Mandel, C, Bai, Y, Tong, L. Protein factors in pre‐mRNA 3′‐end processing. Cell Mol Life Sci 2008, 65:1099–1122. doi: 10.1007/s00018‐007‐7474‐3.
Jackson, TF. Epidemiology. In: Ravdin, JI, ed. Amebiasis. London: Imperial College Press; 2000, 47–63.
Loftus, B, Anderson, I, Davies, R, Alsmark, UC, Samuelson, J, Amedeo, P, Roncaglia, P, Berriman, M, Hirt, RP, Mann, BJ, et al. The genome of the protist parasite Entamoeba histolytica. Nature 2005, 433:865–868. doi: 10.1038/nature03291.
Smale, ST, Kadonaga, JT. The RNA polymerase II core promoter. Annu Rev Biochem 2003, 72:449–479. doi: 10.1146/annurev.biochem.72.121801.161520.
Calvo, O, Manley, JL. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev 2003, 17:1321–1327. doi: 10.1101/gad.1093603.
He, X, Khan, AU, Cheng, H, Pappas, DL Jr, Hampsey, M, Moore, CL. Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 2003, 17:1030–1042. doi: 10.1101/gad.1075203.
Aurrecoechea, C, Barreto, A, Brestelli, J, Brunk, BP, Caler, EV, Fischer, S, Gajria, B, Gao, X, Gingle, A, Grant, G, et al. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species. Nucleic Acids Res 2011, 39:D612–D619. doi: 10.1093/nar/gkq1006.
Lioutas, C, Tannich, E. Transcription of protein‐coding genes in Entamoeba histolytica is insensitive to high concentrations of α‐amanitin. Mol Biochem Parasitol 1995, 73:259–261.
Guo, Z, Stiller, JW. Comparative genomics of cyclin‐dependent kinases suggest co‐evolution of the RNAP II C‐terminal domain and CTD‐directed CDKs. BMC Genomics 2004, 45:69. doi: 10.1186/1471‐2164‐5‐69.
Das, A, Bellofatto, V. The non‐canonical CTD of RNAP‐II is essential for productive RNA synthesis in Trypanosoma brucei. PLoS One 2009, 4:e6959. doi: 10.1371/journal.pone.0006959.
Singh, U, Rogers, JB. The novel core promoter element GAAC in the hgl5 gene of Entamoeba histolytica is able to direct a transcription start site independent of TATA or initiator regions. J Biol Chem 1998, 273:21663–21668. doi: 10.1074/jbc.273.34.21663.
de Dios‐Bravo, G, Luna‐Arias, JP, Riveron, AM, Olivares‐Trejo, JJ, Lopez‐Camarillo, C, Orozco, E. Entamoeba histolytica TATA‐box binding protein binds to different TATA variants in vitro. FEBS J 2005, 272:1354–1366. doi: 10.1111/j.1742‐4658.2005.04566.x.
Castanon‐Sanchez, CA, Luna‐Arias, JP, de Dios‐Bravo, MG, Herrera‐Aguirre, ME, Olivares‐Trejo, JJ, Orozco, E, Hernandez, JM. Entamoeba histolytica: a unicellular organism containing two active genes encoding for members of the TBP family. Protein Expr Purif 2010, 70:48–59. doi: 10.1016/j.pep.2009.12.007.
Purdy, JE, Pho, LT, Mann, BJ, Petri, WA Jr. Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol 1996, 78:91–103.
Gilchrist, CA, Holm, CF, Hughes, MA, Schaenman, JM, Mann, BJ, Petri, WA Jr. Identification and characterization of an Entamoeba histolytica upstream regulatory element 3 sequence‐specific DNA‐binding protein containing EF‐hand motifs. J Biol Chem 2001, 276:11838–11843. doi: 10.1074/jbc.M007375200.
Schaenman, JM, Gilchrist, CA, Mann, BJ, Petri, WA Jr. Identification of two Entamoeba histolytica sequence‐specific URE4 enhancer‐binding proteins with homology to the RNA‐binding motif RRM. J Biol Chem 2001, 276:1602–1609. doi: 10.1074/jbc.M006866200.
Gilchrist, CA, Leo, M, Line, CG, Mann, BJ, Petri, WA Jr. Calcium modulates promoter occupancy by the Entamoeba histolytica Ca2+‐binding transcription factor URE3‐BP. J Biol Chem 2003, 278:4646–4653. doi: 10.1074/jbc.M211271200.
Moreno, H, Linford, AS, Gilchrist, CA, Petri, WA Jr. Phospholipid‐binding protein EhC2A mediates calcium‐dependent translocation of transcription factor URE3‐BP to the plasma membrane of Entamoeba histolytica. Eukaryot Cell 2010, 9:695–704. doi: 10.1128/EC.00346‐09.
Gilchrist, CA, Baba, DJ, Zhang, Y, Crasta, O, Evans, C, Caler, E, Sobral, BW, Bousquet, CB, Leo, M, Hochreiter, A, et al. Targets of the Entamoeba histolytica transcription factor URE3‐BP. PLoS Negl Trop Dis 2008, 2:e282. doi: 10.1371/journal.pntd.0000282.
Gilchrist, CA, Moore, ES, Zhang, Y, Bousquet, CB, Lannigan, JA, Mann, BJ, Petri, WA Jr. Regulation of virulence of Entamoeba histolytica by the URE3‐BP transcription factor. MBio 2010, 1:e00057–10. doi: 10.1128/mBio.00057‐10.
Marchat, LA, Gomez, C, Perez, DG, Paz, F, Mendoza, L, Orozco, E. Two CCAAT/enhancer binding protein sites are cis‐activator elements of the Entamoeba histolytica EhPgp1 (mdr‐like) gene expression. Cell Microbiol 2002, 4:725–737. doi: 10.1046/j.1462‐5822.2002.00220.x.
Meneses, E, Cárdenas, H, Zárate, S, Brieba, LG, Orozco, E, López‐Camarillo, C, Azuara‐Liceaga, E. The R2R3 Myb protein family in Entamoeba histolytica. Gene 2010, 455:32–42. doi: 10.1016/j.gene.2010.02.004.
Ehrenkaufer, GM, Hackney, JA, Singh, U. A developmentally regulated Myb domain protein regulates expression of a subset of stage‐specific genes in Entamoeba histolytica. Cell Microbiol 2009, 11:898–910. doi: 10.1111/j.1462‐5822.2009.01300.x.
Pearson, RJ, Morf, L, Singh, U. Regulation of H2O2 stress‐responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 2013, 288:4462–4474. doi: 10.1074/jbc.M112.423467.
Abhyankar, MM, Hochreiter, AE, Hershey, J, Evans, C, Zhang, Y, Crasta, O, Sobral, BW, Mann, BJ, Petri, WA Jr, Gilchrist, CA. Characterization of an Entamoeba histolytica high‐mobility‐group box protein induced during intestinal infection. Eukaryot Cell 2008, 7:1565–1572. doi: 10.1128/EC.00123‐08.
Chan, S, Choi, EA, Shi, Y. Pre‐mRNA 3`‐end processing complex assembly and function. Wiley Interdiscip Rev RNA 2011, 2:321–335. doi: 10.1002/wrna.54.
Sonenberg, N, Hinnebusch, AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731–745. doi: 10.1016/j.cell.2009.01.042.
Wahl, MC, Will, CL, Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701–718. doi: 10.1016/j.cell.2009.02.009.
Proudfoot, N. New perspectives on connecting messenger RNA 3` end formation to transcription. Curr Opin Cell Biol 2004, 16:272–278.
Rigo, F, Martinson, HG. Functional coupling of last‐intron splicing and 3`‐end processing to transcription in vitro: the poly(A) signal couples to splicing before committing to cleavage. Mol Cell Biol 2008, 28:849–862. doi: 10.1128/MCB.01410‐07.
Jasnovidova, O, Stefl, R. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip Rev RNA 2013, 4:1–16. doi: 10.1002/wrna.1138.
Eckmann, CR, Rammelt, C, Wahle, E. Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2011, 2:348–361. doi: 10.1002/wrna.56.
Tian, B, Hu, J, Zhang, H, Lutz, CS. A large‐scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201–212. doi: 10.1093/nar/gki158.
Tian, B, Graber, JH. Signals for pre‐mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 2012, 3:385–396. doi: 10.1002/wrna.116.
Venkataraman, K, Brown, KM, Gilmartin, GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005, 19:1315–1327. doi: 10.1101/gad.1298605.
Zamorano, A, López‐Camarillo, C, Orozco, E, Weber, C, Guillen, N, Marchat, LA. In silico analysis of EST and genomic sequences allowed the prediction of cis‐regulatory elements for Entamoeba histolytica mRNA polyadenylation. Comput Biol Chem 2008, 32:256–263. doi: 10.1016/j.compbiolchem.2008.03.019.
Espinosa, N, Hernández, R, López‐Griego, L, López‐Villaseñor, I. Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene 2002, 289:81–86. doi: 10.1016/S0378‐1119(02)00476‐6.
Fuentes, V, Barrera, G, Sánchez, J, Hernández, R, López‐Villaseñor, I. Functional analysis of sequence motifs involved in the polyadenylation of Trichomonas vaginalis mRNAs. Eukaryot Cell 2012, 11:725–734. doi: 10.1128/EC.05322‐11.
Hon, CC, Weber, C, Sismeiro, O, Proux, C, Koutero, M, Deloger, M, Das, S, Agrahari, M, Dillies, MA, Jagla, B, et al. Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res 2013, 41:1936–1952. doi: 10.1093/nar/gks1271.
Clayton, C, Michaeli, S. 3` processing in protists. Wiley Interdiscip Rev RNA 2011, 2:247–255. doi: 10.1002/wrna.49.
López‐Camarillo, C, Orozco, E, Marchat, LA. Entamoeba histolytica: comparative genomics of the pre‐mRNA 3` end processing machinery. Exp Parasitol 2005, 110:184–190. doi: 10.1016/j.exppara.2005.02.024.
López‐Camarillo, C, Hernández de la Cruz, ON, Vivas, JG, Retana, JF, Valdez, MP, Rosas, IL, Alvárez‐Sanchez, E, Marchat, LA. Recent insights in pre‐mRNA 3`‐end processing signals and proteins in the protozoan parasite Entamoeba histolytica. Infect Disord Drug Targets 2010, 10:258–265. doi: 10.2174/187152610791591575.
López‐Camarillo, C, Marchat, LA, Orozco, E, Azuara‐Liceaga, E, García‐Vivas, J. Canonical and non canonical poly(A) polymerases: from human to the protozoan parasite Entamoeba histolytica. In: Takeo Takeyama Ed. Messenger RNA Research Perspectives. Hauppauge, NY: Nova Publishers; 2007, 125–144.
García‐Vivas, J, López‐Camarillo, C, Azuara‐Liceaga, E, Orozco, E, Marchat, LA. Entamoeba histolytica: cloning and expression of the poly(A) polymerase EhPAP. Exp Parasitol 2005, 10:226–232. doi: 10.1016/j.exppara.2005.02.017.
López‐Rosas, I, Orozco, E, Marchat, LA, García‐Rivera, G, Guillen, N, Weber, C, Carrillo‐Tapia, E, Hernández de la Cruz, O, Pérez‐Plasencia, C, López‐Camarillo, C. mRNA decay proteins are targeted to poly(A) + RNA and dsRNA‐containing cytoplasmic foci that resemble P‐bodies in Entamoeba histolytica. PLoS One 2012, 7:e45966. doi: 10.1371/journal.pone.0045966.
Zhang, H, Pompey, JM, Singh, U. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 2011, 6:103–117. doi: 10.2217/fmb.10.154.
Abed, M, Ankri, S. Molecular characterization of Entamoeba histolytica RNase III and AGO2, two RNA interference hallmark proteins. Exp Parasitol 2005, 110:265–269. doi: 10.1016/j.exppara.2005.02.023.
Aravind, L, Koonin, EV. DNA polymerase‐like nucleotidyl‐transferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res 1999, 27:1609–1618. doi: 10.1093/nar/27.5.1223.
Pezet‐Valdez, M, Fernández‐Retana, J, Ospina‐Villa, JD, Ramírez‐Moreno, ME, Orozco, E, Charcas‐Lopez, S, Soto‐Sanchez, J, Mendoza‐Hernandez, G, Lopez‐Casamichana, M, Lopez‐Camarillo, C, et al. The 25 kDa subunit of cleavage factor Im is a rna‐binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS One 2013, 8:e67977. doi: 10.1371/journal.pone.0067977.
Coseno, M, Martin, G, Berger, C, Gilmartin, G, Keller, W, Doublié, S. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 2008, 36:3474–3483. doi: 10.1093/nar/gkn079.
Rüegsegger, U, Beyer, K, Keller, W. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 1996, 271:6107–6113. doi: 10.1074/jbc.271.11.6107.
Shimazu, T, Horinouchi, S, Yoshida, M. Multiple histone deacetylases and the CREB‐binding protein regulate pre‐mRNA 3`‐end processing. J Biol Chem 2007, 282:4470–4478. doi: 10.1074/jbc.M609745200.
Keren, H, Lev‐Maor, G, Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010, 11:345–355. doi: 10.1038/nrg2776.
Kalsotra, A, Cooper, TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011, 12:715–729. doi: 10.1038/nrg3052.
Garneau, NL, Wilusz, J, Wilusz, CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007, 8:113–126. doi: 10.1038/nrm2104.
Chen, CY, Shyu, AB. Mechanisms of deadenylation‐dependent decay. Wiley Interdiscip Rev RNA 2011, 2:167–183. doi: 10.1002/wrna.40.
Caponigro, G, Parker, R. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 1996, 60:233–249.
Cevher, MA, Zhang, X, Fernandez, S, Kim, S, Baquero, J, Nilsson, P, Lee, S, Virtanen, A, Kleiman, FE. Nuclear deadenylation/polyadenylation factors regulate 3` processing in response to DNA damage. EMBO J 2010, 29:1674–1687. doi: 10.1038/emboj.2010.59.
Parker, R, Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004, 11:121–127. doi: 10.1038/nsmb724.
Lebreton, A, Tomecki, R, Dziembowski, A, Seraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008, 456:993–996. doi: 10.1038/nature07480.
Eulalio, A, Behm‐Ansmant, I, Izaurralde, E. P‐bodies: at the crossroads of post‐transcriptional pathways. Nat Rev Mol Cell Biol 2007, 8:9–22. doi: 10.1038/nrm2080.
Cassola, A, De Gaudenzi, JG, Frasch, AC. Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 2007, 65:655–670. doi: 10.1111/j.1365‐2958.2007.05833.x.
Holetz, FB, Correa, A, Avila, AR, Nakamura, CV, Krieger, MA, Goldenberg, S. Evidence of P‐body‐like structures in Trypanosoma cruzi. Biochem Biophys Res Commun 2007, 356:1062–1067. doi: 10.1016/j.bbrc.2007.03.104.
Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811. doi: 10.1038/35888.
Meister, G, Tuschl, T. Mechanisms of gene silencing by double‐stranded RNA. Nature 2004, 431:343–349. doi: 10.1038/nature02873.
Pak, J, Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 2007, 315:241–244. doi: 10.1126/science.1132839.
Halic, M, Moazed, D. Dicer‐independent primal RNAs trigger RNAi and heterochromatin formation. Cell 2010, 140:504–516. doi: 10.1016/j.cell.2010.01.019.
Bartel, DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281–297.
Vayssie, L, Vargas, M, Weber, C, Guillen, N. Double‐stranded RNA mediates homology‐dependent gene silencing of γ‐tubulin in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 2004, 138:21–28. doi: 10.1016/j.molbiopara.2004.07.005.
Boettner, DR, Huston, CD, Linford, AS, Buss, SN, Houpt, E, Sherman, NE, Petri, WA Jr. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family. PLoS Pathog 2008, 4:e8. doi: 10.1371/journal.ppat.0040008.
Zhang, H, Ehrenkaufer, GM, Pompey, JM, Hackney, JA, Singh, U. Small RNAs with 5′‐polyphosphate termini associate with a piwi‐related protein and regulate gene expression in the single‐celled eukaryote Entamoeba histolytica. PLoS Pathog 2008, 4:e1000219.
De, S, Pal, D, Ghosh, SK. Entamoeba histolytica: computational identification of putative microRNA candidates. Exp Parasitol 2006, 113:239–243. doi: 10.1016/j.exppara.2006.01.009.
Tanner, NK, Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 2001, 8:251–262. doi: 10.1016/S1097‐2765(01)00329‐X.
Linder, P, Jankowsky, E. From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 2011, 12:505–516. doi: 10.1038/nrm3154.
Marchat, LA, Orozco, E, Guillen, N, Weber, C, López‐Camarillo, C. Putative DEAD and DExH‐box RNA helicases families in Entamoeba histolytica. Gene 2008, 424:1–10. doi: 10.1016/j.gene.2008.07.042.
Cordin, O, Tanner, NK, Doere, M, Linder, P, Banroques, J. The newly discovered Q motif of DEAD‐box RNA helicases regulates RNA‐binding and helicase activity. EMBO J 2004, 23:2478–2487. doi: 10.1038/sj.emboj.7600272.
Weber, C, Guigon, G, Bouchier, C, Frangeul, L, Moreira, S, Sismeiro, O, Gouyette, C, Mirelman, D, Coppee, JY, Guillén, N. Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 2006, 5:871–875. doi: 10.1128/EC.5.5.871‐875.2006.
Gilchrist, CA, Houpt, E, Trapaidze, N, Fei, Z, Crasta, O, Asgharpour, A, Evans, C, Martino‐Catt, S, Baba, DJ, Stroup, S, et al. Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 2006, 147:163–176. doi: 10.1016/j.molbiopara.2006.02.007.
Marion, S, Laurent, C, Guillen, N. Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach. Cell Microbiol 2005, 7:1504–1518. doi: 10.1111/j.1462‐5822.2005.00573.x.
López‐Camarillo, C, de la Luz García‐Hernández, M, Marchat, LA, Luna‐Arias, JP, Hernández de la Cruz, O, Mendoza, L, Orozco, E. Entamoeba histolytica EhDEAD1 is a conserved DEAD‐box RNA helicase with ATPase and ATP‐dependent RNA unwinding activities. Gene 2008, 414:19–31. doi: 10.1016/j.gene.2008.01.024.