Saitoh, H, Pu, RT, Dasso, M. SUMO‐1: wrestling with a new ubiquitin‐related modifier. Trends Biochem Sci 1997, 22:374–376.
Shen, Z, Pardington‐Purtymun, PE, Comeaux, JC, Moyzis, RK, Chen, DJ. UBL1, a human ubiquitin‐like protein associating with human RAD51/RAD52 proteins. Genomics 1996, 36:271–279.
Johnson, ES, Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin‐like protein Smt3p. J Biol Chem 1997, 272:26799–26802.
Dye, BT, Schulman, BA. Structural mechanisms underlying posttranslational modification by ubiquitin‐like proteins. Annu Rev Biophys Biomol Struct 2007, 36:131–150.
Matunis, MJ, Coutavas, E, Blobel, G. A novel ubiquitin‐like modification modulates the partitioning of the Ran‐GTPase‐activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 1996, 135:1457–1470.
Mahajan, R, Gerace, L, Melchior, F. Molecular characterization of the SUMO‐1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 1998, 140:259–270.
Psakhye, I, Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012, 151:807–820.
Galanty, Y, Belotserkovskaya, R, Coates, J, Polo, S, Miller, KM, Jackson, SP. Mammalian SUMO E3‐ligases PIAS1 and PIAS4 promote responses to DNA double‐strand breaks. Nature 2009, 462:935–939.
Morris, JR, Boutell, C, Keppler, M, Densham, R, Weekes, D, Alamshah, A, Butler, L, Galanty, Y, Pangon, L, Kiuchi, T, et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009, 462:886–890.
Potts, PR, Yu, H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 2005, 25:7021–7032.
Hu, Y, Parvin, JD. Small ubiquitin‐like modifier (SUMO) isoforms and conjugation‐independent function in DNA double‐strand break repair pathways. J Biol Chem 2014, 289:21289–21295.
Harder, Z, Zunino, R, McBride, H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004, 14:340–345.
Martin, S, Nishimune, A, Mellor, JR, Henley, JM. SUMOylation regulates kainate‐receptor‐mediated synaptic transmission. Nature 2007, 447:321–325.
Dadke, S, Cotteret, S, Yip, SC, Jaffer, ZM, Haj, F, Ivanov, A, Rauscher, F 3rd, Shuai, K, Ng, T, Neel, BG, et al. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 2007, 9:80–85.
Johnson, ES, Blobel, G. Cell cycle‐regulated attachment of the ubiquitin‐related protein SUMO to the yeast septins. J Cell Biol 1999, 147:981–994.
Guo, B, Sharrocks, AD. Extracellular signal‐regulated kinase mitogen‐activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009, 29:3204–3218.
Ouyang, J, Shi, Y, Valin, A, Xuan, Y, Gill, G. Direct binding of CoREST1 to SUMO‐2/3 contributes to gene‐specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 2009, 34:145–154.
Rodriguez, MS, Desterro, JM, Lain, S, Midgley, CA, Lane, DP, Hay, RT. SUMO‐1 modification activates the transcriptional response of p53. EMBO J 1999, 18:6455–6461.
Ouyang, J, Gill, G. SUMO engages multiple corepressors to regulate chromatin structure and transcription. Epigenetics 2009, 4:440–444.
Shiio, Y, Eisenman, RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003, 100:13225–13230.
Hirano, Y, Murata, S, Tanaka, K, Shimizu, M, Sato, R. Sterol regulatory element‐binding proteins are negatively regulated through SUMO‐1 modification independent of the ubiquitin/26 S proteasome pathway. J Biol Chem 2003, 278:16809–16819.
Kim, J, Cantwell, CA, Johnson, PF, Pfarr, CM, Williams, SC. Transcriptional activity of CCAAT/enhancer‐binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem 2002, 277:38037–38044.
Muller, S, Berger, M, Lehembre, F, Seeler, JS, Haupt, Y, Dejean, A. c‐Jun and p53 activity is modulated by SUMO‐1 modification. J Biol Chem 2000, 275:13321–13329.
Sapetschnig, A, Rischitor, G, Braun, H, Doll, A, Schergaut, M, Melchior, F, Suske, G. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 2002, 21:5206–5215.
Yang, SH, Jaffray, E, Hay, RT, Sharrocks, AD. Dynamic interplay of the SUMO and ERK pathways in regulating Elk‐1 transcriptional activity. Mol Cell 2003, 12:63–74.
Comerford, KM, Leonard, MO, Karhausen, J, Carey, R, Colgan, SP, Taylor, CT. Small ubiquitin‐related modifier‐1 modification mediates resolution of CREB‐dependent responses to hypoxia. Proc Natl Acad Sci USA 2003, 100:986–991.
Goodson, ML, Hong, Y, Rogers, R, Matunis, MJ, Park‐Sarge, OK, Sarge, KD. Sumo‐1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 2001, 276:18513–18518.
Hong, Y, Rogers, R, Matunis, MJ, Mayhew, CN, Goodson, ML, Park‐Sarge, OK, Sarge, KD. Regulation of heat shock transcription factor 1 by stress‐induced SUMO‐1 modification. J Biol Chem 2001, 276:40263–40267.
Yamamoto, H, Ihara, M, Matsuura, Y, Kikuchi, A. Sumoylation is involved in β‐catenin‐dependent activation of Tcf‐4. EMBO J 2003, 22:2047–2059.
Nathan, D, Ingvarsdottir, K, Sterner, DE, Bylebyl, GR, Dokmanovic, M, Dorsey, JA, Whelan, KA, Krsmanovic, M, Lane, WS, Meluh, PB, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive‐acting histone modifications. Genes Dev 2006, 20:966–976.
Kalocsay, M, Hiller, NJ, Jentsch, S. Chromosome‐wide Rad51 spreading and SUMO‐H2A.Z‐dependent chromosome fixation in response to a persistent DNA double‐strand break. Mol Cell 2009, 33:335–343.
Hang, LE, Liu, X, Cheung, I, Yang, Y, Zhao, X. SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat Struct Mol Biol 2011, 18:920–926.
Xhemalce, B, Seeler, JS, Thon, G, Dejean, A, Arcangioli, B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004, 23:3844–3853.
Brown, PW, Hwang, K, Schlegel, PN, Morris, PL. Small ubiquitin‐related modifier (SUMO)‐1, SUMO‐2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum Reprod 2008, 23:2850–2857.
Zhang, XD, Goeres, J, Zhang, H, Yen, TJ, Porter, AC, Matunis, MJ. SUMO‐2/3 modification and binding regulate the association of CENP‐E with kinetochores and progression through mitosis. Mol Cell 2008, 29:729–741.
Liu, HW, Zhang, J, Heine, GF, Arora, M, Gulcin Ozer, H, Onti‐Srinivasan, R, Huang, K, Parvin, JD. Chromatin modification by SUMO‐1 stimulates the promoters of translation machinery genes. Nucleic Acids Res 2012, 40:10172–10186.
Halle, JP, Meisterernst, M. Gene expression: increasing evidence for a transcriptosome. Trends Genet 1996, 12:161–163.
Parvin, JD, Young, RA. Regulatory targets in the RNA polymerase II holoenzyme. Curr Opin Genet Dev 1998, 8:565–570.
Gall, JG, Bellini, M, Wu, Z, Murphy, C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 1999, 10:4385–4402.
Bentley, DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014, 15:163–175.
Darnell, JE Jr. Reflections on the history of pre‐mRNA processing and highlights of current knowledge: a unified picture. RNA 2013, 19:443–460.
Corden, JL, Patturajan, M. A CTD function linking transcription to splicing. Trends Biochem Sci 1997, 22:413–416.
Mortillaro, MJ, Blencowe, BJ, Wei, X, Nakayasu, H, Du, L, Warren, SL, Sharp, PA, Berezney, R. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci USA 1996, 93:8253–8257.
Chymkowitch, P, Nguea, AP, Aanes, H, Koehler, CJ, Thiede, B, Lorenz, S, Meza‐Zepeda, LA, Klungland, A, Enserink, JM. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 2015, 25:897–906.
Rosonina, E, Duncan, SM, Manley, JL. SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev 2010, 24:1242–1252.
Liu, HW, Banerjee, T, Guan, X, Freitas, MA, Parvin, JD. The chromatin scaffold protein SAFB1 localizes SUMO‐1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing. Nucleic Acids Res 2015, 43:3605–3613.
Sanchez‐Alvarez, M, Montes, M, Sanchez‐Hernandez, N, Hernandez‐Munain, C, Sune, C. Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1). J Biol Chem 2010, 285:15220–15233.
Sims, RJ 3rd, Millhouse, S, Chen, CF, Lewis, BA, Erdjument‐Bromage, H, Tempst, P, Manley, JL, Reinberg, D. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre‐mRNA splicing. Mol Cell 2007, 28:665–676.
Lin, S, Coutinho‐Mansfield, G, Wang, D, Pandit, S, Fu, XD. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 2008, 15:819–826.
Saint‐Andre, V, Batsche, E, Rachez, C, Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 2011, 18:337–344.
Gonzalez, I, Munita, R, Agirre, E, Dittmer, TA, Gysling, K, Misteli, T, Luco, RF. A lncRNA regulates alternative splicing via establishment of a splicing‐specific chromatin signature. Nat Struct Mol Biol 2015, 22:370–376.
Graveley, BR. Sorting out the complexity of SR protein functions. RNA 2000, 6:1197–1211.
Zhong, XY, Wang, P, Han, J, Rosenfeld, MG, Fu, XD. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 2009, 35:1–10.
Vassileva, MT, Matunis, MJ. SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol Cell Biol 2004, 24:3623–3632.
Pelisch, F, Gerez, J, Druker, J, Schor, IE, Munoz, MJ, Risso, G, Petrillo, E, Westman, BJ, Lamond, AI, Arzt, E, et al. The serine/arginine‐rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci USA 2010, 107:16119–16124.
Allo, M, Buggiano, V, Fededa, JP, Petrillo, E, Schor, I, de la Mata, M, Agirre, E, Plass, M, Eyras, E, Elela, SA, et al. Control of alternative splicing through siRNA‐mediated transcriptional gene silencing. Nat Struct Mol Biol 2009, 16:717–724.
Shukla, S, Kavak, E, Gregory, M, Imashimizu, M, Shutinoski, B, Kashlev, M, Oberdoerffer, P, Sandberg, R, Oberdoerffer, S. CTCF‐promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74–79.
Ameur, A, Zaghlool, A, Halvardson, J, Wetterbom, A, Gyllensten, U, Cavelier, L, Feuk, L. Total RNA sequencing reveals nascent transcription and widespread co‐transcriptional splicing in the human brain. Nat Struct Mol Biol 2011, 18:1435–1440.
Iannone, C, Valcarcel, J. Chromatin`s thread to alternative splicing regulation. Chromosoma 2013, 122:465–474.
Khodor, YL, Rodriguez, J, Abruzzi, KC, Tang, CH, Marr, MT 2nd, Rosbash, M. Nascent‐seq indicates widespread cotranscriptional pre‐mRNA splicing in Drosophila. Genes Dev 2011, 25:2502–2512.
Takagaki, Y, Ryner, LC, Manley, JL. Four factors are required for 3`‐end cleavage of pre‐mRNAs. Genes Dev 1989, 3:1711–1724.
Shi, Y, Di Giammartino, DC, Taylor, D, Sarkeshik, A, Rice, WJ, Yates, JR 3rd, Frank, J, Manley, JL. Molecular architecture of the human pre‐mRNA 3` processing complex. Mol Cell 2009, 33:365–376.
Glover‐Cutter, K, Kim, S, Espinosa, J, Bentley, DL. RNA polymerase II pauses and associates with pre‐mRNA processing factors at both ends of genes. Nat Struct Mol Biol 2008, 15:71–78.
Vethantham, V, Rao, N, Manley, JL. Sumoylation modulates the assembly and activity of the pre‐mRNA 3` processing complex. Mol Cell Biol 2007, 27:8848–8858.
Vethantham, V, Rao, N, Manley, JL. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev 2008, 22:499–511.
Zhang, D, Liang, Y, Xie, Q, Gao, G, Wei, J, Huang, H, Li, J, Gao, J, Huang, C. A novel post‐translational modification of nucleolin, SUMOylation at Lys‐294, mediates arsenite‐induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015, 290:4784–4800.
Bretes, H, Rouviere, JO, Leger, T, Oeffinger, M, Devaux, F, Doye, V, Palancade, B. Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs. Nucleic Acids Res 2014, 42:5043–5058.
Barski, A, Cuddapah, S, Cui, K, Roh, TY, Schones, DE, Wang, Z, Wei, G, Chepelev, I, Zhao, K. High‐resolution profiling of histone methylations in the human genome. Cell 2007, 129:823–837.
Tai, HH, Geisterfer, M, Bell, JC, Moniwa, M, Davie, JR, Boucher, L, McBurney, MW. CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochem Biophys Res Commun 2003, 308:170–176.
Nayler, O, Stratling, W, Bourquin, JP, Stagljar, I, Lindemann, L, Jasper, H, Hartmann, AM, Fackelmayer, FO, Ullrich, A, Stamm, S. SAF‐B protein couples transcription and pre‐mRNA splicing to SAR/MAR elements. Nucleic Acids Res 1998, 26:3542–3549.