1991, 266:3172–3177.
Caput, D, Beutler, B, Hartog, K, Thayer, R, Brown‐Shimer, S, Cerami, A. Identification of a common nucleotide sequence in the 3′‐untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 1986, 83:1670–1674.
Levy, AP, Levy, NS, Goldberg, MA. Hypoxia‐inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel‐Lindau protein. J Biol Chem 1996, 271:25492–25497.
Chen, CY, Shyu, AB. AU‐rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995, 20:465–470.
Chen, CY, Shyu, AB. Selective degradation of early‐response‐gene mRNAs: functional analyses of sequence features of the AU‐rich elements. Mol Cell Biol 1994, 14:8471–8482.
Stoecklin, G, Hahn, S, Moroni, C. Functional hierarchy of AUUUA motifs in mediating rapid interleukin‐3 mRNA decay. J Biol Chem 1994, 269:28591–28597.
Lagnado, CA, Brown, CY, Goodall, GJ. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU‐rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 1994, 14:7984–7995.
Weiss, IM, Liebhaber, SA. Erythroid cell‐specific mRNA stability elements in the α 2‐globin 3′ nontranslated region. Mol Cell Biol 1995, 15:2457–2465.
Kiledjian, M, Wang, X, Liebhaber, SA. Identification of two KH domain proteins in the α‐globin mRNP stability complex. EMBO J 1995, 14:4357–4364.
Wang, X, Kiledjian, M, Weiss, IM, Liebhaber, SA. Detection and characterization of a 3′ untranslated region ribonucleoprotein complex associated with human α‐globin mRNA stability. Mol Cell Biol 1995, 15:1769–1777.
Chkheidze, AN, Liebhaber, SA. A novel set of nuclear localization signals determine distributions of the αCP RNA‐binding proteins. Mol Cell Biol 2003, 23:8405–8415.
Waggoner, SA, Liebhaber, SA. Identification of mRNAs associated with αCP2‐containing RNP complexes. Mol Cell Biol 2003, 23:7055–7067.
Waggoner, SA, Liebhaber, SA. Regulation of α‐globin mRNA stability. Exp Biol Med (Maywood) 2003, 228:387–395.
Chaudhury, A, Chander, P, Howe, PH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1`s multifunctional regulatory roles. RNA 2010, 16:1449–1462.
Chaudhury, A, Hussey, GS, Ray, PS, Jin, G, Fox, PL, Howe, PH. TGF‐β‐mediated phosphorylation of hnRNP E1 induces EMT via transcript‐selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010, 12:286–293.
Meng, Q, Rayala, SK, Gururaj, AE, Talukder, AH, O`Malley, BW, Kumar, R. Signaling‐dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proc Natl Acad Sci U S A 2007, 104:5866–5871.
Jing, Q, Huang, S, Guth, S, Zarubin, T, Motoyama, A, Chen, J, Di Padova, F, Lin, SC, Gram, H, Han, J. Involvement of microRNA in AU‐rich element‐mediated mRNA instability. Cell 2005, 120:623–634.
Zhang, L, Lee, JE, Wilusz, J, Wilusz, CJ. The RNA‐binding protein CUGBP1 regulates stability of tumor necrosis factor mRNA in muscle cells: implications for myotonic dystrophy. J Biol Chem 2008, 283:22457–22463.
Kim, HH, Kuwano, Y, Srikantan, S, Lee, EK, Martindale, JL, Gorospe, M. HuR recruits let‐7/RISC to repress c‐Myc expression. Genes Dev 2009, 23:1743–1748.
Glorian, V, Maillot, G, Poles, S, Iacovoni, JS, Favre, G, Vagner, S. HuR‐dependent loading of miRNA RISC to the mRNA encoding the Ras‐related small GTPase RhoB controls its translation during UV‐induced apoptosis. Cell Death Differ 2011, 18:1692–1701.
Challagundla, KB, Sun, XX, Zhang, X, DeVine, T, Zhang, Q, Sears, RC, Dai, MS. Ribosomal protein L11 recruits miR‐24/miRISC to repress c‐Myc expression in response to ribosomal stress. Mol Cell Biol 2011, 31:4007–4021.
Wilusz, CJ, Wilusz, J. HuR and translation‐‐the missing linc(RNA). Mol Cell 2012, 47:495–496.
Yoon, JH, Abdelmohsen, K, Srikantan, S, Yang, X, Martindale, JL, De, S, Huarte, M, Zhan, M, Becker, KG, Gorospe, M. LincRNA‐p21 suppresses target mRNA translation. Mol Cell 2012, 47:648–655.
Kundu, P, Fabian, MR, Sonenberg, N, Bhattacharyya, SN, Filipowicz, W. HuR protein attenuates miRNA‐mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res 2012, 40:5088–5100.
Bhattacharyya, SN, Habermacher, R, Martine, U, Closs, EI, Filipowicz, W. Relief of microRNA‐mediated translational repression in human cells subjected to stress. Cell 2006, 125:1111–1124.
Young, LE, Moore, AE, Sokol, L, Meisner‐Kober, N, Dixon, DA. The mRNA stability factor HuR inhibits microRNA‐16 targeting of COX‐2. Mol Cancer Res 2012, 10:167–180.
Srikantan, S, Tominaga, K, Gorospe, M. Functional interplay between RNA‐binding protein HuR and microRNAs. Curr Protein Pept Sci 2012, 13:372–379.
Kaelin, WG Jr, Ratcliffe, PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008, 30:393–402.
Semenza, GL. Oxygen sensing, homeostasis, and disease. N Engl J Med 2011, 365:537–547.
Gorospe, M, Tominaga, K, Wu, X, Fahling, M, Ivan, M. Post‐transcriptional control of the hypoxic response by RNA‐binding proteins and microRNAs. Front Mol Neurosci 2011, 4:7.
Jafarifar, F, Yao, P, Eswarappa, SM, Fox, PL. Repression of VEGFA by CA‐rich element‐binding microRNAs is modulated by hnRNP L. EMBO J 2011, 30:1324–1334.
Fish, JE, Matouk, CC, Yeboah, E, Bevan, SC, Khan, M, Patil, K, Ohh, M, Marsden, PA. Hypoxia‐inducible expression of a natural cis‐antisense transcript inhibits endothelial nitric‐oxide synthase. J Biol Chem 2007, 282:15652–15666.
Ostergaard, L, Stankevicius, E, Andersen, MR, Eskildsen‐Helmond, Y, Ledet, T, Mulvany, MJ, Simonsen, U. Diminished NO release in chronic hypoxic human endothelial cells. Am J Physiol Heart Circ Physiol 2007, 293:H2894–2903.
Robb, GB, Carson, AR, Tai, SC, Fish, JE, Singh, S, Yamada, T, Scherer, SW, Nakabayashi, K, Marsden, PA. Post‐transcriptional regulation of endothelial nitric‐oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 2004, 279:37982–37996.
Brennan, CM, Steitz, JA. HuR and mRNA stability. Cell Mol Life Sci 2001, 58:266–277.
Fan, XC, Steitz, JA. Overexpression of HuR, a nuclear‐cytoplasmic shuttling protein, increases the in vivo stability of ARE‐containing mRNAs. EMBO J 1998, 17:3448–3460.
Fialcowitz‐White, EJ, Brewer, BY, Ballin, JD, Willis, CD, Toth, EA, Wilson, GM. Specific protein domains mediate cooperative assembly of HuR oligomers on AU‐rich mRNA‐destabilizing sequences. J Biol Chem 2007, 282:20948–20959.
Gallouzi, IE, Brennan, CM, Stenberg, MG, Swanson, MS, Eversole, A, Maizels, N, Steitz, JA. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci U S A 2000, 97:3073–3078.
Zhang, Y, Park, TS, Gidday, JM. Hypoxic preconditioning protects human brain endothelium from ischemic apoptosis by Akt‐dependent survivin activation. Am J Physiol Heart Circ Physiol 2007, 292:H2573–2581.
Henning, RJ, Dennis, S, Sawmiller, D, Hunter, L, Sanberg, P, Miller, L. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Transl Res 2012, 159:497–506.
Datta, K, Mondal, S, Sinha, S, Li, J, Wang, E, Knebelmann, B, Karumanchi, SA, Mukhopadhyay, D. Role of elongin‐binding domain of von Hippel Lindau gene product on HuR‐mediated VPF/VEGF mRNA stability in renal cell carcinoma. Oncogene 2005, 24:7850–7858.
Xin, H, Brown, JA, Gong, C, Fan, H, Brewer, G, Gnarra, JR. Association of the von Hippel‐Lindau protein with AUF1 and posttranscriptional regulation of VEGFA mRNA. Mol Cancer Res 2012, 10:108–120.
Dickson, AM, Anderson, JR, Barnhart, MD, Sokoloski, KJ, Oko, L, Opyrchal, M, Galanis, E, Wilusz, CJ, Morrison, TE, Wilusz, J. Dephosphorylation of HuR protein during αvirus infection is associated with HuR relocalization to the cytoplasm. J Biol Chem 2012, 287:36229–36238.
Chen, CY, Xu, N, Shyu, AB. Highly selective actions of HuR in antagonizing AU‐rich element‐mediated mRNA destabilization. Mol Cell Biol 2002, 22:7268–7278.
Lal, A, Mazan‐Mamczarz, K, Kawai, T, Yang, X, Martindale, JL, Gorospe, M. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 2004, 23:3092–3102.
Kiledjian, M, DeMaria, CT, Brewer, G, Novick, K. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the α‐globin mRNA stability complex. Mol Cell Biol 1997, 17:4870–4876.
Wang, Z, Day, N, Trifillis, P, Kiledjian, M. An mRNA stability complex functions with poly(A)‐binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999, 19:4552–4560.
Balzer, E, Moss, EG. Localization of the developmental timing regulator Lin28 to mRNP complexes, P‐bodies and stress granules. RNA Biol 2007, 4:16–25.
Jin, J, Jing, W, Lei, XX, Feng, C, Peng, S, Boris‐Lawrie, K, Huang, Y. Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Res 2011, 39:3724–3734.
Piskounova, E, Polytarchou, C, Thornton, JE, LaPierre, RJ, Pothoulakis, C, Hagan, JP, Iliopoulos, D, Gregory, RI. Lin28A and Lin28B inhibit let‐7 microRNA biogenesis by distinct mechanisms. Cell 2011, 147:1066–1079.
Hagan, JP, Piskounova, E, Gregory, RI. Lin28 recruits the TUTase Zcchc11 to inhibit let‐7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009, 16:1021–1025.
Heo, I, Joo, C, Kim, YK, Ha, M, Yoon, MJ, Cho, J, Yeom, KH, Han, J, Kim, VN. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre‐microRNA uridylation. Cell 2009, 138:696–708.
Carthew, RW, Sontheimer, EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136:642–655.
Vasudevan, S, Tong, Y, Steitz, JA. Switching from repression to activation: microRNAs can up‐regulate translation. Science 2007, 318:1931–1934.
Vasudevan, S, Steitz, JA. AU‐rich‐element‐mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007, 128:1105–1118.
Mortensen, RD, Serra, M, Steitz, JA, Vasudevan, S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA‐protein complexes (microRNPs). Proc Natl Acad Sci U S A 2011, 108:8281–8286.
Salmena, L, Poliseno, L, Tay, Y, Kats, L, Pandolfi, PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011, 146:353–358.
Taulli, R, Loretelli, C, Pandolfi, PP. From pseudo‐ceRNAs to circ‐ceRNAs: a tale of cross‐talk and competition. Nat Struct Mol Biol 2013, 20:541–543.
Tay, Y, Kats, L, Salmena, L, Weiss, D, Tan, SM, Ala, U, Karreth, F, Poliseno, L, Provero, P, Di Cunto, F, et al. Coding‐independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011, 147:344–357.
Hansen, TB, Jensen, TI, Clausen, BH, Bramsen, JB, Finsen, B, Damgaard, CK, Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384–388.
Memczak, S, Jens, M, Elefsinioti, A, Torti, F, Krueger, J, Rybak, A, Maier, L, Mackowiak, SD, Gregersen, LH, Munschauer, M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495:333–338.
Jeck, WR, Sorrentino, JA, Wang, K, Slevin, MK, Burd, CE, Liu, J, Marzluff, WF, Sharpless, NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19:141–157.
Zhang, Z, Qin, YW, Brewer, G, Jing, Q. MicroRNA degradation and turnover: regulating the regulators. WIREs RNA 2012, 3:593–600.
Gantier, MP, McCoy, CE, Rusinova, I, Saulep, D, Wang, D, Xu, D, Irving, AT, Behlke, MA, Hertzog, PJ, Mackay, F, et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 2011, 39:5692–5703.
Krol, J, Busskamp, V, Markiewicz, I, Stadler, MB, Ribi, S, Richter, J, Duebel, J, Bicker, S, Fehling, HJ, Schubeler, D, et al. Characterizing light‐regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 2010, 141:618–631.
Hwang, HW, Wentzel, EA, Mendell, JT. A hexanucleotide element directs microRNA nuclear import. Science 2007, 315:97–100.
Katoh, T, Sakaguchi, Y, Miyauchi, K, Suzuki, T, Kashiwabara, S, Baba, T. Selective stabilization of mammalian microRNAs by 3` adenylation mediated by the cytoplasmic poly(A) polymerase GLD‐2. Genes Dev 2009, 23:433–438.
Bail, S, Swerdel, M, Liu, H, Jiao, X, Goff, LA, Hart, RP, Kiledjian, M. Differential regulation of microRNA stability. RNA 2010, 16:1032–1039.
van Rooij, E, Sutherland, LB, Qi, X, Richardson, JA, Hill, J, Olson, EN. Control of stress‐dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575–579.
Sethi, P, Lukiw, WJ. Micro‐RNA abundance and stability in human brain: specific alterations in Alzheimer`s disease temporal lobe neocortex. Neurosci Lett 2009, 459:100–104.
Ameres, SL, Horwich, MD, Hung, JH, Xu, J, Ghildiyal, M, Weng, Z, Zamore, PD. Target RNA‐directed trimming and tailing of small silencing RNAs. Science 2010, 328:1534–1539.
Chatterjee, S, Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009, 461:546–549.
Arvey, A, Larsson, E, Sander, C, Leslie, CS, Marks, DS. Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 2010, 6:363.
Larsson, E, Sander, C, Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol Syst Biol 2010, 6:433.
Baccarini, A, Chauhan, H, Gardner, TJ, Jayaprakash, AD, Sachidanandam, R, Brown, BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 2011, 21:369–376.
Hu, W, Sweet, TJ, Chamnongpol, S, Baker, KE, Coller, J. Co‐translational mRNA decay in Saccharomyces cerevisiae. Nature 2009, 461:225–229.
Ho, JJ, Metcalf, JL, Yan, MS, Turgeon, PJ, Wang, JJ, Chalsev, M, Petruzziello‐Pellegrini, TN, Tsui, AK, He, JZ, Dhamko, H, et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 2012, 287:29003–29020.
Fan, XC, Steitz, JA. HNS, a nuclear‐cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci U S A 1998, 95:15293–15298.
Fasanaro, P, D`Alessandra, Y, Di Stefano, V, Melchionna, R, Romani, S, Pompilio, G, Capogrossi, MC, Martelli, F. MicroRNA‐210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin‐A3. J Biol Chem 2008, 283:15878–15883.
Chan, SY, Zhang, YY, Hemann, C, Mahoney, CE, Zweier, JL, Loscalzo, J. MicroRNA‐210 controls mitochondrial metabolism during hypoxia by repressing the iron‐sulfur cluster assembly proteins ISCU1/2. Cell Metab 2009, 10:273–284.