Ritter, R. Die Entwicklung der Geschlechtsorgane und des Darmes bei Chiromomus. Zeit für Wiss Zool 1890, 50:408–427.
Eddy, EM. Germplasm and the differentiation of the germ cell line. Int Rev Cytol 1975, 43:229–280.
Sheth, U, Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003, 300:805–808.
Anderson, P, Kedersha, N. RNA granules: post‐transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009, 10:430–436.
Decker, CJ, Parker, R. P‐bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012, 4:a012286.
Sengupta, MS, Boag, PR. Germ granules and the control of mRNA translation. IUBMB Life 2012, 64:586–594.
Bamezai, S, Rawat, VP, Buske, C. Concise review: The Piwi‐piRNA axis: pivotal beyond transposon silencing. Stem Cells 2012, 30:2603–2611.
Lee, HC, Gu, W, Shirayama, M, Youngman, E, Conte, D Jr, Mello, CC. C. elegans piRNAs mediate the genome‐wide surveillance of germline transcripts. Cell 2012, 150:78–87.
Kibanov, MV, Gvozdev, VA, Olenina, LV. Germ granules in spermatogenesis of Drosophila: evidences of contribution to the piRNA silencing. Commun Integr Biol 2012, 5:130–133.
Voronina, E. The diverse functions of germline P‐granules in Caenorhabditis elegans. Mol Reprod Dev 2012, 80:624–631.
Schisa, JA. New insights into the regulation of RNP granule assembly in oocytes. Int Rev Cell Mol Biol 2012, 295:233–289.
Gao, M, Arkov, AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012, 80:610–623.
Voronina, E, Seydoux, G, Sassone‐Corsi, P, Nagamori, I. RNA granules in germ cells. Cold Spring Harb Perspect Biol 2011, 3:a002774.
Arkov, AL, Ramos, A. Building RNA‐protein granules: insight from the germline. Trends Cell Biol 2010.
Lai, F. King ML. Mol Reprod Dev: Repressive translational control in germ cells; 2013, 20:482–490.
Meikar, O, Da Ros, M, Korhonen, H, Kotaja, N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011, 142:195–209.
Sheth, U, Pitt, J, Dennis, S, Priess, JR. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 2010, 137:1305–1314.
Richter, JD, Lasko, P. Translational control in oocyte development. Cold Spring Harb Perspect Biol 2011, 3:a002758.
Lindner, SE, Miller, JL, Kappe, SH. Malaria parasite pre‐erythrocytic infection: preparation meets opportunity. Cell Microbiol 2012, 14:316–324.
Aly, AS, Vaughan, AM, Kappe, SH. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 2009, 63:195–221.
Zhang, M, Joyce, BR, Sullivan, WJ Jr, Nussenzweig, V. Translational control in Plasmodium and toxoplasma parasites. Eukaryot Cell 2013, 12:161–167.
Hakimi, MA, Deitsch, KW. Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr Opin Microbiol 2007, 10:357–362.
Merrick, CJ, Duraisingh, MT. Epigenetics in Plasmodium: what do we really know? Eukaryot Cell 2010, 9:1150–1158.
Balaji, S, Babu, MM, Iyer, LM, Aravind, L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2‐integrase DNA binding domains. Nucleic Acids Res 2005, 33:3994–4006.
De Silva, EK, Gehrke, AR, Olszewski, K, Leon, I, Chahal, JS, Bulyk, ML, Llinas, M. Specific DNA‐binding by apicomplexan AP2 transcription factors. Proc Natl Acad Sci USA 2008, 105:8393–8398.
Yuda, M, Iwanaga, S, Shigenobu, S, Mair, GR, Janse, CJ, Waters, AP, Kato, T, Kaneko, I. Identification of a transcription factor in the mosquito‐invasive stage of malaria parasites. Mol Microbiol 2009, 71:1402–1414.
Painter, HJ, Campbell, TL, Llinas, M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 2011, 176:1–7.
Zhang, M, Mishra, S, Sakthivel, R, Rojas, M, Ranjan, R, Sullivan, WJ Jr, Fontoura, BM, Menard, R, Dever, TE, Nussenzweig, V. PK4, a eukaryotic initiation factor 2alpha(eIF2alpha) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc Natl Acad Sci USA 2012, 109:3956–3961.
Zhang, M, Fennell, C, Ranford‐Cartwright, L, Sakthivel, R, Gueirard, P, Meister, S, Caspi, A, Doerig, C, Nussenzweig, RS, Tuteja, R, et al. The Plasmodium eukaryotic initiation factor‐2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J Exp Med 2010, 207:1465–1474.
Ward, P, Equinet, L, Packer, J, Doerig, C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 2004, 5:79.
Galizi, R, Spano, F, Giubilei, MA, Capuccini, B, Magini, A, Urbanelli, L, Ogawa, T, Dubey, JP, Spaccapelo, R, Emiliani, C, et al. Evidence of tRNA cleavage in apicomplexan parasites: Half‐tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Mol Biochem Parasitol 2013, 188:99–108.
Bancells, C, Deitsch, KW. A molecular switch in the efficiency of translation reinitiation controls expression of var2csa, a gene implicated in pregnancy‐associated malaria. Mol Microbiol 2013, 90:472–488.
Amulic, B, Salanti, A, Lavstsen, T, Nielsen, MA, Deitsch, KW. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog 2009, 5:e1000256.
Donnelly, N, Gorman, AM, Gupta, S, Samali, A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 2013, 70:3493–3511.
Somers, J, Poyry, T, Willis, AE. A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 2013, 45:1690–1700.
Hurto, RL. Unexpected functions of tRNA and tRNA processing enzymes. Adv Exp Med Biol 2011, 722:137–155.
Emara, MM, Ivanov, P, Hickman, T, Dawra, N, Tisdale, S, Kedersha, N, Hu, GF, Anderson, P. Angiogenin‐induced tRNA‐derived stress‐induced RNAs promote stress‐induced stress granule assembly. J Biol Chem 2010, 285:10959–10968.
Yamasaki, S, Ivanov, P, Hu, GF, Anderson, P. Angiogenin cleaves tRNA and promotes stress‐induced translational repression. J Cell Biol 2009, 185:35–42.
Ivanov, P, Emara, MM, Villen, J, Gygi, SP, Anderson, P. Angiogenin‐induced tRNA fragments inhibit translation initiation. Mol Cell 2011, 43:613–623.
Jochl, C, Rederstorff, M, Hertel, J, Stadler, PF, Hofacker, IL, Schrettl, M, Haas, H, Huttenhofer, A. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 2008, 36:2677–2689.
Haiser, HJ, Karginov, FV, Hannon, GJ, Elliot, MA. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 2008, 36:732–741.
Lee, SR, Collins, K. Starvation‐induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 2005, 280:42744–42749.
Li, Y, Luo, J, Zhou, H, Liao, JY, Ma, LM, Chen, YQ, Qu, LH. Stress‐induced tRNA‐derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 2008, 36:6048–6055.
Matuschewski, K, Ross, J, Brown, SM, Kaiser, K, Nussenzweig, V, Kappe, SH. Infectivity‐associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem 2002, 277:41948–41953.
Mikolajczak, SA, Silva‐Rivera, H, Peng, X, Tarun, AS, Camargo, N, Jacobs‐Lorena, V, Daly, TM, Bergman, LW, de la Vega, P, Williams, J, et al. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol Cell Biol 2008, 28:6196–6207.
Lindner, SE, Swearingen, KE, Harupa, A, Vaughan, AM, Sinnis, P, Moritz, RL, Kappe, SH. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013, 12:1127–1143.
Lasonder, E, Janse, CJ, van Gemert, GJ, Mair, GR, Vermunt, AM, Douradinha, BG, van Noort, V, Huynen, MA, Luty, AJ, Kroeze, H, et al. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog 2008, 4:e1000195.
Wickens, M, Bernstein, DS, Kimble, J, Parker, R. A PUF family portrait: 3`UTR regulation as a way of life. Trends Genet 2002, 18:150–157.
Quenault, T, Lithgow, T, Traven, A. PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 2011, 21:104–112.
Miller, MA, Olivas, WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011, 2:471–492.
Pique, M, Lopez, JM, Foissac, S, Guigo, R, Mendez, R. A combinatorial code for CPE‐mediated translational control. Cell 2008, 132:434–448.
Suh, N, Crittenden, SL, Goldstrohm, A, Hook, B, Thompson, B, Wickens, M, Kimble, J. FBF and its dual control of gld‐1 expression in the Caenorhabditis elegans germline. Genetics 2009, 181:1249–1260.
Kaye, JA, Rose, NC, Goldsworthy, B, Goga, A, L`Etoile, ND. A 3`UTR pumilio‐binding element directs translational activation in olfactory sensory neurons. Neuron 2009, 61:57–70.
Archer, S, Luu, V, de Queiroz, R, Brems, S, Clayton, C. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 2009, 5:e1000565.
Gerber, AP, Herschlag, D, Brown, PO. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA‐binding proteins in yeast. PLoS Biol 2004, 2:E79.
Lu, G, Dolgner, SJ, Hall, TM. Understanding and engineering RNA sequence specificity of PUF proteins. Curr Opin Struct Biol 2009, 19:110–115.
Kaymak, E, Wee, LM, Ryder, SP. Structure and function of nematode RNA‐binding proteins. Curr Opin Struct Biol 2010, 20:305–312.
Goldstrohm, AC, Seay, DJ, Hook, BA, Wickens, M. PUF protein‐mediated deadenylation is catalyzed by Ccr4p. J Biol Chem 2007, 282:109–114.
Preiss, T, Muckenthaler, M, Hentze, MW. Poly(A)‐tail‐promoted translation in yeast: implications for translational control. RNA 1998, 4:1321–1331.
Amrani, N, Ghosh, S, Mangus, DA, Jacobson, A. Translation factors promote the formation of two states of the closed‐loop mRNP. Nature 2008, 453:1276–1280.
Goldstrohm, AC, Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 2008, 9:337–344.
Cao, Q, Padmanabhan, K, Richter, JD. Pumilio 2 controls translation by competing with eIF4E for 7‐methyl guanosine cap recognition. RNA 2010, 16:221–227.
Muller, K, Matuschewski, K, Silvie, O. The Puf‐family RNA‐binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS One 2011, 6:e19860.
Gomes‐Santos, CS, Braks, J, Prudencio, M, Carret, C, Gomes, AR, Pain, A, Feltwell, T, Khan, S, Waters, A, Janse, C, et al. Transition of Plasmodium sporozoites into liver stage‐like forms is regulated by the RNA binding protein Pumilio. PLoS Pathog 2011, 7:e1002046.
Lindner, SE, Mikolajczak, SA, Vaughan, AM, Moon, W, Joyce, BR, Sullivan, WJ Jr, Kappe, SH. Perturbations of Plasmodium Puf2 expression and RNA‐seq of Puf2‐deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol 2013, 15:1266–1283.
Hall, N, Karras, M, Raine, JD, Carlton, JM, Kooij, TW, Berriman, M, Florens, L, Janssen, CS, Pain, A, Christophides, GK, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 2005, 307:82–86.
Florens, L, Washburn, MP, Raine, JD, Anthony, RM, Grainger, M, Haynes, JD, Moch, JK, Muster, N, Sacci, JB, Tabb, DL, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 2002, 419:520–526.
Kaiser, K, Matuschewski, K, Camargo, N, Ross, J, Kappe, SH. Differential transcriptome profiling identifies Plasmodium genes encoding pre‐erythrocytic stage‐specific proteins. Mol Microbiol 2004, 51:1221–1232.
Aly, AS, Mikolajczak, SA, Rivera, HS, Camargo, N, Jacobs‐Lorena, V, Labaied, M, Coppens, I, Kappe, SH. Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Mol Microbiol 2008, 69:152–163.
Silvie, O, Goetz, K, Matuschewski, K. A sporozoite asparagine‐rich protein controls initiation of Plasmodium liver stage development. PLoS Pathog 2008, 4:e1000086.
Aly, AS, Lindner, SE, MacKellar, DC, Peng, X, Kappe, SH. SAP1 is a critical post‐transcriptional regulator of infectivity in malaria parasite sporozoite stages. Mol Microbiol 2011, 79:929–939.
Paton, MG, Barker, GC, Matsuoka, H, Ramesar, J, Janse, CJ, Waters, AP, Sinden, RE. Structure and expression of a post‐transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol 1993, 59:263–275.
Thompson, J, Sinden, RE. In situ detection of Pbs21 mRNA during sexual development of Plasmodium berghei. Mol Biochem Parasitol 1994, 68:189–196.
Vervenne, RA, Dirks, RW, Ramesar, J, Waters, AP, Janse, CJ. Differential expression in blood stages of the gene coding for the 21‐kilodalton surface protein of ookinetes of Plasmodium berghei as detected by RNA in situ hybridisation. Mol Biochem Parasitol 1994, 68:259–266.
Kaslow, DC, Quakyi, IA, Syin, C, Raum, MG, Keister, DB, Coligan, JE, McCutchan, TF, Miller, LH. A vaccine candidate from the sexual stage of human malaria that contains EGF‐like domains. Nature 1988, 333:74–76.
Braks, JA, Mair, GR, Franke‐Fayard, B, Janse, CJ, Waters, AP. A conserved U‐rich RNA region implicated in regulation of translation in Plasmodium female gametocytes. Nucleic Acids Res 2008, 36:1176–1186.
Cui, L, Fan, Q, Li, J. The malaria parasite Plasmodium falciparum encodes members of the Puf RNA‐binding protein family with conserved RNA binding activity. Nucleic Acids Res 2002, 30:4607–4617.
Miao, J, Fan, Q, Parker, D, Li, X, Li, J, Cui, L. Puf mediates translation repression of transmission‐blocking vaccine candidates in malaria parasites. PLoS Pathog 2013, 9:e1003268.
Miao, J, Li, J, Fan, Q, Li, X, Li, X, Cui, L. The Puf‐family RNA‐binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010, 123:1039–1049.
Mair, GR, Braks, JAM, Garver, LS, Wiegant, JCAG, Hall, N, Dirks, RW, Khan, SM, Dimopoulos, G, Janse, CJ, Waters, AP. Regulation of sexual development of Plasmodium by translational repression. Science 2006, 313:667–669.
Presnyak, V, Coller, J. The DHH1/RCKp54 family of helicases: an ancient family of proteins that promote translational silencing. Biochim Biophys Acta 1829, 2013:817–823.
Khan, SM, Franke‐Fayard, B, Mair, GR, Lasonder, E, Janse, CJ, Mann, M, Waters, AP. Proteome analysis of separated male and female gametocytes reveals novel sex‐specific Plasmodium biology. Cell 2005, 121:675–687.
Mair, GR, Lasonder, E, Garver, LS, Franke‐Fayard, BMD, Carret, CK, Wiegant, JCAG, Dirks, RW, Dimopoulos, G, Janse, CJ, Waters, AP. Universal features of post‐transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog 2010, 6:e1000767.
Russell, R, Jarmoskaite, I, Lambowitz, AM. Toward a molecular understanding of RNA remodeling by DEAD‐box proteins. RNA Biol 2013, 10:44–55.
Ernoult‐Lange, M, Baconnais, S, Harper, M, Minshall, N, Souquere, S, Boudier, T, Benard, M, Andrey, P, Pierron, G, Kress, M, et al. Multiple binding of repressed mRNAs by the P‐body protein Rck/p54. RNA 2012, 18:1702–1715.
Miranda, MR, Bouvier, LA, Canepa, GE, Pereira, CA. Subcellular localization of Trypanosoma cruzi arginine kinase. Parasitology 2009, 136:1201–1207.
Hata, H, Mitsui, H, Liu, H, Bai, Y, Denis, CL, Shimizu, Y, Sakai, A. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 1998, 148:571–579.
Uetz, P, Giot, L, Cagney, G, Mansfield, TA, Judson, RS, Knight, JR, Lockshon, D, Narayan, V, Srinivasan, M, Pochart, P, et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623–627.
Nissan, T, Rajyaguru, P, She, M, Song, H, Parker, R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010, 39:773–783.
Drummond, SP, Hildyard, J, Firczuk, H, Reamtong, O, Li, N, Kannambath, S, Claydon, AJ, Beynon, RJ, Eyers, CE, McCarthy, JE. Diauxic shift‐dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes. Nucleic Acids Res 2011, 39:7764–7774.
Coller, JM, Tucker, M, Sheth, U, Valencia‐Sanchez, MA, Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 2001, 7:1717–1727.
Fischer, N, Weis, K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. Embo J 2002, 21:2788–2797.
Minshall, N, Standart, N. The active form of Xp54 RNA helicase in translational repression is an RNA‐mediated oligomer. Nucleic Acids Res 2004, 32:1325–1334.
Minshall, N, Kress, M, Weil, D, Standart, N. Role of p54 RNA helicase activity and its C‐terminal domain in translational repression, P‐body localization and assembly. Mol Biol Cell 2009, 20:2464–2472.
Carroll, JS, Munchel, SE, Weis, K. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 2011, 194:527–537.
Sweet, T, Kovalak, C, Coller, J. The DEAD‐box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol 2012, 10:e1001342.
Sebastian, S, Brochet, M, Collins, MO, Schwach, F, Jones, ML, Goulding, D, Rayner, JC, Choudhary, JS, Billker, O. A Plasmodium calcium‐dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 2012, 12:9–19.
Mohrle, JJ, Zhao, Y, Wernli, B, Franklin, RM, Kappes, B. Molecular cloning, characterization and localization of PfPK4, an eIF‐2alpha kinase‐related enzyme from the malarial parasite Plasmodium falciparum. Biochem J 1997, 328(Pt 2):677–687.
Solyakov, L, Halbert, J, Alam, MM, Semblat, JP, Dorin‐Semblat, D, Reininger, L, Bottrill, AR, Mistry, S, Abdi, A, Fennell, C, et al. Global kinomic and phospho‐proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2011, 2:565.
Kraemer, SM, Smith, JD. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr Opin Microbiol 2006, 9:374–380.
Su, XZ, Heatwole, VM, Wertheimer, SP, Guinet, F, Herrfeldt, JA, Peterson, DS, Ravetch, JA, Wellems, TE. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum‐infected erythrocytes. Cell 1995, 82:89–100.
Smith, JD, Chitnis, CE, Craig, AG, Roberts, DJ, Hudson‐Taylor, DE, Peterson, DS, Pinches, R, Newbold, CI, Miller, LH. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 1995, 82:101–110.
Guizetti, J, Scherf, A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell Microbiol 2013, 15:718–726.
Calvo, SE, Pagliarini, DJ, Mootha, VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 2009, 106:7507–7512.
Iacono, M, Mignone, F, Pesole, G. uAUG and uORFs in human and rodent 5`untranslated mRNAs. Gene 2005, 349:97–105.
Matsui, M, Yachie, N, Okada, Y, Saito, R, Tomita, M. Bioinformatic analysis of post‐transcriptional regulation by uORF in human and mouse. FEBS Lett 2007, 581:4184–4188.
Vattem, KM, Wek, RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 2004, 101:11269–11274.
Thompson, SR. So you want to know if your message has an IRES? Wiley Interdiscip Rev RNA 2012, 3:697–705.
Joyce, BR, Queener, SF, Wek, RC, Sullivan, WJ Jr. Phosphorylation of eukaryotic initiation factor‐2{alpha} promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii. Proc Natl Acad Sci USA 2010, 107:17200–17205.
Konrad, C, Wek, RC, Sullivan, WJ Jr. A GCN2‐like eukaryotic initiation factor 2 kinase increases the viability of extracellular Toxoplasma gondii parasites. Eukaryot Cell 2011, 10:1403–1412.
Lirussi, D, Matrajt, M. RNA granules present only in extracellular toxoplasma gondii increase parasite viability. Int J Biol Sci 2011, 7:960–967.
Gastens, MH, Fischer, HG. Toxoplasma gondii eukaryotic translation initiation factor 4A associated with tachyzoite virulence is down‐regulated in the bradyzoite stage. Int J Parasitol 2002, 32:1225–1234.
Narasimhan, J, Joyce, BR, Naguleswaran, A, Smith, AT, Livingston, MR, Dixon, SE, Coppens, I, Wek, RC, Sullivan, WJ Jr. Translation regulation by eukaryotic initiation factor‐2 kinases in the development of latent cysts in Toxoplasma gondii. J Biol Chem 2008, 283:16591–16601.
Sullivan, WJ Jr, Narasimhan, J, Bhatti, MM, Wek, RC. Parasite‐specific eIF2 (eukaryotic initiation factor‐2) kinase required for stress‐induced translation control. Biochem J 2004, 380:523–531.
Xia, D, Sanderson, SJ, Jones, AR, Prieto, JH, Yates, JR, Bromley, E, Tomley, FM, Lal, K, Sinden, RE, Brunk, BP, et al. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol 2008, 9:R116.
Wastling, JM, Xia, D, Sohal, A, Chaussepied, M, Pain, A, Langsley, G. Proteomes and transcriptomes of the Apicomplexa – where`s the message? Int J Parasitol 2009, 39:135–143.
Fabian, MR, Sonenberg, N, Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010, 79:351–379.
Grimson, A, Srivastava, M, Fahey, B, Woodcroft, BJ, Chiang, HR, King, N, Degnan, BM, Rokhsar, DS, Bartel, DP. Early origins and evolution of microRNAs and Piwi‐interacting RNAs in animals. Nature 2008, 455:1193–1197.
Braun, L, Cannella, D, Ortet, P, Barakat, M, Sautel, CF, Kieffer, S, Garin, J, Bastien, O, Voinnet, O, Hakimi, MA. A complex small RNA repertoire is generated by a plant/fungal‐like machinery and effected by a metazoan‐like Argonaute in the single‐cell human parasite Toxoplasma gondii. PLoS Pathog 2010, 6:e1000920.
Fabian, MR, Sundermeier, TR, Sonenberg, N. Understanding how miRNAs post‐transcriptionally regulate gene expression. Prog Mol Subcell Biol 2010, 50:1–20.
Lewis, BP, Burge, CB, Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15–20.
Friedman, RC, Farh, KK, Burge, CB, Bartel, DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92–105.
Brodersen, P, Sakvarelidze‐Achard, L, Bruun‐Rasmussen, M, Dunoyer, P, Yamamoto, YY, Sieburth, L, Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320:1185–1190.
Lanet, E, Delannoy, E, Sormani, R, Floris, M, Brodersen, P, Crete, P, Voinnet, O, Robaglia, C. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 2009, 21:1762–1768.
Horn, D, McCulloch, R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 2010, 13:700–705.
Moradin, N, Descoteaux, A. Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2012, 2:121.
De Souza, W, De Carvalho, TMU, Barrias, ES. Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol 2010, 2010:1–19.
Kramer, S. Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 2012, 181:61–72.
Berriman, M, Ghedin, E, Hertz‐Fowler, C, Blandin, G, Renauld, H, Bartholomeu, DC, Lennard, NJ, Caler, E, Hamlin, NE, Haas, B, et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309:416–422.
El Sayed, NM, Ghedin, E, Song, J, MacLeod, A, Bringaud, F, Larkin, C, Wanless, D, Peterson, J, Hou, L, Taylor, S, et al. The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Res 2003, 31:4856–4863.
Hall, N, Berriman, M, Lennard, NJ, Harris, BR, Hertz‐Fowler, C, Bart‐Delabesse, EN, Gerrard, CS, Atkin, RJ, Barron, AJ, Bowman, S, et al. The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism. Nucleic Acids Res 2003, 31:4864–4873.
McDonagh, PD, Myler, PJ, Stuart, K. The unusual gene organisation of Leishmania major chromosome 1 may reflect novel transcription processes. Nucleic Acids Res 2000, 28:2800–2803.
Johnson, PJ, Kooter, JM, Borst, P. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 1987, 51:273–281.
Ivens, AC, Peacock, CS, Worthey, EA, Murphy, L, Aggarwal, G, Berriman, M, Sisk, E, Rajandream, M‐A, Adlem, E, Aert, R, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005, 309:436–442.
El‐Sayed, NM, Myler, PJ, Bartholomeu, DC, Nilsson, D, Aggarwal, G, Tran, A‐N, Ghedin, E, Worthey, EA, Delcher, AL, Blandin, G, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309:409–415.
Siegel, TN, Hekstra, DR, Kemp, LE, Figueiredo, LM, Lowell, JE, Fenyo, D, Wang, X, Dewell, S, Cross, GAM. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 2009, 23:1063–1076.
LeBowitz, JH, Smith, HQ, Rusche, L, Beverley, SM. Coupling of poly(A) site selection and trans‐splicing in Leishmania. Genes Dev 1993, 7:996–1007.
Matthews, KR, Tschudi, C, Ullu, E. A common pyrimidine‐rich motif governs trans‐splicing and polyadenylation of tubulin polycistronic pre‐mRNA in trypanosomes. Genes Dev 1994, 8:491–501.
Ullu, E, Matthews, KR, Tschudi, C. Temporal order of RNA‐processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol Cell Biol 1993, 13:720–725.
Clayton, C, Shapira, M. Post‐transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007, 156:93–101.
Haile, S, Papadopoulou, B. Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2007, 10:569–577.
Fernández‐Moya, SM, Estévez, AM. Posttranscriptional control and the role of RNA‐binding proteins in gene regulation in trypanosomatid protozoan parasites. WIREs RNA 2010, 1:34–46.
Kramer, S, Carrington, M. Trans‐acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol 2011, 27:23–30.
Araujo, PR, Teixeira, SM. Regulatory elements involved in the post‐transcriptional control of stage‐specific gene expression in Trypanosoma cruzi: a review. Mem Inst Oswaldo Cruz 2011, 106:257–266.
De Gaudenzi, JG, Noe, G, Campo, VA, Frasch, AC, Cassola, A. Gene expression regulation in trypanosomatids. Essays Biochem 2011, 51:31–46.
Cassola, A. RNA granules living a post‐transcriptional life: the trypanosomes` case. Curr Chem Biol 2011, 5:108–117.
Cassola, A, De Gaudenzi, JG, Frasch, AC. Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 2007, 65:655–670.
Holetz, FB, Correa, A, Avila, AR, Nakamura, CV, Krieger, MA, Goldenberg, S. Evidence of P‐body‐like structures in Trypanosoma cruzi. Biochem Biophys Res Commun 2007, 356:1062–1067.
Dallagiovanna, B, Correa, A, Probst, CM, Holetz, F, Smircich, P, de Aguiar, AM, Mansur, F, da Silva, CV, Mortara, RA, Garat, B, et al. Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio‐like protein from Trypanosoma cruzi. J Biol Chem 2008, 283:8266–8273.
Kramer, S, Queiroz, R, Ellis, L, Webb, H, Hoheisel, JD, Clayton, C, Carrington, M. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci 2008, 121:3002–3014.
Kedersha, N, Stoecklin, G, Ayodele, M, Yacono, P, Lykke‐Andersen, J, Fritzler, MJ, Scheuner, D, Kaufman, RJ, Golan, DE, Anderson, P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169:871–884.
Anderson, P, Kedersha, N. RNA granules. J Cell Biol 2006, 172:803–808.
Kramer, S, Marnef, A, Standart, N, Carrington, M. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J Cell Sci 2012, 125:2896–2909.
Decker, CJ, Teixeira, D, Parker, R. Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 2007, 179:437–449.
Kruger, T, Hofweber, M, Kramer, S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation‐independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 2013, 24:2098–2111.
Kramer, S, Bannerman‐Chukualim, B, Ellis, L, Boulden, EA, Kelly, S, Field, MC, Carrington, M. Differential localization of the two T. brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS One 2013, 8:e54004.
Fernandez‐Moya, SM, Garcia‐Perez, A, Kramer, S, Carrington, M, Estevez, AM. Alterations in DRBD3 ribonucleoprotein complexes in response to stress in Trypanosoma brucei. PLoS One 2012, 7:e48870.
Zinoviev, A, Manor, S, Shapira, M. Nutritional stress affects an atypical cap‐binding protein in Leishmania. RNA Biol 2012, 9:1450–1460.
Subota, I, Rotureau, B, Blisnick, T, Ngwabyt, S, Durand‐Dubief, M, Engstler, M, Bastin, P. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol Biol Cell 2011, 22:4205–4219.
Mani, J, Guttinger, A, Schimanski, B, Heller, M, Acosta‐Serrano, A, Pescher, P, Spath, G, Roditi, I. Alba‐domain proteins of Trypanosoma brucei are cytoplasmic RNA‐binding proteins that interact with the translation machinery. PLoS One 2011, 6:e22463.
Garcia‐Silva, MR, Frugier, M, Tosar, JP, Correa‐Dominguez, A, Ronalte‐Alves, L, Parodi‐Talice, A, Rovira, C, Robello, C, Goldenberg, S, Cayota, A. A population of tRNA‐derived small RNAs is actively produced in trypanosoma cruzi and recruited to specific cytoplasmic granules. Mol Biochem Parasitol 2010, 171:64–73.
Brecht, M, Parsons, M. Changes in polysome profiles accompany trypanosome development. Mol Biochem Parasitol 1998, 97:189–198.
Capewell, P, Monk, S, Ivens, A, Macgregor, P, Fenn, K, Walrad, P, Bringaud, F, Smith, TK, Matthews, KR. Regulation of total and polysomal mRNA during development within its mammalian host. PLoS One 2013, 8:e67069.
Moraes, MCS, Jesus, TCL, Hashimoto, NN, Dey, M, Schwartz, KJ, Alves, VS, Avila, CC, Bangs, JD, Dever, TE, Schenkman, S, et al. Novel membrane‐bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryot Cell 2007, 6:1979–1991.
Cloutier, S, Laverdiere, M, Chou, MN, Boilard, N, Chow, C, Papadopoulou, B. Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS One 2012, 7:e35085.
Lahav, T, Sivam, D, Volpin, H, Ronen, M, Tsigankov, P, Green, A, Holland, N, Kuzyk, M, Borchers, C, Zilberstein, D, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 2011, 25:515–525.
Chow, C, Cloutier, S, Dumas, C, Chou, MN, Papadopoulou, B. Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase‐dependent eIF2alpha phosphorylation. Cell Microbiol 2011, 13:1059–1077.
Tonelli, RR, Augusto Lda, S, Castilho, BA, Schenkman, S. Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One 2011, 6:e27904.
Zilberstein, D, Shapira, M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 1994, 48:449–470.
Barak, E, Amin‐Spector, S, Gerliak, E, Goyard, S, Holland, N, Zilberstein, D. Differentiation of Leishmania donovani in host‐free system: analysis of signal perception and response. Mol Biochem Parasitol 2005, 141:99–108.
Sereno, D, Lemesre, JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother 1997, 41:972–976.
Goldshmidt, H, Matas, D, Kabi, A, Carmi, S, Hope, R, Michaeli, S. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 2010, 6:e1000731.
Field, MC, Carrington, M. The trypanosome flagellar pocket. Nat Rev Microbiol 2009, 7:775–786.
Paterou, A, Walrad, P, Craddy, P, Fenn, K, Matthews, K. Identification and stage‐specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life‐cycle development. J Biol Chem 2006, 281:39002–39013.
Hendriks, EF, Robinson, DR, Hinkins, M, Matthews, KR. A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. Embo J 2001, 20:6700–6711.
Kolev, NG, Ramey‐Butler, K, Cross, GA, Ullu, E, Tschudi, C. Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA‐binding protein. Science 2012, 338:1352–1353.
Wurst, M, Seliger, B, Jha, BA, Klein, C, Queiroz, R, Clayton, C. Expression of the RNA recognition motif protein RBP10 promotes a bloodstream‐form transcript pattern in Trypanosoma brucei. Mol Microbiol 2012, 83:1048–1063.
Morking, PA, Rampazzo Rde, C, Walrad, P, Probst, CM, Soares, MJ, Gradia, DF, Pavoni, DP, Krieger, MA, Matthews, K, Goldenberg, S, et al. The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis. Mem Inst Oswaldo Cruz 2012, 107:790–799.
Walrad, PB, Capewell, P, Fenn, K, Matthews, KR. The post‐transcriptional trans‐acting regulator, TbZFP3, co‐ordinates transmission‐stage enriched mRNAs in Trypanosoma brucei. Nucleic Acids Res 2012, 40:2869–2883.
Hooper, C, Hilliker, A. Packing them up and dusting them off: RNA helicases and mRNA storage. Biochim Biophys Acta 1829, 2013:824–834.
Holetz, FB, Alves, LR, Probst, CM, Dallagiovanna, B, Marchini, FK, Manque, P, Buck, G, Krieger, MA, Correa, A, Goldenberg, S. Protein and mRNA content of TcDHH1‐containing mRNPs in Trypanosoma cruzi. FEBS J 2010, 277:3415–3426.
Kramer, S, Queiroz, R, Ellis, L, Hoheisel, JD, Clayton, C, Carrington, M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 2010, 123:699–711.
Robinson, DR, Sherwin, T, Ploubidou, A, Byard, EH, Gull, K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 1995, 128:1163–1172.
Ngô, H, Tschudi, C, Gull, K, Ullu, E. Double‐stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 1998, 95:14687–14692.
Gull, K. The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 1999, 53:629–655.
Becalska, AN, Gavis, ER. Bazooka regulates microtubule organization and spatial restriction of germplasm assembly in the Drosophila oocyte. Dev Biol 2010, 340:528–538.