Machnicka, MA, Milanowska, K, Osman Oglou, O, Purta, E, Kurkowska, M, Olchowik, A, Januszewski, W, Kalinowski, S, Dunin‐Horkawicz, S, Rother, KM, et al. MODOMICS: a database of RNA modification pathways‐‐2013 update. Nucleic Acids Res 2013, 41:D262–D267.
Wedekind, JE, Dance, GS, Sowden, MP, Smith, HC. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 2003, 19:207–216.
MacElrevey, C, Wedekind, JE. Chapter 16: Chemistry, Phylogeny, and Three‐Dimensional Structure of the APOBEC Protein Family. In: Smith, HC, ed. RNA and DNA Editing: Molecular Mechanisms and Their Integration into Biological Systems. Hoboken, NJ: John Wiley %26 Sons, Inc; 2008, 371–421.
Smith, HC, Wedekind, JE, Kefang, X, Sowden, MP. Mammalian C to U editing. Top Curr Biol 2005, 12:365–400.
Harris, RS, Petersen‐Mahrt, SK, Neuberger, MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002, 10:1247–1253.
Honjo, T, Muramatsu, M, Fagarasan, S. AID: how does it aid antibody diversity? Immunity 2004, 20:659–668.
Hamilton, CE, Papavasiliou, FN, Rosenberg, BR. Diverse functions for DNA and RNA editing in the immune system. RNA Biol 2010, 7:220–228.
Jaszczur, M, Bertram, JG, Pham, P, Scharff, MD, Goodman, MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2013, 70:3089–3108.
Smith, HC. The APOBEC1 Paradigm for Mammalian Cytidine Deaminases that Edit DNA and RNA. Landes BioScience: Austin, TX; 2009.
Chen, SH, Habib, G, Yang, CY, Gu, ZW, Lee, BR, Weng, SA, Silberman, SR, Cai, SJ, Deslypere, JP, Rosseneu, M, et al. Apolipoprotein B‐48 is the product of a messenger RNA with an organ‐specific in‐frame stop codon. Science 1987, 238:363–366.
Powell, LM, Wallis, SC, Pease, RJ, Edwards, YH, Knott, TJ, Scott, J. A novel form of tissue‐specific RNA processing produces apolipoprotein‐ B48 in intestine. Cell 1987, 50:831–840.
Muramatsu, MSV, Anant, S, Sugai, M, Kinoshita, K, Davidson, NO, Honjo, T. Specific expression of activation‐induced cytidine deaminase (AID), a novel member of the RNA‐editing deaminase family in germinal center B cells. J Biol Chem 1999, 274:18470–18476.
Sheehy, AM, Gaddis, NC, Choi, JD, Malim, MH. Isolation of a human gene that inhibits HIV‐1 infection and is suppressed by the viral Vif protein. Nature 2002, 418:646–650.
Smith, HC. Deaminase‐dependent and deaminase‐independent functions of APOBEC1 and APOBEC1 complementation factor in the context of the APOBEC family. Norfolk: Caister Academic Press; 2013.
Blanc, V, Davidson, NO. APOBEC‐1‐mediated RNA editing. WIREs: Syst Biol Med 2010, 2:594–602.
Jarmuz, A, Chester, A, Bayliss, J, Gisbourne, J, Dunham, I, Scott, J, Navaratnam, N. An anthropoid‐specific locus of orphan C to U RNA‐editing enzymes on chromosome 22. Genomics 2002, 79:285–296.
Teng, B, Burant, CF, Davidson, NO. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 1816–1819, 1993:260.
Anant, S, MacGinnitie, AJ, Davidson, NO. apobec‐1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA‐binding protein. J Biol Chem 1995, 270:14762–14767.
Smith, HC, Kuo, SR, Backus, JW, Harris, SG, Sparks, CE, Sparks, JD. In vitro apolipoprotein B mRNA editing: identification of a 27S editing complex. Proc Natl Acad Sci U S A 1991, 88:1489–1493.
Mehta, A, Kinter, MT, Sherman, NE, Driscoll, DM. Molecular cloning of apobec‐1 complementation factor, a novel RNA‐ binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol 1846–1854, 2000:20.
Lellek, H, Kirsten, R, Diehl, I, Apostel, F, Buck, F, Greeve, J. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme‐complex. J Biol Chem 2000, 275:19848–19856.
Shah, RR, Knott, TJ, Legros, JE, Navaratnam, N, Greeve, JC, Scott, J. Sequence requirements for the editing of apolipoprotein B mRNA. J Biol Chem 1991, 266:16301–16304.
Backus, JW, Schock, D, Smith, HC. Only cytidines 5` of the apolipoprotein B mRNA mooring sequence are edited. Biochim Biophys Acta 1994, 1219:1–14.
Blanc, V, Henderson, JO, Kennedy, S, Davidson, NO. Mutagenesis of apobec‐1 complementation factor reveals distinct domains that modulate RNA binding, protein‐protein interaction with apobec‐1, and complementation of C to U RNA‐editing activity. J Biol Chem 2001, 276:46386–46393.
Mehta, A, Driscoll, DM. Identification of domains in APOBEC‐1 complementation factor required for RNA binding and apolipoprotein B mRNA editing. RNA 2002, 8:69–82.
Sowden, MP, Ballatori, N, de Mesy Jensen, KL, Hamilton Reed, L, Smith, HC. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J Cell Sci 2002, 115:1027–1039.
Hirano, K, Young, SG, Farese, RV Jr, Ng, J, Sande, E, Warburton, C, Powell‐Braxton, LM, Davidson, NO. Targeted disruption of the mouse apobec‐1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 1996, 271:9887–9890.
Blanc, V, Henderson, JO, Newberry, EP, Kennedy, S, Luo, J, Davidson, NO. Targeted deletion of the murine apobec‐1 complementation factor (acf) gene results in embryonic lethality. Mol Cell Biol 2005, 25:7260–7269.
Nakamuta, M, Oka, K, Krushkal, J, Kobayashi, K, Yamamoto, M, Li, WH, Chan, L. Alternative mRNA splicing and differential promoter utilization determine tissue‐specific expression of the apolipoprotein B mRNA‐editing protein (Apobec1) gene in mice. Structure and evolution of Apobec1 and related nucleoside/nucleotide deaminases. J Biol Chem 1995, 270:13042–13056.
Lee, RM, Hirano, K, Anant, S, Baunoch, D, Davidson, NO. An alternatively spliced form of apobec‐1 messenger RNA is overexpressed in human colon cancer. Gastroenterology 1998, 115:1096–1103.
Dance, GSC, Sowden, MP, Cartegni, L, Cooper, E, Krainer, AR, Smith, HC. Two proteins essential for apolipoprotein B mRNA editing are expressed from a single gene through alternative splicing. J Biol Chem 2002, 277:12703–12709.
Sowden, MP, Lehmann, DM, Lin, X, Smith, CO, Smith, HC. Identification of novel alternative splice variants of APOBEC‐1 complementation factor with different capacities to support ApoB mRNA editing. J Biol Chem 2004, 278:197–206.
Lehmann, DM, Galloway, CA, Macelrevey, C, Sowden, MP, Wedekind, JE, Smith, HC. Functional characterization of APOBEC‐1 complementation factor phosphorylation sites. Biochim Biophys Acta 2007, 1773:408–418.
Lehmann, DM, Galloway, CA, Sowden, MP, Smith, HC. Metabolic regulation of apoB mRNA editing is associated with phosphorylation of APOBEC‐1 complementation factor. Nucleic Acids Res 2006, 34:3299–3308.
Galloway, CA, Ashton, J, Sparks, JD, Mooney, RA, Smith, HC. Metabolic regulation of APOBEC‐1 complementation factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes. Biochim Biophys Acta 1802, 2010:976–985.
Skuse, GR, Cappione, AJ, Sowden, M, Metheny, LJ, Smith, HC. The neurofibromatosis type I messenger RNA undergoes base‐modification RNA editing. Nucleic Acids Res 1996, 24:478–485.
Rosenberg, BR, Hamilton, CE, Mwangi, MM, Dewell, S, Papavasiliou, FN. Transcriptome‐wide sequencing reveals numerous APOBEC1 mRNA‐editing targets in transcript 3` UTRs. Nat Struct Mol Biol 2011, 18:230–236.
Sowden, M, Hamm, JK, Smith, HC. Overexpression of APOBEC‐1 results in mooring sequence‐dependent promiscuous RNA editing. J Biol Chem 1996, 271:3011–3017.
Yamanaka, S, Balestra, M, Ferrell, L, Fan, J, Arnold, KS, Taylor, S, Taylor, JM, Innerarity, TL. Apolipoprotein B mRNA editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci U S A 1995, 92:8483–8487.
Yamanaka, S, Poksay, KS, Arnold, KS, Innerarity, TL. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA‐ editing enzyme. Genes Dev 1997, 11:321–333.
Ikeda, T, Abd El Galil, KH, Tokunaga, K, Maeda, K, Sata, T, Sakaguchi, N, Heidmann, T, Koito, A. Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons. Nucleic Acids Res 2011, 39:5538–5554.
Bishop, KN, Holmes, RK, Sheehy, AM, Malim, MH. APOBEC‐mediated editing of viral RNA. Science 2004, 305:645.
Anant, S, Davidson, NO. An AU‐rich sequence element (UUUN[A/U]U) downstream of the edited C in apolipoprotein B mRNA is a high‐affinity binding site for Apobec‐1: binding of Apobec‐1 to this motif in the 3` untranslated region of c‐myc increases mRNA stability. Mol Cell Biol 1982–1992, 2000:20.
Blanc, V, Sessa, KJ, Kennedy, S, Luo, J, Davidson, NO. Apobec‐1 complementation factor modulates liver regeneration by post‐transcriptional regulation of interleukin‐6 mRNA stability. J Biol Chem 2010, 285:19184–19192.
Xie, Y, Blanc, V, Kerr, TA, Kennedy, S, Luo, J, Newberry, EP, Davidson, NO. Decreased expression of cholesterol 7α‐hydroxylase and altered bile acid metabolism in Apobec‐1−/− mice lead to increased gallstone susceptibility. J Biol Chem 2009, 284:16860–16871.
Blanc, V, Henderson, JO, Newberry, RD, Xie, Y, Cho, SJ, Newberry, EP, Kennedy, S, Rubin, DC, Wang, HL, Luo, J, et al. Deletion of the AU‐rich RNA binding protein Apobec‐1 reduces intestinal tumor burden in Apc(min) mice. Cancer Res 2007, 67:8565–8573.
Petersen‐Mahrt, SK, Neuberger, MS. In vitro deamination of cytosine to uracil in single‐stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem 2003, 278:19583–19586.
Gee, P, Ando, Y, Kitayama, H, Yamamoto, SP, Kanemura, Y, Ebina, H, Kawaguchi, Y, Koyanagi, Y. APOBEC1‐mediated editing and attenuation of herpes simplex virus 1 DNA indicate that neurons have an antiviral role during herpes simplex encephalitis. J Virol 2011, 85:9726–9736.
Gonzalez, MC, Suspene, R, Henry, M, Guetard, D, Wain‐Hobson, S, Vartanian, JP. Human APOBEC1 cytidine deaminase edits HBV DNA. Retrovirology 2009, 6:96.
Muramatsu, MKK, Fagarasan, S, Yamada, S, Shinkai, Y, Honjo, T. Class switch recombination and hypermutation require activation‐induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102:553–563.
McCarthy, HWW, Barron, LL, Cromwell, CC, Wang, J, Coombes, KR, Rangel, R, Elenitoba‐Johnson, KS, Keating, MJ, Abruzzo, LV. High expression of activation‐induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor‐prognosis chronic lymphocytic leukemia. Blood 2003, 101:4903–4908.
Patenaude, AM, Di Noia, JM. The mechanisms regulating the subcellular localization of AID. Nucleus 2010, 1:325–331.
Aoufouchi, S, Faili, A, Zober, C, D`Orlando, O, Weller, S, Weill, JC, Reynaud, C‐A. Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 2008, 205:1357–1368.
Yang, Y, Smith, HC. Multiple protein domains determine the cell type‐specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing. Proc Natl Acad Sci U S A 1997, 94:13075–13080.
Blanc, V, Kennedy, SM, Davidson, NO. A novel nuclear localization signal in the auxiliary domain of apobec‐1 complementation factor (ACF) regulates nucleo‐cytoplasmic import and shuttling. J Biol Chem 2003, 278:41198–41204.
Gabuzda, DH, Lawrence, K, Langhoff, E, Terwillinger, E, Dorfman, T, Haseltine, WA, Sodroski, J. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 1992, 66:6489–6495.
von Schwedler, U, Song, J, Aiken, C, Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 1993, 67:4945–4955.
Madani NaK, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 1998, 72:10251–10255.
Simon, JH, Gaddis, NC, Foucier, RA, Malim, MH. Evidence for a newly discovered cellular anti‐HIV‐1 phenotype. Nat Med 1998, 4:1397–1400.
Lecossier, D, Bouchennet, F, Clavel, F, Hance, AJ. Hypermutation of HIV‐1 DNA in the absence of the Vif protein. Science 2003, 300:1112.
Zhang, H, Yang, B, Pomerantz, RJ, Zhang, C, Arunachalam, SC, Gao, L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV‐1 DNA. Nature 2003, 424:94–98.
Mangeat, B, Turelli, P, Caron, G, Friedli, M, Perrin, L, Trono, D. Broad antiretriviral defence by human APOBEC3G through lethan editing of nascent reverse transcripts. Nature 2003, 424:99–103.
Harris, RS, Bishop, KN, Sheehy, AM, Craig, HM, Petersen‐Mahrt, SK, Watt, IN, Neuberger, MS, Malim, MH. DNA deamination mediates innate immunity to retroviral infection. Cell 2003, 113:803–809.
Hultquist, JF, Lengyel, JA, Refsland, EW, Larue, RS, Lackey, L, Brown, WL, Harris, RS. Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif‐deficient HIV‐1. J Virol 2011, 85:11220–11234.
McDougall, WM, Okany, C, Smith, HC. Deaminase activity on single‐stranded DNA (ssDNA) occurs in vitro when APOBEC3G cytidine deaminase forms homotetramers and higher‐order complexes. J Biol Chem 2011, 286:30655–30661.
Navarro, F, Bollman, B, Chen, H, Konig, R, Yu, Q, Chiles, K, Landau, NR. Complementary function of the two catalytic domains of APOBEC3G. Virology 2005, 333:374–386.
Wedekind, JE, Gillilan, R, Janda, A, Krucinska, J, Salter, JD, Bennett, RP, Raina, J, Smith, HC. Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biol Chem 2006, 281:38122–38126.
Salter, JD, Krucinska, J, Raina, J, Smith, HC, Wedekind, JE. A hydrodynamic analysis of APOBEC3G reveals a monomer‐dimer‐tetramer self‐association that has implications for anti‐HIV function. Biochemistry 2009, 48:10685–10687.
Bennett, RP, Salter, JD, Liu, X, Wedekind, JE, Smith, HC. APOBEC3G subunits self‐associate via the C‐terminal deaminase domain. J Biol Chem 2008, 283:33329–33336.
Lau, PP, Zhu, H‐J, Baldini, HA, Charnsangavej, C, Chan, L. Dimeric structure of a human apo B mRNA editing protein and cloning and chromosomal localization of its gene. Proc Natl Acad Sci U S A 1994, 91:8522–8526.
Beale, RC, Petersen‐Mahrt, SK, Watt, IN, Harris, RS, Rada, C, Neuberger, MS. Comparison of the differential context‐dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol 2004, 26:585–596.
Langlois, M‐A, Beale, RC, Conticello, SG, Neuberger, MS. Mutational comparison of the single‐domained APOBEC3C and double‐domained APOBEC3F/G anti‐retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic Acids Res 2005, 33:1913–1923.
Shandilya, SM, Nalam, MN, Nalivaika, EA, Gross, PJ, Valesano, JC, Shindo, K, Li, M, Munson, M, Royer, WE, Harjes, E, et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 2010, 18:28–38.
Bohn, MF, Shandilya, SM, Albin, JS, Kouno, T, Anderson, BD, McDougle, RM, Carpenter, MA, Rathore, A, Evans, L, Davis, AN, et al. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV‐1 Vif‐binding domain. Structure 2013, 21:1042–1050.
LaRue, RS, Andresdottir, V, Blanchard, Y, Conticello, SG, Derse, D, Emerman, M, Greene, WC, Jonsson, SR, Landau, NR, Lochelt, M, et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J Virol 2009, 83:494–497.
Conticello, SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol 2008, 9:229.
Krzysiak, TC, Jung, J, Thompson, J, Baker, D, Gronenborn, AM. APOBEC2 is a monomer in solution: implications for APOBEC3G models. Biochemistry 2012, 51:2008–2017.
Prochnow, C, Bransteitter, R, Klein, MG, Goodman, MF, Chen, XS. The APOBEC‐2 crystal structure and functional implications for the deaminase AID. Nature 2007, 445:447–451.
Byeon, IJ, Ahn, J, Mitra, M, Byeon, CH, Hercik, K, Hritz, J, Charlton, LM, Levin, JG, Gronenborn, AM. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun 1890, 2013:4.
Kitamura, S, Ode, H, Nakashima, M, Imahashi, M, Naganawa, Y, Kurosawa, T, Yokomaku, Y, Yamane, T, Watanabe, N, Suzuki, A, et al. The APOBEC3C crystal structure and the interface for HIV‐1 Vif binding. Nat Struct Mol Biol 2012, 19:1005–1010.
Chen, KM, Harjes, E, Gross, PJ, Fahmy, A, Lu, Y, Shindo, K, Harris, RS, Matsuo, H. Structure of the DNA deaminase domain of the HIV‐1 restriction factor APOBEC3G. Nature 2008, 452:116–119.
Furukawa, A, Nagata, T, Matsugami, A, Habu, Y, Sugiyama, R, Hayashi, F, Kobayashi, N, Yokoyama, S, Takaku, H, Katahira, M. Structure, interaction and real‐time monitoring of the enzymatic reaction of wild‐type APOBEC3G. EMBO J 2009, 28:440–451.
Kohli, RM, Abrams, SR, Gajula, KS, Maul, RW, Gearhart, PJ, Stivers, JT. A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation‐induced cytidine deaminase. J Biol Chem 2009, 284:22898–22904.
Xie, K, Sowden, MP, Dance, GS, Torelli, AT, Smith, HC, Wedekind, JE. The structure of a yeast RNA‐editing deaminase provides insight into the fold and function of activation‐induced deaminase and APOBEC‐1. Proc Natl Acad Sci U S A 2004, 101:8114–8119.
Dickerson, SK, Market, E, Besmer, E, Papavasiliou, FN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 2003, 197:1291–1296.
Ta, VT, Nagaoka, H, Catalan, N, Durandy, A, Fischer, A, Imai, K, Nonoyama, S, Tashiro, J, Ikegawa, M, Ito, S, et al. AID mutant analyses indicate requirement for class‐switch‐specific cofactors. Nat Immunol 2003, 4:843–848.
Chelico, L, Prochnow, C, Erie, DA, Chen, XS, Goodman, MF. A structural model for deoxycytidine deamination mechanisms of the HIV‐1 inactivation enzyme APOBEC3G. J Biol Chem 2010, 285:16195–16205.
Chelico, L, Sacho, EJ, Erie, DA, Goodman, MF. A model for oligomeric regulation of APOBEC3G cytosine deaminase‐dependent restriction of HIV. J Biol Chem 2008, 283:13780–13791.
Shlyakhtenko, LS, Lushnikov, AY, Miyagi, A, Li, M, Harris, RS, Lyubchenko, YL. Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. J Struct Biol 2013, 184:217–225.
Feng, Y, Chelico, L. Intensity of deoxycytidine deamination of HIV‐1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 2011, 286:11415–11426.
Chelico, L, Pham, P, Calabrese, P, Goodman, MF. APOBEC3G DNA deaminase acts processively 3` ‐‐%3E 5` on single‐stranded DNA. Nat Struct Mol Biol 2006, 13:392–399.
Iwatani, Y, Takeuchi, H, Strebel, K, Levin, JG. Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 2006, 80:5992–6002.
Huthoff, H, Autore, F, Gallois‐Montbrun, S, Fraternali, F, Malim, MH. RNA‐dependent oligomerization of APOBEC3G is required for restriction of HIV‐1. PLoS Pathog 2009, 5:e1000330.
Chiu, YL, Witkowska, HE, Hall, SC, Santiago, M, Soros, VB, Esnault, C, Heidmann, T, Greene, WC. High‐molecular‐mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci U S A 2006, 103:15588–15593.
Hulme, AE, Bogerd, HP, Cullen, BR, Moran, JV. Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 2007, 390:199–205.
McDougall, WM, Smith, HC. Direct evidence that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun 2011, 412:612–617.
Conticello, SG. Creative deaminases, self‐inflicted damage, and genome evolution. Ann N Y Acad Sci 2012, 1267:79–85.
Rogozin, IB, Iyer, LM, Liang, L, Glazko, GV, Liston, VG, Pavlov, YI, Aravind, L, Pancer, Z. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID‐APOBEC family cytosine deaminase. Nat Immunol 2007, 8:647–656.
Liao, W, Hong, SH, Chan, BH, Rudolph, FB, Clark, SC, Chan, L. APOBEC‐2, a cardiac‐ and skeletal muscle‐specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun 1999, 260:398–404.
Rogozin, IB, Basu, MK, Jordan, IK, Pavlov, YI, Koonin, EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 2005, 4:1281–1285.
Schumann, GG. APOBEC3 proteins: major players in intracellular defence against LINE‐1‐mediated retrotransposition. Biochem Soc Trans 2007, 35:637–642.
Huang, J, Liang, Z, Yang, B, Tian, H, Ma, J, Zhang, H. Derepression of microRNA‐mediated protein translation inhibition by apolipoprotein B mRNA‐editing enzyme catalytic polypeptide‐like 3G (APOBEC3G) and its family members. J Biol Chem 2007, 282:33632–33640.
Esnault, C, Millet, J, Schwartz, O, Heidmann, T. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 2006, 34:1522–1531.
Schumacher, AJ, Nissley, DV, Harris, RS. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci U S A 2005, 102:9854–9859.
Kinomoto, M, Kanno, T, Shimura, M, Ishizaka, Y, Kojima, A, Kurata, T, Sata, T, Tokunaga, K. All APOBEC3 family proteins differentially inhibit LINE‐1 retrotransposition. Nucleic Acids Res 2007, 35:2955–2964.
Bogerd, HP, Wiegand, HL, Doehle, BP, Lueders, KK, Cullen, BR. APOBEC3A and APOBEC3B are potent inhibitors of LTR‐retrotransposon function in human cells. Nucleic Acids Res 2006, 34:89–95.
Chen, H, Lilley, CE, Yu, Q, Lee, DV, Chou, J, Narvaiza, I, Landau, NR, Weitzman, MD. APOBEC3A is a potent inhibitor of adeno‐associated virus and retrotransposons. Curr Biol 2006, 16:480–485.
Muckenfuss, H, Hamdorf, M, Held, U, Perkovic, M, Lower, J, Cichutek, K, Flory, E, Schumann, GG, Munk, C. APOBEC3 proteins inhibit human LINE‐1 retrotransposition. J Biol Chem 2006, 281:22161–22172.
Stenglein, MD, Harris, RS. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination‐independent mechanism. J Biol Chem 2006, 281:16837–16841.
Tan, L, Sarkis, PT, Wang, T, Tian, C, Yu, XF. Sole copy of Z2‐type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV‐1. FASEB J 2009, 23:279–287.
Horn, AV, Klawitter, S, Held, U, Berger, A, Jaguva Vasudevan, AA, Bock, A, Hofmann, H, Hanschmann, KM, Trosemeier, JH, Flory, E, et al. Human LINE‐1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res 2013, 42:396–416.
Landry, S, Narvaiza, I, Linfesty, DC, Weitzman, MD. APOBEC3A can activate the DNA damage response and cause cell‐cycle arrest. EMBO Rep 2011, 12:444–450.
Bonvin, M, Achermann, F, Greeve, I, Stroka, D, Keogh, A, Inderbitzin, D, Candinas, D, Sommer, P, Wain‐Hobson, S, Vartanian, JP, et al. Interferon‐inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 2006, 43:1364–1374.
Bennett, RP, Presnyak, V, Wedekind, JE, Smith, HC. Nuclear Exclusion of the HIV‐1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem 2008, 283:7320–7327.
Lackey, L, Law, EK, Brown, WL, Harris, RS. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 2013, 12:762–772.
Chiu, YL, Soros, VB, Kreisberg, JF, Stopak, K, Yonemoto, W, Greene, WC. Cellular APOBEC3G restricts HIV‐1 infection in resting CD4+ T cells. Nature 2005, 435:108–114.
Stopak, KS, Chiu, YL, Kropp, J, Grant, RM, Greene, WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007, 282:3539–3546.
Sonza, S, Maerz, A, Deacon, N, Meanger, J, Mills, J, Crowe, S. Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. J Virol 1996, 70:3863–3869.
Kozak, SL, Marin, M, Rose, KM, Bystrom, C, Kabat, D. The anti‐HIV‐1 editing enzyme APOBEC3G binds HIV‐1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 2006, 281:29105–29119.
Soros, VB, Yonemoto, W, Greene, WC. Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 2007, 3:e15.
Bransteitter, R, Pham, P, Scharff, MD, Goodman, MF. Activation‐induced cytidine deaminase deaminates deoxycytidine on single‐stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 2003, 100:4102–4107.
Popp, C, Dean, W, Feng, S, Cokus, SJ, Andrews, S, Pellegrini, M, Jacobsen, SE, Reik, W. Genome‐wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 2010, 463:1101–1105.
Marr, S, Morales, H, Bottaro, A, Cooper, M, Flajnik, M, Robert, J. Localization and differential expression of activation‐induced cytidine deaminase in the amphibian Xenopus upon antigen stimulation and during early development. J Immunol 2007, 179:6783–6789.
Morgan, HD, Dean, W, Coker, HA, Reik, W, Petersen‐Mahrt, SK. Activation‐induced cytidine deaminase deaminates 5‐methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 2004, 279:52353–52360.
Fritz, EL, Papavasiliou, FN. Cytidine deaminases: AIDing DNA demethylation? Genes Dev 2010, 24:2107–2114.
Okazaki, IMHH, Kakazu, N, Yamada, S, Muramatsu, M, Kinoshita, K, Honjo, T. Constitutive expression of AID leads to tumorigenesis. J Exp Med 2003, 197:1173–1181.
Vonica, A, Rosa, A, Arduini, BL, Brivanlou, AH. APOBEC2, a selective inhibitor of TGF‐β signaling, regulates left‐right axis specification during early embryogenesis. Dev Biol 2011, 350:13–23.
Okuyama, S, Marusawa, H, Matsumoto, T, Ueda, Y, Matsumoto, Y, Endo, Y, Takai, A, Chiba, T. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 2012, 130:1294–1301.
Svarovskaia, ES, Xu, H, Mbisa, JL, Barr, R, Gorelick, RJ, Ono, A, Freed, EO, Hu, WS, Pathak, VK. Human APOBEC3G is incorporated into HIV‐1 virions through interactions with viral and nonviral RNAs. J Biol Chem 2004, 279:35822–35828.
Wang, TTC, Zhang, W, Sarkis, PT, Yu, XF. Interaction with 7SL RNA but not with HIV‐1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 2008, 375:1098–1112.
Alce, TM, Popik, W. APOBEC3G is incorporated into virus‐like particles by a direct interaction with HIV‐1 Gag nucleocapsid protein. J Biol Chem 2004, 279:34083–34086.
Smith, HC. APOBEC3G: a double agent in defense. Trends Biochem Sci 2011, 36:239–244.
Guo, F, Cen, S, Niu, M, Yang, Y, Gorelick, RJ, Kleiman, L. The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol 2007, 81:11322–11331.
Mbisa, JBR, Thomas, J, Vandergraaff, N, Dorweiler, I, Svarovskaia, E, Brown, W, Mansky, L, Gorelick, R, Harris, R, Engelman, R, et al. HIV‐1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus‐strand DNA transfer and integration. J Virol 2007, 81:7099–7110.
Bishop, KN, Verma, M, Kim, EY, Wolinsky, SM, Malim, MH. APOBEC3G inhibits elongation of HIV‐1 reverse transcripts. PLoS Pathog 2008, 4:e1000231.
Luo, K, Wang, T, Liu, B, Tian, C, Xiao, Z, Kappes, J, Yu, XF. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 2007, 81:7238–7248.
Wang, T, Zhang, W, Tian, C, Liu, B, Yu, Y, Ding, L, Spearman, P, Yu, XF. Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 2008, 377:71–79.
Stauch, BHH, Perkovic, M, Weisel, M, Kopietz, F, Cichutek, K, Münk, C, Schneider, G. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc Natl Acad Sci U S A 2009, 106:12079–12084.