Kallen, KJ, Heidenreich, R, Schnee, M, Petsch, B, Schlake, T, Thess, A, Baumhof, P, Scheel, B, Koch, SD, Fotin‐Mleczek, M. A novel, disruptive vaccination technology: self‐adjuvanted RNActive((R)) vaccines. Hum Vaccin Immunother 2013, 9:2263–2276.
Deo, RC, Bonanno, JB, Sonenberg, N, Burley, SK. Recognition of polyadenylate RNA by the poly(A)‐binding protein. Cell 1999, 98:835–845.
Sachs, AB, Davis, RW, Kornberg, RD. A single domain of yeast poly(A)‐binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 1987, 7:3268–3276.
Sonenberg, N, Hinnebusch, AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731–745.
Garneau, NL, Wilusz, J, Wilusz, CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007, 8:113–126.
Chen, CY, Shyu, AB. Mechanisms of deadenylation‐dependent decay. WIREs RNA 2011, 2:167–183.
Mangus, DA, Evans, MC, Agrin, NS, Smith, M, Gongidi, P, Jacobson, A. Positive and negative regulation of poly(A) nuclease. Mol Cell Biol 2004, 24:5521–5533.
Yamashita, A, Chang, TC, Yamashita, Y, Zhu, W, Zhong, Z, Chen, CY, Shyu, AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005, 12:1054–1063.
Tucker, M, Valencia‐Sanchez, MA, Staples, RR, Chen, J, Denis, CL, Parker, R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 2001, 104:377–386.
Astrom, J, Astrom, A, Virtanen, A. Properties of a HeLa cell 3′ exonuclease specific for degrading poly(A) tails of mammalian mRNA. J Biol Chem 1992, 267:18154–18159.
Korner, CG, Wahle, E. Poly(A) tail shortening by a mammalian poly(A)‐specific 3′‐exoribonuclease. J Biol Chem 1997, 272:10448–10456.
Gao, M, Fritz, DT, Ford, LP, Wilusz, J. Interaction between a poly(A)‐specific ribonuclease and the 5` cap influences mRNA deadenylation rates in vitro. Mol Cell 2000, 5:479–488.
Martinez, J, Ren, YG, Nilsson, P, Ehrenberg, M, Virtanen, A. The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J Biol Chem 2001, 276:27923–27929.
Tucker, M, Staples, RR, Valencia‐Sanchez, MA, Muhlrad, D, Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 2002, 21:1427–1436.
Li, Y, Kiledjian, M. Regulation of mRNA decapping. WlREs RNA 2010, 1:253–265.
Ling, SH, Qamra, R, Song, H. Structural and functional insights into eukaryotic mRNA decapping. WlREs RNA 2011, 2:193–208.
Wang, Z, Jiao, X, Carr‐Schmid, A, Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 2002, 99:12663–12668.
Chang, JH, Xiang, S, Xiang, K, Manley, JL, Tong, L. Structural and biochemical studies of the 5′‐‐%3E3′ exoribonuclease Xrn1. Nat Struct Mol Biol 2011, 18:270–276.
Nagarajan, VK, Jones, CI, Newbury, SF, Green, PJ. XRN 5′‐‐%3E3′ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta 1829, 2013:590–603.
Houseley, J, LaCava, J, Tollervey, D. RNA‐quality control by the exosome. Nat Rev Mol Cell Biol 2006, 7:529–539.
Lykke‐Andersen, S, Tomecki, R, Jensen, TH, Dziembowski, A. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits. RNA Biol 2011, 8:61–66.
Liu, H, Rodgers, ND, Jiao, X, Kiledjian, M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 2002, 21:4699–4708.
Schoenberg, DR. Mechanisms of endonuclease‐mediated mRNA decay. WlREs RNA 2011, 2:582–600.
Schoenberg, DR, Maquat, LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet 2012, 13:246–259.
Filipowicz, W, Bhattacharyya, SN, Sonenberg, N. Mechanisms of post‐transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9:102–114.
Liu, J, Carmell, MA, Rivas, FV, Marsden, CG, Thomson, JM, Song, JJ, Hammond, SM, Joshua‐Tor, L, Hannon, GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305:1437–1441.
Schweingruber, C, Rufener, SC, Zund, D, Yamashita, A, Muhlemann, O. Nonsense‐mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta 1829, 2013:612–623.
Martin, SA, Moss, B. Modification of RNA by mRNA guanylyltransferase and mRNA (guanine‐7‐)methyltransferase from vaccinia virions. J Biol Chem 1975, 250:9330–9335.
Yisraeli, JK, Melton, DA. Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol 1989, 180:42–50.
Pasquinelli, AE, Dahlberg, JE, Lund, E. Reverse 5` caps in RNAs made in vitro by phage RNA polymerases. RNA 1995, 1:957–967.
Jemielity, J, Fowler, T, Zuberek, J, Stepinski, J, Lewdorowicz, M, Niedzwiecka, A, Stolarski, R, Darzynkiewicz, E, Rhoads, RE. Novel "anti‐reverse" cap analogs with superior translational properties. RNA 2003, 9:1108–1122.
Kore, AR, Charles, I. Synthesis and evaluation of 2`‐O‐allyl substituted dinucleotide cap analog for mRNA translation. Bioorg Med Chem 2010, 18:8061–8065.
Kore, AR, Shanmugasundaram, M, Charles, I, Cheng, AM, Barta, TJ. Synthesis and application of 2`‐fluoro‐substituted cap analogs. Bioorg Med Chem Lett 2007, 17:5295–5299.
Kore, AR, Shanmugasundaram, M, Charles, I, Vlassov, AV, Barta, TJ. Locked nucleic acid (LNA)‐modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 2009, 131:6364–6365.
Kore, AR, Shanmugasundaram, M, Vlassov, AV. Synthesis and application of a new 2′,3′‐isopropylidene guanosine substituted cap analog. Bioorg Med Chem Lett 2008, 18:4828–4832.
Peng, ZH, Sharma, V, Singleton, SF, Gershon, PD. Synthesis and application of a chain‐terminating dinucleotide mRNA cap analog. Org Lett 2002, 4:161–164.
Stepinski, J, Waddell, C, Stolarski, R, Darzynkiewicz, E, Rhoads, RE. Synthesis and properties of mRNAs containing the novel "anti‐reverse" cap analogs 7‐methyl(3`‐O‐methyl)GpppG and 7‐methyl (3`‐deoxy)GpppG. RNA 2001, 7:1486–1495.
Kuhn, AN, Diken, M, Kreiter, S, Selmi, A, Kowalska, J, Jemielity, J, Darzynkiewicz, E, Huber, C, Tureci, O, Sahin, U. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 2010, 17:961–971.
Mockey, M, Goncalves, C, Dupuy, FP, Lemoine, FM, Pichon, C, Midoux, P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 2006, 340:1062–1068.
Grudzien‐Nogalska, E, Jemielity, J, Kowalska, J, Darzynkiewicz, E, Rhoads, RE. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 2007, 13:1745–1755.
Kalek, M, Jemielity, J, Darzynkiewicz, ZM, Bojarska, E, Stepinski, J, Stolarski, R, Davis, RE, Darzynkiewicz, E. Enzymatically stable 5′ mRNA cap analogs: synthesis and binding studies with human DcpS decapping enzyme. Bioorg Med Chem 2006, 14:3223–3230.
Kore, AR, Xiao, Z, Li, M. Synthesis and biological validation of N(7)‐(4‐chlorophenoxyethyl) substituted dinucleotide cap analogs for mRNA translation. Bioorg Med Chem 2013, 21:4570–4574.
Kowalska, J, Zuberek, J, Darzynkiewicz, ZM, Lukaszewicz, M, Darzynkiewicz, E, Jemielity, J. The first examples of mRNA cap analogs bearing boranophosphate modification. Nucleic Acids Symp Ser (Oxf) 2008, 52:289–290.
Rydzik, AM, Kulis, M, Lukaszewicz, M, Kowalska, J, Zuberek, J, Darzynkiewicz, ZM, Darzynkiewicz, E, Jemielity, J. Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety‐‐fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem 2012, 20:1699–1710.
Rydzik, AM, Lukaszewicz, M, Zuberek, J, Kowalska, J, Darzynkiewicz, ZM, Darzynkiewicz, E, Jemielity, J. Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5`,5` bridge containing methylenebis(phosphonate) modification. Org Biomol Chem 2009, 7:4763–4776.
Strenkowska, M, Kowalska, J, Lukaszewicz, M, Zuberek, J, Su, W, Rhoads, RE, Darzynkiewicz, E, Jemielity, J. Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New J Chem 2010, 34:993–1007.
Su, W, Slepenkov, S, Grudzien‐Nogalska, E, Kowalska, J, Kulis, M, Zuberek, J, Lukaszewicz, M, Darzynkiewicz, E, Jemielity, J, Rhoads, RE. Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 2011, 17:978–988.
Warminski, M, Kowalska, J, Buck, J, Zuberek, J, Lukaszewicz, M, Nicola, C, Kuhn, AN, Sahin, U, Darzynkiewicz, E, Jemielity, J. The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorg Med Chem Lett 2013, 23:3753–3758.
Grudzien, E, Kalek, M, Jemielity, J, Darzynkiewicz, E, Rhoads, RE. Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 2006, 281:1857–1867.
Benteyn, D, Van Nuffel, AM, Wilgenhof, S, Corthals, J, Heirman, C, Neyns, B, Thielemans, K, Bonehill, A. Characterization of CD8+ T‐cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC‐MEL). Biomed Res Int 2013, 2013:976383.
Shindo, Y, Hazama, S, Maeda, Y, Matsui, H, Iida, M, Suzuki, N, Yoshimura, K, Ueno, T, Yoshino, S, Sakai, K, et al. Adoptive immunotherapy with MUC1‐mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med 2014, 12:175.
Gray, NK, Wickens, M. Control of translation initiation in animals. Annu Rev Cell Dev Biol 1998, 14:399–458.
Kozak, M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 1987, 196:947–950.
Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 1991, 266:19867–19870.
Pelletier, J, Sonenberg, N. Insertion mutagenesis to increase secondary structure within the 5` noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 1985, 40:515–526.
van der Velden, AW, Voorma, HO, Thomas, AA. Vector design for optimal protein expression. Biotechniques 2001, 31: 572, 574, 576–580, passim.
Mayr, C, Bartel, DP. Widespread shortening of 3`UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673–684.
Chen, CY, Shyu, AB. AU‐rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995, 20:465–470.
Murray, EL, Schoenberg, DR. A + U‐rich instability elements differentially activate 5`‐3` and 3`‐5` mRNA decay. Mol Cell Biol 2007, 27:2791–2799.
Vlasova‐St Louis, I, Bohjanen, PR. Coordinate regulation of mRNA decay networks by GU‐rich elements and CELF1. Curr Opin Genet Dev 2011, 21:444–451.
Holcik, M, Liebhaber, SA. Four highly stable eukaryotic mRNAs assemble 3` untranslated region RNA‐protein complexes sharing cis and trans components. Proc Natl Acad Sci U S A 1997, 94:2410–2414.
Waggoner, SA, Liebhaber, SA. Regulation of α‐globin mRNA stability. Exp Biol Med (Maywood) 2003, 228:387–395.
Yu, J, Russell, JE. Structural and functional analysis of an mRNP complex that mediates the high stability of human β‐globin mRNA. Mol Cell Biol 2001, 21:5879–5888.
Wang, Z, Day, N, Trifillis, P, Kiledjian, M. An mRNA stability complex functions with poly(A)‐binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999, 19:4552–4560.
Wang, Z, Kiledjian, M. The poly(A)‐binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Mol Cell Biol 2000, 20:6334–6341.
Jiang, Y, Xu, XS, Russell, JE. A nucleolin‐binding 3` untranslated region element stabilizes β‐globin mRNA in vivo. Mol Cell Biol 2006, 26:2419–2429.
Krieg, PA, Melton, DA. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 1984, 12:7057–7070.
Malone, RW, Felgner, PL, Verma, IM. Cationic liposome‐mediated RNA transfection. Proc Natl Acad Sci U S A 1989, 86:6077–6081.
Carralot, JP, Weide, B, Schoor, O, Probst, J, Scheel, B, Teufel, R, Hoerr, I, Garbe, C, Rammensee, HG, Pascolo, S. Production and characterization of amplified tumor‐derived cRNA libraries to be used as vaccines against metastatic melanomas. Genet Vaccines Ther 2005, 3:6.
Kreiter, S, Selmi, A, Diken, M, Koslowski, M, Britten, CM, Huber, C, Tureci, O, Sahin, U. Intranodal vaccination with naked antigen‐encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010, 70:9031–9040.
Kreiter, S, Selmi, A, Diken, M, Sebastian, M, Osterloh, P, Schild, H, Huber, C, Tureci, O, Sahin, U. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 2008, 180:309–318.
Heiser, A, Dahm, P, Yancey, DR, Maurice, MA, Boczkowski, D, Nair, SK, Gilboa, E, Vieweg, J. Human dendritic cells transfected with RNA encoding prostate‐specific antigen stimulate prostate‐specific CTL responses in vitro. J Immunol 2000, 164:5508–5514.
Vivinus, S, Baulande, S, van Zanten, M, Campbell, F, Topley, P, Ellis, JH, Dessen, P, Coste, H. An element within the 5` untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. Eur J Biochem 2001, 268:1908–1917.
Yakubov, E, Rechavi, G, Rozenblatt, S, Givol, D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 2010, 394:189–193.
Kuhn, AN, Diken, M, Kreiter, S, Vallazza, B, Tureci, O, Sahin, U. Determinants of intracellular RNA pharmacokinetics: implications for RNA‐based immunotherapeutics. RNA Biol 2011, 8:35–43.
Holtkamp, S, Kreiter, S, Selmi, A, Simon, P, Koslowski, M, Huber, C, Tureci, O, Sahin, U. Modification of antigen‐encoding RNA increases stability, translational efficacy, and T‐cell stimulatory capacity of dendritic cells. Blood 2006, 108:4009–4017.
Al‐Zoghaibi, F, Ashour, T, Al‐Ahmadi, W, Abulleef, H, Demirkaya, O, Khabar, KS. Bioinformatics and experimental derivation of an efficient hybrid 3` untranslated region and use in expression active linear DNA with minimum poly(A) region. Gene 2007, 391:130–139.
Goodarzi, H, Najafabadi, HS, Oikonomou, P, Greco, TM, Fish, L, Salavati, R, Cristea, IM, Tavazoie, S. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 2012, 485:264–268.
Schwanhausser, B, Busse, D, Li, N, Dittmar, G, Schuchhardt, J, Wolf, J, Chen, W, Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473:337–342.
Novoa, EM, Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 2012, 28:574–581.
Plotkin, JB, Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 2011, 12:32–42.
Al‐Saif, M, Khabar, KS. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012, 20:954–959.
Fath, S, Bauer, AP, Liss, M, Spriestersbach, A, Maertens, B, Hahn, P, Ludwig, C, Schafer, F, Graf, M, Wagner, R. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 2011, 6:e17596.
Khabar, KS. The AU‐rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 2005, 25:1–10.
Chamary, JV, Hurst, LD. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol 2005, 6:R75.
Edwards, NC, Hing, ZA, Perry, A, Blaisdell, A, Kopelman, DB, Fathke, R, Plum, W, Newell, J, Allen, CE, Shapiro, A, et al. Characterization of coding synonymous and non‐synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 2012, 7:e38864.
Bontkes, HJ, Kramer, D, Ruizendaal, JJ, Kueter, EW, van Tendeloo, VF, Meijer, CJ, Hooijberg, E. Dendritic cells transfected with interleukin‐12 and tumor‐associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther 2007, 14:366–375.
Knights, AJ, Nuber, N, Thomson, CW, de la Rosa, O, Jager, E, Tiercy, JM, van den Broek, M, Pascolo, S, Knuth, A, Zippelius, A. Modified tumour antigen‐encoding mRNA facilitates the analysis of naturally occurring and vaccine‐induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother 2009, 58:325–338.
Scholten, KB, Kramer, D, Kueter, EW, Graf, M, Schoedl, T, Meijer, CJ, Schreurs, MW, Hooijberg, E. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 2006, 119:135–145.
Van den Bosch, GA, Van Gulck, E, Ponsaerts, P, Nijs, G, Lenjou, M, Apers, L, Kint, I, Heyndrickx, L, Vanham, G, Van Bockstaele, DR, et al. Simultaneous activation of viral antigen‐specific memory CD4+ and CD8+ T‐cells using mRNA‐electroporated CD40‐activated autologous B‐cells. J Immunother 2006, 29:512–523.
Van Gulck, ER, Ponsaerts, P, Heyndrickx, L, Vereecken, K, Moerman, F, De Roo, A, Colebunders, R, Van den Bosch, G, Van Bockstaele, DR, Van Tendeloo, VF, et al. Efficient stimulation of HIV‐1‐specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV‐1 Gag and Env proteins. Blood 2006, 107:1818–1827.
Benteyn, D, Anguille, S, Van Lint, S, Heirman, C, Van Nuffel, AM, Corthals, J, Ochsenreither, S, Waelput, W, Van Beneden, K, Breckpot, K, et al. Design of an optimized Wilms` tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol Ther Nucleic Acids 2013, 2:e134.
Angov, E. Codon usage: nature`s roadmap to expression and folding of proteins. Biotechnol J 2011, 6:650–659.
Cao, GJ, Sarkar, N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A 1992, 89:10380–10384.
Martin, G, Keller, W. Tailing and 3`‐end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 1998, 4:226–230.
Boczkowski, D, Nair, SK, Nam, JH, Lyerly, HK, Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000, 60:1028–1034.
Wolff, JA, Malone, RW, Williams, P, Chong, W, Acsadi, G, Jani, A, Felgner, PL. Direct gene transfer into mouse muscle in vivo. Science 1990, 247:1465–1468.
Preiss, T, Muckenthaler, M, Hentze, MW. Poly(A)‐tail‐promoted translation in yeast: implications for translational control. RNA 1998, 4:1321–1331.
Peng, J, Schoenberg, DR. mRNA with a %3C20‐nt poly(A) tail imparted by the poly(A)‐limiting element is translated as efficiently in vivo as long poly(A) mRNA. RNA 2005, 11:1131–1140.
Rabinovich, PM, Komarovskaya, ME, Ye, ZJ, Imai, C, Campana, D, Bahceci, E, Weissman, SM. Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther 2006, 17:1027–1035.
Tcherepanova, IY, Adams, MD, Feng, X, Hinohara, A, Horvatinovich, J, Calderhead, D, Healey, D, Nicolette, CA. Ectopic expression of a truncated CD40L protein from synthetic post‐transcriptionally capped RNA in dendritic cells induces high levels of IL‐12 secretion. BMC Mol Biol 2008, 9:90.
Wilson, C, Keefe, AD. Building oligonucleotide therapeutics using non‐natural chemistries. Curr Opin Chem Biol 2006, 10:607–614.
Aurup, H, Siebert, A, Benseler, F, Williams, D, Eckstein, F. Translation of 2`‐modified mRNA in vitro and in vivo. Nucleic Acids Res 1994, 22:4963–4968.
Srivatsan, SG, Tor, Y. Enzymatic incorporation of emissive pyrimidine ribonucleotides. Chem Asian J 2009, 4:419–427.
Veedu, RN, Vester, B, Wengel, J. Polymerase chain reaction and transcription using locked nucleic acid nucleotide triphosphates. J Am Chem Soc 2008, 130:8124–8125.
Kariko, K, Buckstein, M, Ni, H, Weissman, D. Suppression of RNA recognition by toll‐like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23:165–175.
Huang, Y, Eckstein, F, Padilla, R, Sousa, R. Mechanism of ribose 2`‐group discrimination by an RNA polymerase. Biochemistry 1997, 36:8231–8242.
Griffiths, AD, Potter, BV, Eperon, IC. Stereospecificity of nucleases towards phosphorothioate‐substituted RNA: stereochemistry of transcription by T7 RNA polymerase. Nucleic Acids Res 1987, 15:4145–4162.
Sousa, R. Use of T7 RNA polymerase and its mutants for incorporation of nucleoside analogs into RNA. Methods Enzymol 2000, 317:65–74.
Brakmann, S, Grzeszik, S. An error‐prone T7 RNA polymerase mutant generated by directed evolution. Chembiochem 2001, 2:212–219.
Goldsmith, M, Tawfik, DS. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc Natl Acad Sci U S A 2009, 106:6197–6202.
Huang, J, Brieba, LG, Sousa, R. Misincorporation by wild‐type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry 2000, 39:11571–11580.
Remington, KM, Bennett, SE, Harris, CM, Harris, TM, Bebenek, K. Highly mutagenic bypass synthesis by T7 RNA polymerase of site‐specific benzo[a]pyrene diol epoxide‐adducted template DNA. J Biol Chem 1998, 273:13170–13176.
Nagata, S, Hamasaki, T, Uetake, K, Masuda, H, Takagaki, K, Oka, N, Wada, T, Ohgi, T, Yano, J. Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents. Nucleic Acids Res 2010, 38:7845–7857.
Easton, LE, Shibata, Y, Lukavsky, PJ. Rapid, nondenaturing RNA purification using weak anion‐exchange fast performance liquid chromatography. RNA 2010, 16:647–653.
Koubek, J, Lin, KF, Chen, YR, Cheng, RP, Huang, JJ. Strong anion‐exchange fast performance liquid chromatography as a versatile tool for preparation and purification of RNA produced by in vitro transcription. RNA 2013, 19:1449–1459.
McKenna, SA, Kim, I, Puglisi, EV, Lindhout, DA, Aitken, CE, Marshall, RA, Puglisi, JD. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat Protoc 2007, 2:3270–3277.
Anderson, AC, Scaringe, SA, Earp, BE, Frederick, CA. HPLC purification of RNA for crystallography and NMR. RNA 1996, 2:110–117.
Kariko, K, Muramatsu, H, Ludwig, J, Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside‐modified, protein‐encoding mRNA. Nucleic Acids Res 2011, 39:e142.
Batey, RT, Kieft, JS. Improved native affinity purification of RNA. RNA 2007, 13:1384–1389.
Nguyen, TH, Cunningham, LA, Hammond, KM, Lu, Y. High‐resolution preparative‐scale purification of RNA using the Prep Cell. Anal Biochem 1999, 269:216–218.
Slagter‐Jager, JG, Nicolette, CA, Tcherepanova, IY. Evaluation of a microfluidics‐based platform and slab electrophoresis for determination of size, integrity and quantification of in vitro transcribed RNA used as a component in therapeutic drug manufacturing. J Pharm Biomed Anal 2012, 70:657–663.
Sodowich, BI, Fadl, I, Burns, C. Method validation of in vitro RNA transcript analysis on the Agilent 2100 Bioanalyzer. Electrophoresis 2007, 28:2368–2378.
Umemoto, Y, Kataoka, M, Yatsushiro, S, Watanabe, M, Kido, J, Kakuhata, R, Yamamoto, T, Shinohara, Y, Baba, Y. Sequential analysis of RNA synthesis by microchip electrophoresis. Anal Biochem 2009, 388:161–163.
Tavernier, G, Andries, O, Demeester, J, Sanders, NN, De Smedt, SC, Rejman, J. mRNA as gene therapeutic: how to control protein expression. J Control Release 2011, 150:238–247.
Van Tendeloo, VF, Ponsaerts, P, Lardon, F, Nijs, G, Lenjou, M, Van Broeckhoven, C, Van Bockstaele, DR, Berneman, ZN. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001, 98:49–56.
Zou, S, Scarfo, K, Nantz, MH, Hecker, JG. Lipid‐mediated delivery of RNA is more efficient than delivery of DNA in non‐dividing cells. Int J Pharm 2010, 389:232–243.
Kalady, MF, Onaitis, MW, Padilla, KM, Emani, S, Tyler, DS, Pruitt, SK. Enhanced dendritic cell antigen presentation in RNA‐based immunotherapy. J Surg Res 2002, 105:17–24.
Lee, J, Dollins, CM, Boczkowski, D, Sullenger, BA, Nair, S. Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen‐specific T‐cell responses. Immunology 2008, 125:229–240.
Rabinovich, PM, Komarovskaya, ME, Wrzesinski, SH, Alderman, JL, Budak‐Alpdogan, T, Karpikov, A, Guo, H, Flavell, RA, Cheung, NK, Weissman, SM, et al. Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther 2009, 20:51–61.
Smits, E, Ponsaerts, P, Lenjou, M, Nijs, G, Van Bockstaele, DR, Berneman, ZN, Van Tendeloo, VF. RNA‐based gene transfer for adult stem cells and T cells. Leukemia 2004, 18:1898–1902.
Choi, Y, Yuen, C, Maiti, SN, Olivares, S, Gibbons, H, Huls, H, Raphael, R, Killian, TC, Stark, DJ, Lee, DA, et al. A high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells. Biomed Microdevices 2010, 12:855–863.
Li, L, Liu, LN, Feller, S, Allen, C, Shivakumar, R, Fratantoni, J, Wolfraim, LA, Fujisaki, H, Campana, D, Chopas, N, et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory‐compliant non‐viral method. Cancer Gene Ther 2010, 17:147–154.
Wasungu, L, Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006, 116:255–264.
Midoux, P, Pichon, C, Yaouanc, JJ, Jaffres, PA. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 2009, 157:166–178.
Perche, F, Gosset, D, Mevel, M, Miramon, ML, Yaouanc, JJ, Pichon, C, Benvegnu, T, Jaffres, PA, Midoux, P. Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 2011, 19:315–325.
Pichon, C, Midoux, P. Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA. Methods Mol Biol 2013, 969:247–274.
Su, X, Fricke, J, Kavanagh, DG, Irvine, DJ. In vitro and in vivo mRNA delivery using lipid‐enveloped pH‐responsive polymer nanoparticles. Mol Pharm 2011, 8:774–787.
Ehrengruber, MU, Schlesinger, S, Lundstrom, K. Alphaviruses: Semliki forest virus and Sindbis virus vectors for gene transfer into neurons. Curr Protoc Neurosci 2011, Chapter 4:Unit 4 22. doi: 10.1002/0471142301.ns0422s57.
Galla, M, Schambach, A, Baum, C. Retrovirus‐based mRNA transfer for transient cell manipulation. Methods Mol Biol 2013, 969:139–161.
Lundstrom, K. Alphaviruses in gene therapy. Viruses 2009, 1:13–25.
Nishimura, K, Sano, M, Ohtaka, M, Furuta, B, Umemura, Y, Nakajima, Y, Ikehara, Y, Kobayashi, T, Segawa, H, Takayasu, S, et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 2011, 286:4760–4771.
Galla, M, Schambach, A, Falk, CS, Maetzig, T, Kuehle, J, Lange, K, Zychlinski, D, Heinz, N, Brugman, MH, Gohring, G, et al. Avoiding cytotoxicity of transposases by dose‐controlled mRNA delivery. Nucleic Acids Res 2011, 39:7147–7160.
Galla, M, Will, E, Kraunus, J, Chen, L, Baum, C. Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 2004, 16:309–315.
Buchholz, CJ, Muhlebach, MD, Cichutek, K. Lentiviral vectors with measles virus glycoproteins—dream team for gene transfer? Trends Biotechnol 2009, 27:259–265.
Munch, RC, Muhlebach, MD, Schaser, T, Kneissl, S, Jost, C, Pluckthun, A, Cichutek, K, Buchholz, CJ. DARPins: an efficient targeting domain for lentiviral vectors. Mol Ther 2011, 19:686–693.
Heiser, A, Coleman, D, Dan, J, Yancey, D, Maurice, MA, Lallas, CD, Dahm, P, Niedzwiecki, D, Gilboa, E, Vieweg, J. Autologous dendritic cells transfected with prostate‐specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002, 109:409–417.
Kreiter, S, Diken, M, Selmi, A, Tureci, O, Sahin, U. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 2011, 23:399–406.
Nair, SK, Morse, M, Boczkowski, D, Cumming, RI, Vasovic, L, Gilboa, E, Lyerly, HK. Induction of tumor‐specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA‐transfected dendritic cells. Ann Surg 2002, 235:540–549.
Diken, M, Kreiter, S, Selmi, A, Britten, CM, Huber, C, Tureci, O, Sahin, U. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011, 18:702–708.
Probst, J, Weide, B, Scheel, B, Pichler, BJ, Hoerr, I, Rammensee, HG, Pascolo, S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid‐specific, saturable and ion dependent. Gene Ther 2007, 14:1175–1180.
Lorenz, C, Fotin‐Mleczek, M, Roth, G, Becker, C, Dam, TC, Verdurmen, WP, Brock, R, Probst, J, Schlake, T. Protein expression from exogenous mRNA: uptake by receptor‐mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 2011, 8:627–636.
Scheel, B, Teufel, R, Probst, J, Carralot, JP, Geginat, J, Radsak, M, Jarrossay, D, Wagner, H, Jung, G, Rammensee, HG, et al. Toll‐like receptor‐dependent activation of several human blood cell types by protamine‐condensed mRNA. Eur J Immunol 2005, 35:1557–1566.
Hemmi, H, Takeuchi, O, Kawai, T, Kaisho, T, Sato, S, Sanjo, H, Matsumoto, M, Hoshino, K, Wagner, H, Takeda, K, et al. A toll‐like receptor recognizes bacterial DNA. Nature 2000, 408:740–745.
Heil, F, Hemmi, H, Hochrein, H, Ampenberger, F, Kirschning, C, Akira, S, Lipford, G, Wagner, H, Bauer, S. Species‐specific recognition of single‐stranded RNA via toll‐like receptor 7 and 8. Science 2004, 303:1526–1529.
Diebold, SS, Massacrier, C, Akira, S, Paturel, C, Morel, Y. Reis e Sousa C. Nucleic acid agonists for toll‐like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 2006, 36:3256–3267.
Gorden, KK, Qiu, X, Battiste, JJ, Wightman, PP, Vasilakos, JP, Alkan, SS. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 2006, 177:8164–8170.
Liu, YJ. IPC: professional type 1 interferon‐producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005, 23:275–306.
Kanneganti, TD, Ozoren, N, Body‐Malapel, M, Amer, A, Park, JH, Franchi, L, Whitfield, J, Barchet, W, Colonna, M, Vandenabeele, P, et al. Bacterial RNA and small antiviral compounds activate caspase‐1 through cryopyrin/Nalp3. Nature 2006, 440:233–236.
Kariko, K, Weissman, D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Devel 2007, 10:523–532.
Alexopoulou, L, Holt, AC, Medzhitov, R, Flavell, RA. Recognition of double‐stranded RNA and activation of NF‐κB by toll‐like receptor 3. Nature 2001, 413:732–738.
Daffis, S, Samuel, MA, Suthar, MS, Gale, M Jr, Diamond, MS. Toll‐like receptor 3 has a protective role against West Nile virus infection. J Virol 2008, 82:10349–10358.
Kariko, K, Ni, H, Capodici, J, Lamphier, M, Weissman, D. mRNA is an endogenous ligand for toll‐like receptor 3. J Biol Chem 2004, 279:12542–12550.
Kleinman, ME, Yamada, K, Takeda, A, Chandrasekaran, V, Nozaki, M, Baffi, JZ, Albuquerque, RJ, Yamasaki, S, Itaya, M, Pan, Y, et al. Sequence‐ and target‐independent angiogenesis suppression by siRNA via TLR3. Nature 2008, 452:591–597.
Liu, L, Botos, I, Wang, Y, Leonard, JN, Shiloach, J, Segal, DM, Davies, DR. Structural basis of toll‐like receptor 3 signaling with double‐stranded RNA. Science 2008, 320:379–381.
Kato, H, Takeuchi, O, Sato, S, Yoneyama, M, Yamamoto, M, Matsui, K, Uematsu, S, Jung, A, Kawai, T, Ishii, KJ, et al. Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses. Nature 2006, 441:101–105.
Hornung, V, Ellegast, J, Kim, S, Brzozka, K, Jung, A, Kato, H, Poeck, H, Akira, S, Conzelmann, KK, Schlee, M, et al. 5`‐Triphosphate RNA is the ligand for RIG‐I. Science 2006, 314:994–997.
Kato, H, Takeuchi, O, Mikamo‐Satoh, E, Hirai, R, Kawai, T, Matsushita, K, Hiiragi, A, Dermody, TS, Fujita, T, Akira, S. Length‐dependent recognition of double‐stranded ribonucleic acids by retinoic acid‐inducible gene‐I and melanoma differentiation‐associated gene 5. J Exp Med 2008, 205:1601–1610.
Fierro‐Monti, I, Mathews, MB. Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 2000, 25:241–246.
Ucci, JW, Kobayashi, Y, Choi, G, Alexandrescu, AT, Cole, JL. Mechanism of interaction of the double‐stranded RNA (dsRNA) binding domain of protein kinase R with short dsRNA sequences. Biochemistry 2007, 46:55–65.
Nallagatla, SR, Hwang, J, Toroney, R, Zheng, X, Cameron, CE, Bevilacqua, PC. 5`‐triphosphate‐dependent activation of PKR by RNAs with short stem‐loops. Science 2007, 318:1455–1458.
Daffis, S, Szretter, KJ, Schriewer, J, Li, J, Youn, S, Errett, J, Lin, TY, Schneller, S, Zust, R, Dong, H, et al. 2`‐O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010, 468:452–456.
Wang, Y, Ludwig, J, Schuberth, C, Goldeck, M, Schlee, M, Li, H, Juranek, S, Sheng, G, Micura, R, Tuschl, T, et al. Structural and functional insights into 5`‐ppp RNA pattern recognition by the innate immune receptor RIG‐I. Nat Struct Mol Biol 2010, 17:781–787.
Zust, R, Cervantes‐Barragan, L, Habjan, M, Maier, R, Neuman, BW, Ziebuhr, J, Szretter, KJ, Baker, SC, Barchet, W, Diamond, MS, et al. Ribose 2`‐O‐methylation provides a molecular signature for the distinction of self and non‐self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011, 12:137–143.
Habjan, M, Hubel, P, Lacerda, L, Benda, C, Holze, C, Eberl, CH, Mann, A, Kindler, E, Gil‐Cruz, C, Ziebuhr, J, et al. Sequestration by IFIT1 impairs translation of 2`O‐unmethylated capped RNA. PLoS Pathog 2013, 9:e1003663.
Kimura, T, Katoh, H, Kayama, H, Saiga, H, Okuyama, M, Okamoto, T, Umemoto, E, Matsuura, Y, Yamamoto, M, Takeda, K. IFIT1 inhibits Japanese encephalitis virus replication through binding to 5` capped 2`‐O unmethylated RNA. J Virol 2013, 87:9997–10003.
Martinon, F, Krishnan, S, Lenzen, G, Magne, R, Gomard, E, Guillet, JG, Levy, JP, Meulien, P. Induction of virus‐specific cytotoxic T lymphocytes in vivo by liposome‐entrapped mRNA. Eur J Immunol 1993, 23:1719–1722.
Boczkowski, D, Nair, SK, Snyder, D, Gilboa, E. Dendritic cells pulsed with RNA are potent antigen‐presenting cells in vitro and in vivo. J Exp Med 1996, 184:465–472.
Kramps, T, Probst, J. Messenger RNA‐based vaccines: progress, challenges, applications. WlREs RNA 2013, 4:737–749.
Pascolo, S. Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 2008, 183:221–235.
Van Tendeloo, VF, Van de Velde, A, Van Driessche, A, Cools, N, Anguille, S, Ladell, K, Gostick, E, Vermeulen, K, Pieters, K, Nijs, G, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms` tumor 1 antigen‐targeted dendritic cell vaccination. Proc Natl Acad Sci USA 2010, 107:13824–13829.
Van Driessche, A, Van de Velde, AL, Nijs, G, Braeckman, T, Stein, B, De Vries, JM, Berneman, ZN, Van Tendeloo, VF. Clinical‐grade manufacturing of autologous mature mRNA‐electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose‐escalation clinical trial. Cytotherapy 2009, 11:653–668.
Van Tendeloo, VF, Van de Velde, A, Van Driessche, A, Cools, N, Anguille, S, Ladell, K, Gostick, E, Vermeulen, K, Pieters, K, Nijs, G, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms` tumor 1 antigen‐targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 2010, 107:13824–13829.
Caruso, DA, Orme, LM, Neale, AM, Radcliff, FJ, Amor, GM, Maixner, W, Downie, P, Hassall, TE, Tang, ML, Ashley, DM. Results of a phase 1 study utilizing monocyte‐derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol 2004, 6:236–246.
Morse, MA, Nair, SK, Mosca, PJ, Hobeika, AC, Clay, TM, Deng, Y, Boczkowski, D, Proia, A, Neidzwiecki, D, Clavien, PA, et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 2003, 21:341–349.
Nair, SK, Hull, S, Coleman, D, Gilboa, E, Lyerly, HK, Morse, MA. Induction of carcinoembryonic antigen (CEA)‐specific cytotoxic T‐lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J Cancer 1999, 82:121–124.
Lesterhuis, WJ, De Vries, IJ, Schreibelt, G, Schuurhuis, DH, Aarntzen, EH, De Boer, A, Scharenborg, NM, Van De Rakt, M, Hesselink, EJ, Figdor, CG, et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 2010, 30:5091–5097.
Coosemans, A, Wolfl, M, Berneman, ZN, Van Tendeloo, V, Vergote, I, Amant, F, Van Gool, SW. Immunological response after therapeutic vaccination with WT1 mRNA‐loaded dendritic cells in end‐stage endometrial carcinoma. Anticancer Res 2010, 30:3709–3714.
Vik‐Mo, EO, Nyakas, M, Mikkelsen, BV, Moe, MC, Due‐Tonnesen, P, Suso, EM, Saeboe‐Larssen, S, Sandberg, C, Brinchmann, JE, Helseth, E, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA‐transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013, 62:1499–1509.
Berneman, ZN, Germonpre, P, Huizing, MT, Van de Velde, A, Nijs, G, Stein, B, Van Tendeloo, VF, Lion, E, Smits, EL, Anguille, S. Dendritic cell vaccination in malignant pleural mesothelioma: a phase I/II study. J Clin Oncol 2014, 32:7583.
Aarntzen, EH, Schreibelt, G, Bol, K, Lesterhuis, WJ, Croockewit, AJ, de Wilt, JH, van Rossum, MM, Blokx, WA, Jacobs, JF, Duiveman‐de Boer, T, et al. Vaccination with mRNA‐electroporated dendritic cells induces robust tumor antigen‐specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012, 18:5460–5470.
Bol, KF, Mensink, HW, Aarntzen, EH, Schreibelt, G, Keunen, JE, Coulie, PG, de Klein, A, Punt, CJ, Paridaens, D, Figdor, CG, et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am J Ophthalmol 2014, 158:939–947.
Bonehill, A, Van Nuffel, AM, Corthals, J, Tuyaerts, S, Heirman, C, Francois, V, Colau, D, van der Bruggen, P, Neyns, B, Thielemans, K. Single‐step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 2009, 15:3366–3375.
Dan, J, Haley, NR, Archer, G, Nair, S, Boczkowski, D, Harper, M, De Rosa, N, Pickett, N, Mosca, PJ, Burchette, J, et al. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest 2013, 123:3135–3145.
Kyte, JA, Mu, L, Aamdal, S, Kvalheim, G, Dueland, S, Hauser, M, Gullestad, HP, Ryder, T, Lislerud, K, Hammerstad, H, et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor‐mRNA. Cancer Gene Ther 2006, 13:905–918.
Neyns, B, Wilgenhof, S, Van Nuffel, AMT, Benteyn, D, Corthals, J, Heirman, C, Aerts, C, Van Riet, I, Bonehill, A, Thielemans, K. Phase IB study on combined intradermal (ID) and intravenous (IV) administration of autologous mRNA electroporated dendritic cells (DC) as a single‐agent cellular immunotherapy or combined with ipilimumab. J Clin Oncol 2012, 30:2507.
Neyns, B, Wilgenhof, S, Corthals, J, Heirman, C, Thielemans, K. Phase II study of autologous mRNA electroporated dendritic cells (TriMixDC‐MEL) in combination with ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 2014, 32:3014.
Schuurhuis, DH, Verdijk, P, Schreibelt, G, Aarntzen, EH, Scharenborg, N, de Boer, A, van de Rakt, MW, Kerkhoff, M, Gerritsen, MJ, Eijckeler, F, et al. In situ expression of tumor antigens by messenger RNA‐electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 2009, 69:2927–2934.
Van Nuffel, AM, Benteyn, D, Wilgenhof, S, Corthals, J, Heirman, C, Neyns, B, Thielemans, K, Bonehill, A. Intravenous and intradermal TriMix‐dendritic cell therapy results in a broad T‐cell response and durable tumor response in a chemorefractory stage IV‐M1c melanoma patient. Cancer Immunol Immunother 2012, 61:1033–1043.
Wilgenhof, S, Van Nuffel, AM, Corthals, J, Heirman, C, Tuyaerts, S, Benteyn, D, De Coninck, A, Van Riet, I, Verfaillie, G, Vandeloo, J, et al. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 2011, 34:448–456.
Wilgenhof, S, Van Nuffel, AM, Benteyn, D, Corthals, J, Aerts, C, Heirman, C, Van Riet, I, Bonehill, A, Thielemans, K, Neyns, B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 2013, 24:2686–2693.
Wilgenhof, S, Corthals, J, Van Nuffel, AM, Benteyn, D, Heirman, C, Bonehill, A, Thielemans, K, Neyns, B. Long‐term clinical outcome of melanoma patients treated with messenger RNA‐electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol Immunother 2015, 64:381–388.
Hobo, W, Strobbe, L, Maas, F, Fredrix, H, Greupink‐Draaisma, A, Esendam, B, de Witte, T, Preijers, F, Levenga, H, van Rees, B, et al. Immunogenicity of dendritic cells pulsed with MAGE3, survivin and B‐cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 2013, 62:1381–1392.
Caruso, DA, Orme, LM, Amor, GM, Neale, AM, Radcliff, FJ, Downie, P, Tang, ML, Ashley, DM. Results of a Phase I study utilizing monocyte‐derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer 2005, 103:1280–1291.
Imhof, M, Lipovac, M, Angleitner‐Boubenizek, L, Barta, J, Gomez, I, Hrdina, A, Krupa, E, Lafleur, J, Lang, I, Pieta, K, et al. Double‐loaded mature dendritic cell (DC) therapy for non‐HLA‐restricted patients with advanced ovarian cancer: final results of a clinical phase I study. J Clin Oncol 2013, 31:3052.
Hernando, JJ, Park, TW, Fischer, HP, Zivanovic, O, Braun, M, Polcher, M, Grunn, U, Leutner, C, Potzsch, B, Kuhn, W. Vaccination with dendritic cells transfected with mRNA‐encoded folate‐receptor‐α for relapsed metastatic ovarian cancer. Lancet Oncol 2007, 8:451–454.
Coosemans, A, Vanderstraeten, A, Tuyaerts, S, Verschuere, T, Moerman, P, Berneman, Z, Vergote, I, Amant, F, Van Gool, SW. Immunological response after WT1 mRNA‐loaded dendritic cell immunotherapy in ovarian carcinoma and carcinosarcoma. Anticancer Res 2013, 33:3855–3859.
Suso, EM, Dueland, S, Rasmussen, AM, Vetrhus, T, Aamdal, S, Kvalheim, G, Gaudernack, G. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol Immunother 2011, 60:809–818.
Morse, MA, Nair, SK, Boczkowski, D, Tyler, D, Hurwitz, HI, Proia, A, Clay, TM, Schlom, J, Gilboa, E, Lyerly, HK. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 2002, 32:1–6.
Mu, LJ, Kyte, JA, Kvalheim, G, Aamdal, S, Dueland, S, Hauser, M, Hammerstad, H, Waehre, H, Raabe, N, Gaudernack, G. Immunotherapy with allotumour mRNA‐transfected dendritic cells in androgen‐resistant prostate cancer patients. Br J Cancer 2005, 93:749–756.
Su, Z, Dan, J, Yang, BK, Dahm, P, Coleman, D, Yancey, D, Sichi, S, Niedzwiecki, D, Boczkowski, D, Gilboa, E, et al. Telomerase mRNA‐transfected dendritic cells stimulate antigen‐specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 2005, 174:3798–3807.
Su, Z, Dan, J, Heiser, A, Yancey, D, Pruitt, S, Madden, J, Coleman, D, Niedzwiecki, D, Gilboa, E, Vieweg, J. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA‐transfected dendritic cells. Cancer Res 2003, 63:2127–2133.
Dan, J, Su, Z, Rizzieri, D, Yang, BK, Coleman, D, Yancey, D, Zhang, A, Dahm, P, Chao, N, Gilboa, E, et al. Enhancement of vaccine‐mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005, 115:3623–3633.
Healey, D, Gamble, AH, Amin, A, Cohen, V, Logan, T, Nicolette, CA. Immunomonitoring of a phase I/II study of AGS‐003, a dendritic cell immunotherapeutic, as first‐line treatment for metastatic renal cell carcinoma. J Clin Oncol 2010, 28:e13006.
Amin, A, Dudek, AZ, Logan, TF, Lance, RS, Holzbeierlein, JM, Master, VA, Kumar Pal, S, Knox, JJ, Karsh, LI, Plessinger, D, et al. Long‐term survival in unfavorable‐risk mRCC patients treated with a combination of autologous immunotherapy (AGS‐003) plus sunitinib. J Clin Oncol 2014, 32:4524.
Willemen, Y, Huizing, MT, Smits, E, Anguille, S, Nijs, G, Stein, B, Van Tendeloo, V, Peeters, M, Berneman, ZN. Open label phase I/II study of Wilms` tumor gene 1 (WT1) mRNA‐transfected autologous dendritic cell vaccination in patients with solid tumors. J Clin Oncol 2012, 30:e13051.
Coosemans, A, Vanderstraeten, A, Tuyaerts, S, Verschuere, T, Moerman, P, Berneman, ZN, Vergote, I, Amant, F, Vang, SW. Wilms` tumor gene 1 (WT1)‐‐loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Res 2013, 33:5495–5500.
Weide, B, Carralot, JP, Reese, A, Scheel, B, Eigentler, TK, Hoerr, I, Rammensee, HG, Garbe, C, Pascolo, S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008, 31:180–188.
Weide, B, Pascolo, S, Scheel, B, Derhovanessian, E, Pflugfelder, A, Eigentler, TK, Pawelec, G, Hoerr, I, Rammensee, HG, Garbe, C. Direct injection of protamine‐protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009, 32:498–507.
Sebastian, M, von Boehmer, L, Zippelius, A, Mayer, F, Reck, M, Atanackovic, D, Thomas, M, Schneller, F, Stoehlmacher‐Williams, J, Goekkurt, E, et al. Messenger RNA vaccination and B‐cell responses in NSCLC patients. J Clin Oncol 2012, 30:2573.
Sebastian, M, Papachristofilou, A, Weiss, C, Fruh, M, Cathomas, R, Hilbe, W, Wehler, T, Rippin, G, Koch, SD, Scheel, B, et al. Phase Ib study evaluating a self‐adjuvanted mRNA cancer vaccine (RNActive(R)) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non‐small cell lung cancer. BMC Cancer 2014, 14:748.
Kübler, H, Maurer, T, Stenzl, A, Feyerabend, S, Steiner, U, Schostak, M, Schultze‐Seemann, W, vom Dorp, F, Pilla, L, Viatali, G, et al. Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self‐adjuvanted mRNA. J Clin Oncol 2011, 29:4535.
Rittig, SM, Haentschel, M, Weimer, KJ, Heine, A, Muller, MR, Brugger, W, Horger, MS, Maksimovic, O, Stenzl, A, Hoerr, I, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011, 19:990–999.
Hacohen, N, Fritsch, EF, Carter, TA, Lander, ES, Wu, CJ. Getting personal with neoantigen‐based therapeutic cancer vaccines. Cancer Immunol Res 2013, 1:11–15.
Wood, LD, Parsons, DW, Jones, S, Lin, J, Sjoblom, T, Leary, RJ, Shen, D, Boca, SM, Barber, T, Ptak, J, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108–1113.
Castle, JC, Kreiter, S, Diekmann, J, Lower, M, van de Roemer, N, de Graaf, J, Selmi, A, Diken, M, Boegel, S, Paret, C, et al. Exploiting the mutanome for tumor vaccination. Cancer Res 2012, 72:1081–1091.
Hoerr, I, Obst, R, Rammensee, HG, Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000, 30:1–7.
Petsch, B, Schnee, M, Vogel, AB, Lange, E, Hoffmann, B, Voss, D, Schlake, T, Thess, A, Kallen, KJ, Stitz, L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012, 30:1210–1216.
Geall, AJ, Verma, A, Otten, GR, Shaw, CA, Hekele, A, Banerjee, K, Cu, Y, Beard, CW, Brito, LA, Krucker, T, et al. Nonviral delivery of self‐amplifying RNA vaccines. Proc Natl Acad Sci U S A 2012, 109:14604–14609.
Bogers, WM, Oostermeijer, H, Mooij, P, Koopman, G, Verschoor, EJ, Davis, D, Ulmer, JB, Brito, LA, Cu, Y, Banerjee, K, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self‐amplifying RNA vaccine Expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 2015, 211:947–955.
Allard, SD, De Keersmaecker, B, de Goede, AL, Verschuren, EJ, Koetsveld, J, Reedijk, ML, Wylock, C, De Bel, AV, Vandeloo, J, Pistoor, F, et al. A phase I/IIa immunotherapy trial of HIV‐1‐infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 2012, 142:252–268.
Routy, JP, Boulassel, MR, Yassine‐Diab, B, Nicolette, C, Healey, D, Jain, R, Landry, C, Yegorov, O, Tcherepanova, I, Monesmith, T, et al. Immunologic activity and safety of autologous HIV RNA‐electroporated dendritic cells in HIV‐1 infected patients receiving antiretroviral therapy. Clin Immunol 2010, 134:140–147.
Van Craenenbroeck, AH, Smits, EL, Anguille, S, Van de Velde, A, Stein, B, Braeckman, T, Van Camp, K, Nijs, G, Ieven, M, Goossens, H, et al. Induction of cytomegalovirus‐specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA‐transfected dendritic cells. Transplantation 2015, 99:120–127.
Van Gulck, E, Vlieghe, E, Vekemans, M, Van Tendeloo, VF, Van De Velde, A, Smits, E, Anguille, S, Cools, N, Goossens, H, Mertens, L, et al. mRNA‐based dendritic cell vaccination induces potent antiviral T‐cell responses in HIV‐1‐infected patients. AIDS 2012, 26:F1–F12.
Weiss, R, Scheiblhofer, S, Roesler, E, Weinberger, E, Thalhamer, J. mRNA vaccination as a safe approach for specific protection from type I allergy. Expert Rev Vaccines 2012, 11:55–67.
Jorritsma, A, Schotte, R, Coccoris, M, de Witte, MA, Schumacher, TN. Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther 2011, 11:276–287.
Schumacher, TN. T‐cell‐receptor gene therapy. Nat Rev Immunol 2002, 2:512–519.
Vera, JF, Brenner, MK, Dotti, G. Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther 2009, 9:396–408.
Han, A, Glanville, J, Hansmann, L, Davis, MM. Linking T‐cell receptor sequence to functional phenotype at the single‐cell level. Nat Biotechnol 2014, 32:684–692.
Simon, P, Omokoko, TA, Breitkreuz, A, Hebich, L, Kreiter, S, Attig, S, Konur, A, Britten, CM, Paret, C, Dhaene, K, et al. Functional TCR retrieval from single antigen‐specific human T cells reveals multiple novel epitopes. Cancer Immunol Res 2014, 2:1230–1244.
Bridgeman, JS, Hawkins, RE, Hombach, AA, Abken, H, Gilham, DE. Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 2010, 10:77–90.
Clay, TM, Custer, MC, Sachs, J, Hwu, P, Rosenberg, SA, Nishimura, MI. Efficient transfer of a tumor antigen‐reactive TCR to human peripheral blood lymphocytes confers anti‐tumor reactivity. J Immunol 1999, 163:507–513.
Kessels, HW, Wolkers, MC, van den Boom, MD, van der Valk, MA, Schumacher, TN. Immunotherapy through TCR gene transfer. Nat Immunol 2001, 2:957–961.
Johnson, LA, Morgan, RA, Dudley, ME, Cassard, L, Yang, JC, Hughes, MS, Kammula, US, Royal, RE, Sherry, RM, Wunderlich, JR, et al. Gene therapy with human and mouse T‐cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009, 114:535–546.
Morgan, RA, Dudley, ME, Wunderlich, JR, Hughes, MS, Yang, JC, Sherry, RM, Royal, RE, Topalian, SL, Kammula, US, Restifo, NP, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314:126–129.
Parkhurst, MR, Yang, JC, Langan, RC, Dudley, ME, Nathan, DA, Feldman, SA, Davis, JL, Morgan, RA, Merino, MJ, Sherry, RM, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011, 19:620–626.
Robbins, PF, Morgan, RA, Feldman, SA, Yang, JC, Sherry, RM, Dudley, ME, Wunderlich, JR, Nahvi, AV, Helman, LJ, Mackall, CL, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY‐ESO‐1. J Clin Oncol 2011, 29:917–924.
Kalos, M, Levine, BL, Porter, DL, Katz, S, Grupp, SA, Bagg, A, June, CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011, 3:95ra73.
Till, BG, Jensen, MC, Wang, J, Chen, EY, Wood, BL, Greisman, HA, Qian, X, James, SE, Raubitschek, A, Forman, SJ, et al. Adoptive immunotherapy for indolent non‐Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20‐specific T cells. Blood 2008, 112:2261–2271.
Park, TS, Rosenberg, SA, Morgan, RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011, 29:550–557.
June, CH, Blazar, BR, Riley, JL. Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 2009, 9:704–716.
Morgan, RA, Yang, JC, Kitano, M, Dudley, ME, Laurencot, CM, Rosenberg, SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010, 18:843–851.
Schaft, N, Dorrie, J, Muller, I, Beck, V, Baumann, S, Schunder, T, Kampgen, E, Schuler, G. A new way to generate cytolytic tumor‐specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunol Immunother 2006, 55:1132–1141.
Zhao, Y, Zheng, Z, Cohen, CJ, Gattinoni, L, Palmer, DC, Restifo, NP, Rosenberg, SA, Morgan, RA. High‐efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 2006, 13:151–159.
Yoon, SH, Lee, JM, Cho, HI, Kim, EK, Kim, HS, Park, MY, Kim, TG. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her‐2/neu‐specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 2009, 16:489–497.
Barrett, DM, Zhao, Y, Liu, X, Jiang, S, Carpenito, C, Kalos, M, Carroll, RG, June, CH, Grupp, SA. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 2011, 22:1575–1586.
Zhao, Y, Moon, E, Carpenito, C, Paulos, CM, Liu, X, Brennan, AL, Chew, A, Carroll, RG, Scholler, J, Levine, BL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010, 70:9053–9061.
Lee, JM, Yoon, SH, Kim, HS, Kim, SY, Sohn, HJ, Oh, ST, Oh, IH, Kim, TG. Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin‐2 in ovarian cancer xenograft model. Cancer Gene Ther 2010, 17:742–750.
Kelly, RJ, Sharon, E, Pastan, I, Hassan, R. Mesothelin‐targeted agents in clinical trials and in preclinical development. Mol Cancer Ther 2012, 11:517–525.
Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K, Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–872.
Ben‐David, U, Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011, 11:268–277.
Okita, K, Ichisaka, T, Yamanaka, S. Generation of germline‐competent induced pluripotent stem cells. Nature 2007, 448:313–317.
O`Doherty, R, Greiser, U, Wang, W. Nonviral methods for inducing pluripotency to cells. Biomed Res Int 2013, 2013:705902.
Plews, JR, Li, J, Jones, M, Moore, HD, Mason, C, Andrews, PW, Na, J. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One 2010, 5:e14397.
Tavernier, G, Wolfrum, K, Demeester, J, De Smedt, SC, Adjaye, J, Rejman, J. Activation of pluripotency‐associated genes in mouse embryonic fibroblasts by non‐viral transfection with in vitro‐derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials 2012, 33:412–417.
Angel, M, Yanik, MF. Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 2010, 5:e11756.
Drews, K, Tavernier, G, Demeester, J, Lehrach, H, De Smedt, SC, Rejman, J, Adjaye, J. The cytotoxic and immunogenic hurdles associated with non‐viral mRNA‐mediated reprogramming of human fibroblasts. Biomaterials 2012, 33:4059–4068.
Warren, L, Manos, PD, Ahfeldt, T, Loh, YH, Li, H, Lau, F, Ebina, W, Mandal, PK, Smith, ZD, Meissner, A, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7:618–630.
Bernal, JA. RNA‐based tools for nuclear reprogramming and lineage‐conversion: towards clinical applications. J Cardiovasc Transl Res 2013, 6:956–968.
Lee, J, Sayed, N, Hunter, A, Au, KF, Wong, WH, Mocarski, ES, Pera, RR, Yakubov, E, Cooke, JP. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012, 151:547–558.
Mandal, PK, Rossi, DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013, 8:568–582.
Warren, L, Ni, Y, Wang, J, Guo, X. Feeder‐free derivation of human induced pluripotent stem cells with messenger RNA. Sci Rep 2012, 2:657.
Durruthy‐Durruthy, J, Briggs, SF, Awe, J, Ramathal, CY, Karumbayaram, S, Lee, PC, Heidmann, JD, Clark, A, Karakikes, I, Loh, KM, et al. Rapid and efficient conversion of integration‐free human induced pluripotent stem cells to GMP‐grade culture conditions. PLoS One 2014, 9:e94231.
Heng, BC, Heinimann, K, Miny, P, Iezzi, G, Glatz, K, Scherberich, A, Zulewski, H, Fussenegger, M. mRNA transfection‐based, feeder‐free, induced pluripotent stem cells derived from adipose tissue of a 50‐year‐old patient. Metab Eng 2013, 18:9–24.
Mehta, A, Verma, V, Nandihalli, M, Ramachandra, CJ, Sequiera, GL, Sudibyo, Y, Chung, Y, Sun, W, Shim, W. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells. PLoS One 2014, 9:e103485.
Petrova, A, Celli, A, Jacquet, L, Dafou, D, Crumrine, D, Hupe, M, Arno, M, Hobbs, C, Cvoro, A, Karagiannis, P, et al. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep 2014, 2:675–689.
Miller, JD, Ganat, YM, Kishinevsky, S, Bowman, RL, Liu, B, Tu, EY, Mandal, PK, Vera, E, Shim, JW, Kriks, S, et al. Human iPSC‐based modeling of late‐onset disease via progerin‐induced aging. Cell Stem Cell 2013, 13:691–705.
Wang, G, McCain, ML, Yang, L, He, A, Pasqualini, FS, Agarwal, A, Yuan, H, Jiang, D, Zhang, D, Zangi, L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart‐on‐chip technologies. Nat Med 2014, 20:616–623.
Yoshioka, N, Gros, E, Li, HR, Kumar, S, Deacon, DC, Maron, C, Muotri, AR, Chi, NC, Fu, XD, Yu, BD, et al. Efficient generation of human iPSCs by a synthetic self‐replicative RNA. Cell Stem Cell 2013, 13:246–254.
Worsdorfer, P, Thier, M, Kadari, A, Edenhofer, F. Roadmap to cellular reprogramming—manipulating transcriptional networks with DNA, RNA, proteins and small molecules. Curr Mol Med 2013, 13:868–878.
Simeonov, KP, Uppal, H. Direct reprogramming of human fibroblasts to hepatocyte‐like cells by synthetic modified mRNAs. PLoS One 2014, 9:e100134.
Li, X, Heinrich, JC, Scott, MJ. piggybac‐mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression. Insect Mol Biol 2001, 10:447–455.
Wilber, A, Frandsen, JL, Geurts, JL, Largaespada, DA, Hackett, PB, McIvor, RS. RNA as a source of transposase for sleeping beauty‐mediated gene insertion and expression in somatic cells and tissues. Mol Ther 2006, 13:625–630.
Wilber, A, Wangensteen, KJ, Chen, Y, Zhuo, L, Frandsen, JL, Bell, JB, Chen, ZJ, Ekker, SC, McIvor, RS, Wang, X. Messenger RNA as a source of transposase for sleeping beauty transposon‐mediated correction of hereditary tyrosinemia type I. Mol Ther 2007, 15:1280–1287.
Beumer, KJ, Trautman, JK, Bozas, A, Liu, JL, Rutter, J, Gall, JG, Carroll, D. Efficient gene targeting in Drosophila by direct embryo injection with zinc‐finger nucleases. Proc Natl Acad Sci U S A 2008, 105:19821–19826.
Takasu, Y, Kobayashi, I, Beumer, K, Uchino, K, Sezutsu, H, Sajwan, S, Carroll, D, Tamura, T, Zurovec, M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 2010, 40:759–765.
Tesson, L, Usal, C, Menoret, S, Leung, E, Niles, BJ, Remy, S, Santiago, Y, Vincent, AI, Meng, X, Zhang, L, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011, 29:695–696.
Carroll, D. Zinc‐finger nucleases: a panoramic view. Curr Gene Ther 2011, 11:2–10.
Doyon, Y, McCammon, JM, Miller, JC, Faraji, F, Ngo, C, Katibah, GE, Amora, R, Hocking, TD, Zhang, L, Rebar, EJ, et al. Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat Biotechnol 2008, 26:702–708.
Geurts, AM, Cost, GJ, Freyvert, Y, Zeitler, B, Miller, JC, Choi, VM, Jenkins, SS, Wood, A, Cui, X, Meng, X, et al. Knockout rats via embryo microinjection of zinc‐finger nucleases. Science 2009, 325:433.
Handel, EM, Cathomen, T. Zinc‐finger nuclease based genome surgery: it`s all about specificity. Curr Gene Ther 2011, 11:28–37.
Mussolino, C, Cathomen, T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012, 23:644–650.
Sander, JD, Joung, JK. CRISPR‐Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014, 32:347–355.
Creusot, RJ, Chang, P, Healey, DG, Tcherepanova, IY, Nicolette, CA, Fathman, CG. A short pulse of IL‐4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther 2010, 18:2112–2120.
Kariko, K, Keller, JM, Harris, VA, Langer, DJ, Welsh, FA. In vivo protein expression from mRNA delivered into adult rat brain. J Neurosci Methods 2001, 105:77–86.
Kariko, K, Kuo, A, Barnathan, E. Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 1999, 6:1092–1100.
Wiehe, JM, Ponsaerts, P, Rojewski, MT, Homann, JM, Greiner, J, Kronawitter, D, Schrezenmeier, H, Hombach, V, Wiesneth, M, Zimmermann, O, et al. mRNA‐mediated gene delivery into human progenitor cells promotes highly efficient protein expression. J Cell Mol Med 2007, 11:521–530.
Okumura, K, Nakase, M, Inui, M, Nakamura, S, Watanabe, Y, Tagawa, T. Bax mRNA therapy using cationic liposomes for human malignant melanoma. J Gene Med 2008, 10:910–917.
Kariko, K, Muramatsu, H, Welsh, FA, Ludwig, J, Kato, H, Akira, S, Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008, 16:1833–1840.
Kariko, K, Muramatsu, H, Keller, JM, Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine‐containing mRNA encoding erythropoietin. Mol Ther 2012, 20:948–953.
Kormann, MS, Hasenpusch, G, Aneja, MK, Nica, G, Flemmer, AW, Herber‐Jonat, S, Huppmann, M, Mays, LE, Illenyi, M, Schams, A, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011, 29:154–157.
Lara, H, Wang, Y, Beltran, AS, Juarez‐Moreno, K, Yuan, X, Kato, S, Leisewitz, AV, Cuello Fredes, M, Licea, AF, Connolly, DC, et al. Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 2012, 287:29873–29886.
Wang, Y, Su, HH, Yang, Y, Hu, Y, Zhang, L, Blancafort, P, Huang, L. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 2013, 21:358–367.
Huang, CL, Leblond, AL, Turner, EC, Kumar, AH, Martin, K, Whelan, D, O`Sullivan, DM, Caplice, NM. Synthetic chemically modified mRNA‐based delivery of cytoprotective factor promotes early cardiomyocyte survival post‐acute myocardial infarction. Mol Pharm 2015, 12:991–996.
Lui, KO, Zangi, L, Silva, EA, Bu, L, Sahara, M, Li, RA, Mooney, DJ, Chien, KR. Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 2013, 23:1172–1186.
Uchida, S, Itaka, K, Uchida, H, Hayakawa, K, Ogata, T, Ishii, T, Fukushima, S, Osada, K, Kataoka, K. In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 2013, 8:e56220.
Mays, LE, Ammon‐Treiber, S, Mothes, B, Alkhaled, M, Rottenberger, J, Muller‐Hermelink, ES, Grimm, M, Mezger, M, Beer‐Hammer, S, von Stebut, E, et al. Modified Foxp3 mRNA protects against asthma through an IL‐10‐dependent mechanism. J Clin Invest 2013, 123:1216–1228.
Levy, O, Zhao, W, Mortensen, LJ, Leblanc, S, Tsang, K, Fu, M, Phillips, JA, Sagar, V, Anandakumaran, P, Ngai, J, et al. mRNA‐engineered mesenchymal stem cells for targeted delivery of interleukin‐10 to sites of inflammation. Blood 2013, 122:e23–e32.
Zangi, L, Lui, KO, von Gise, A, Ma, Q, Ebina, W, Ptaszek, LM, Spater, D, Xu, H, Tabebordbar, M, Gorbatov, R, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013, 31:898–907.