Ferraiuolo, L, Kirby, J, Grierson, AJ, Sendtner, M, Shaw, PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2011, 7:616–630.
Renton, AE, Chio, A, Traynor, BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014, 17:17–23.
Ling, SC, Polymenidou, M, Cleveland, DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013, 79:416–438.
Fischer‐Hayes, LR, Brotherton, T, Glass, JD. Axonal degeneration in the peripheral nervous system: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Neurol 2013, 246:6–13.
Deglincerti, A, Jaffrey, SR. Insights into the roles of local translation from the axonal transcriptome. Open Biol 2012, 2:120079.
Holt, CE, Schuman, EM. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 2013, 80:648–657.
Jung, H, Yoon, BC, Holt, CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012, 13:308–324.
Liu‐Yesucevitz, L, Bassell, GJ, Gitler, AD, Hart, AC, Klann, E, Richter, JD, Warren, ST, Wolozin, B. Local RNA translation at the synapse and in disease. J Neurosci 2011, 31:16086–16093.
Dadon‐Nachum, M, Melamed, E, Offen, D. The "dying‐back" phenomenon of motor neurons in ALS. J Mol Neurosci 2011, 43:470–477.
Vaughan, SK, Kemp, Z, Hatzipetros, T, Vieira, F, Valdez, G. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis‐causing mutations. J Comp Neurol 2015, 523:2477–2494.
Smith, BN, Ticozzi, N, Fallini, C, Gkazi, AS, Topp, S, Kenna, KP, Scotter, EL, Kost, J, Keagle, P, Miller, JW, et al. Exome‐wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 2014, 84:324–331.
Rotunno, MS, Bosco, DA. An emerging role for misfolded wild‐type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 2013, 7:253.
Tafuri, F, Ronchi, D, Magri, F, Comi, GP, Corti, S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci 2015, 9:336.
Warita, H, Itoyama, Y, Abe, K. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res 1999, 819:120–131.
Gurney, ME, Pu, H, Chiu, AY, Dal Canto, MC, Polchow, CY, Alexander, DD, Caliendo, J, Hentati, A, Kwon, YW, Deng, HX, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264:1772–1775.
Williamson, TL, Cleveland, DW. Slowing of axonal transport is a very early event in the toxicity of ALS‐linked SOD1 mutants to motor neurons. Nat Neurosci 1999, 2:50–56.
Lagier‐Tourenne, C, Polymenidou, M, Cleveland, DW. TDP‐43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010, 19:R46–R64.
Polymenidou, M, Lagier‐Tourenne, C, Hutt, KR, Huelga, SC, Moran, J, Liang, TY, Ling, SC, Sun, E, Wancewicz, E, Mazur, C, et al. Long pre‐mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP‐43. Nat Neurosci 2011, 14:459–468.
Colombrita, C, Onesto, E, Megiorni, F, Pizzuti, A, Baralle, FE, Buratti, E, Silani, V, Ratti, A. TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells. J Biol Chem 2012, 287:15635–15647.
Xiao, S, Sanelli, T, Dib, S, Sheps, D, Findlater, J, Bilbao, J, Keith, J, Zinman, L, Rogaeva, E, Robertson, J. RNA targets of TDP‐43 identified by UV‐CLIP are deregulated in ALS. Mol Cell Neurosci 2011, 47:167–180.
Tollervey, JR, Curk, T, Rogelj, B, Briese, M, Cereda, M, Kayikci, M, Konig, J, Hortobagyi, T, Nishimura, AL, Zupunski, V, et al. Characterizing the RNA targets and position‐dependent splicing regulation by TDP‐43. Nat Neurosci 2011, 14:452–458.
Sephton, CF, Cenik, C, Kucukural, A, Dammer, EB, Cenik, B, Han, Y, Dewey, CM, Roth, FP, Herz, J, Peng, J, et al. Identification of neuronal RNA targets of TDP‐43‐containing ribonucleoprotein complexes. J Biol Chem 2011, 286:1204–1215.
Mackenzie, IR, Bigio, EH, Ince, PG, Geser, F, Neumann, M, Cairns, NJ, Kwong, LK, Forman, MS, Ravits, J, Stewart, H, et al. Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007, 61:427–434.
Neumann, M, Sampathu, DM, Kwong, LK, Truax, AC, Micsenyi, MC, Chou, TT, Bruce, J, Schuck, T, Grossman, M, Clark, CM, et al. Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–133.
Arai, T, Hasegawa, M, Akiyama, H, Ikeda, K, Nonaka, T, Mori, H, Mann, D, Tsuchiya, K, Yoshida, M, Hashizume, Y, et al. TDP‐43 is a component of ubiquitin‐positive tau‐negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602–611.
Tan, AY, Manley, JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009, 1:82–92.
Kanai, Y, Dohmae, N, Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA‐transporting granule. Neuron 2004, 43:513–525.
Fujii, R, Takumi, T. TLS facilitates transport of mRNA encoding an actin‐stabilizing protein to dendritic spines. J Cell Sci 2005, 118:5755–5765.
Fujii, R, Okabe, S, Urushido, T, Inoue, K, Yoshimura, A, Tachibana, T, Nishikawa, T, Hicks, GG, Takumi, T. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 2005, 15:587–593.
Rogelj, B, Easton, LE, Bogu, GK, Stanton, LW, Rot, G, Curk, T, Zupan, B, Sugimoto, Y, Modic, M, Haberman, N, et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2012, 2:603.
Nakaya, T, Alexiou, P, Maragkakis, M, Chang, A, Mourelatos, Z. FUS regulates genes coding for RNA‐binding proteins in neurons by binding to their highly conserved introns. RNA 2013, 19:498–509.
Ishigaki, S, Masuda, A, Fujioka, Y, Iguchi, Y, Katsuno, M, Shibata, A, Urano, F, Sobue, G, Ohno, K. Position‐dependent FUS‐RNA interactions regulate alternative splicing events and transcriptions. Sci Rep 2012, 2:529.
Hoell, JI, Larsson, E, Runge, S, Nusbaum, JD, Duggimpudi, S, Farazi, TA, Hafner, M, Borkhardt, A, Sander, C, Tuschl, T. RNA targets of wild‐type and mutant FET family proteins. Nat Struct Mol Biol 2011, 18:1428–1431.
Patel, A, Lee, HO, Jawerth, L, Maharana, S, Jahnel, M, Hein, MY, Stoynov, S, Mahamid, J, Saha, S, Franzmann, TM, et al. A liquid‐to‐solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 2015, 162:1066–1077.
Dormann, D, Rodde, R, Edbauer, D, Bentmann, E, Fischer, I, Hruscha, A, Than, ME, Mackenzie, IR, Capell, A, Schmid, B, et al. ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import. EMBO J 2010, 29:2841–2857.
Huang, C, Zhou, H, Tong, J, Chen, H, Liu, YJ, Wang, D, Wei, X, Xia, XG. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 2011, 7:e1002011.
Mitchell, JC, McGoldrick, P, Vance, C, Hortobagyi, T, Sreedharan, J, Rogelj, B, Tudor, EL, Smith, BN, Klasen, C, Miller, CC, et al. Overexpression of human wild‐type FUS causes progressive motor neuron degeneration in an age‐ and dose‐dependent fashion. Acta Neuropathol 2013, 125:273–288.
Sabatelli, M, Moncada, A, Conte, A, Lattante, S, Marangi, G, Luigetti, M, Lucchini, M, Mirabella, M, Romano, A, Del Grande, A, et al. Mutations in the 3` untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum Mol Genet 2013, 22:4748–4755.
Mackenzie, IR, Rademakers, R, Neumann, M. TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010, 9:995–1007.
Kabashi, E, Bercier, V, Lissouba, A, Liao, M, Brustein, E, Rouleau, GA, Drapeau, P. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet 2011, 7:e1002214.
Renton, AE, Majounie, E, Waite, A, Simon‐Sanchez, J, Rollinson, S, Gibbs, JR, Schymick, JC, Laaksovirta, H, van Swieten, JC, Myllykangas, L, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 2011, 72:257–268.
DeJesus‐Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, Nicholson, AM, Finch, NA, Flynn, H, Adamson, J, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 2011, 72:245–256.
Reddy, K, Zamiri, B, Stanley, SY, Macgregor, RB Jr, Pearson, CE. The disease‐associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length‐dependent uni‐ and multimolecular RNA G‐quadruplex structures. J Biol Chem 2013, 288:9860–9866.
Lagier‐Tourenne, C, Baughn, M, Rigo, F, Sun, S, Liu, P, Li, HR, Jiang, J, Watt, AT, Chun, S, Katz, M, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A 2013, 110:E4530–E4539.
Donnelly, CJ, Zhang, PW, Pham, JT, Haeusler, AR, Mistry, NA, Vidensky, S, Daley, EL, Poth, EM, Hoover, B, Fines, DM, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013, 80:415–428.
Haeusler, AR, Donnelly, CJ, Periz, G, Simko, EA, Shaw, PG, Kim, MS, Maragakis, NJ, Troncoso, JC, Pandey, A, Sattler, R, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 2014, 507:195–200.
Lee, YB, Chen, HJ, Peres, JN, Gomez‐Deza, J, Attig, J, Stalekar, M, Troakes, C, Nishimura, AL, Scotter, EL, Vance, C, et al. Hexanucleotide repeats in ALS/FTD form length‐dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 2013, 5:1178–1186.
Cleary, JD, Ranum, LP. Repeat‐associated non‐ATG (RAN) translation in neurological disease. Hum Mol Genet 2013, 22:R45–R51.
Zhang, K, Donnelly, CJ, Haeusler, AR, Grima, JC, Machamer, JB, Steinwald, P, Daley, EL, Miller, SJ, Cunningham, KM, Vidensky, S, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015, 525:56–61.
Jovicic, A, Mertens, J, Boeynaems, S, Bogaert, E, Chai, N, Yamada, SB, Paul, JW III, Sun, S, Herdy, JR, Bieri, G, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 2015, 18:1226–1229.
Freibaum, BD, Lu, Y, Lopez‐Gonzalez, R, Kim, NC, Almeida, S, Lee, KH, Badders, N, Valentine, M, Miller, BL, Wong, PC, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525:129–133.
Xiao, S, MacNair, L, McGoldrick, P, McKeever, PM, McLean, JR, Zhang, M, Keith, J, Zinman, L, Rogaeva, E, Robertson, J. Isoform‐specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 2015, 78:568–583.
Robberecht, W, Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013, 14:248–264.
Blokhuis, AM, Groen, EJ, Koppers, M, van den Berg, LH, Pasterkamp, RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013, 125:777–794.
Sun, Z, Diaz, Z, Fang, X, Hart, MP, Chesi, A, Shorter, J, Gitler, AD. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 2011, 9:e1000614.
Johnson, BS, McCaffery, JM, Lindquist, S, Gitler, AD. A yeast TDP‐43 proteinopathy model: exploring the molecular determinants of TDP‐43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008, 105:6439–6444.
Murakami, T, Qamar, S, Lin, JQ, Schierle, GS, Rees, E, Miyashita, A, Costa, AR, Dodd, RB, Chan, FT, Michel, CH, et al. ALS/FTD mutation‐induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 2015, 88:678–690.
Jackrel, ME, Shorter, J. Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease‐linked proteins. Dis Model Mech 2014, 7:1175–1184.
Jackrel, ME, DeSantis, ME, Martinez, BA, Castellano, LM, Stewart, RM, Caldwell, KA, Caldwell, GA, Shorter, J. Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events. Cell 2014, 156:170–182.
Philips, T, Rothstein, JD. Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 2015, 69:5.67.1–5.67.21.
McGoldrick, P, Joyce, PI, Fisher, EM, Greensmith, L. Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1832, 2013:1421–1436.
Shelkovnikova, TA. Modelling FUSopathies: focus on protein aggregation. Biochem Soc Trans 2013, 41:1613–1617.
Wallace, EW, Kear‐Scott, JL, Pilipenko, EV, Schwartz, MH, Laskowski, PR, Rojek, AE, Katanski, CD, Riback, JA, Dion, MF, Franks, AM, et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 2015, 162:1286–1298.
Egawa, N, Kitaoka, S, Tsukita, K, Naitoh, M, Takahashi, K, Yamamoto, T, Adachi, F, Kondo, T, Okita, K, Asaka, I, et al. Drug screening for ALS using patient‐specific induced pluripotent stem cells. Sci Transl Med 2012, 4:145ra104.
Bilican, B, Serio, A, Barmada, SJ, Nishimura, AL, Sullivan, GJ, Carrasco, M, Phatnani, HP, Puddifoot, CA, Story, D, Fletcher, J, et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP‐43 proteinopathies and reveal cell‐specific vulnerability. Proc Natl Acad Sci U S A 2012, 109:5803–5808.
Lenzi, J, De Santis, R, de Turris, V, Morlando, M, Laneve, P, Calvo, A, Caliendo, V, Chio, A, Rosa, A, Bozzoni, I. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell‐derived motoneurons. Dis Model Mech 2015, 8:755–766.
Japtok, J, Lojewksi, X, Naumann, M, Klingenstein, M, Reinhardt, P, Sterneckert, J, Putz, S, Demestre, M, Boeckers, TM, Ludolph, AC, et al. Stepwise acquirement of hallmark neuropathology in FUS‐ALS iPSC models depends on mutation type and neuronal aging. Neurobiol Dis 2015, 82:420–429.
Li, YR, King, OD, Shorter, J, Gitler, AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol 2013, 201:361–372.
Anderson, P, Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141–150.
Ramaswami, M, Taylor, JP, Parker, R. Altered ribostasis: RNA‐protein granules in degenerative disorders. Cell 2013, 154:727–736.
Gilks, N, Kedersha, N, Ayodele, M, Shen, L, Stoecklin, G, Dember, LM, Anderson, P. Stress granule assembly is mediated by prion‐like aggregation of TIA‐1. Mol Biol Cell 2004, 15:5383–5398.
King, OD, Gitler, AD, Shorter, J. The tip of the iceberg: RNA‐binding proteins with prion‐like domains in neurodegenerative disease. Brain Res 2012, 1462:61–80.
Weber, SC, Brangwynne, CP. Getting RNA and protein in phase. Cell 2012, 149:1188–1191.
Molliex, A, Temirov, J, Lee, J, Coughlin, M, Kanagaraj, AP, Kim, HJ, Mittag, T, Taylor, JP. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 2015, 163:123–133.
Lin, Y, Protter, DS, Rosen, MK, Parker, R. Formation and maturation of phase‐separated liquid droplets by RNA‐binding proteins. Mol Cell 2015, 60:208–219.
Buchan, JR, Kolaitis, RM, Taylor, JP, Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013, 153:1461–1474.
Figley, MD, Bieri, G, Kolaitis, RM, Taylor, JP, Gitler, AD. Profilin 1 associates with stress granules and ALS‐linked mutations alter stress granule dynamics. J Neurosci 2014, 34:8083–8097.
Kim, HJ, Raphael, AR, LaDow, ES, McGurk, L, Weber, RA, Trojanowski, JQ, Lee, VM, Finkbeiner, S, Gitler, AD, Bonini, NM. Therapeutic modulation of eIF2α phosphorylation rescues TDP‐43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 2014, 46:152–160.
Moreno, JA, Radford, H, Peretti, D, Steinert, JR, Verity, N, Martin, MG, Halliday, M, Morgan, J, Dinsdale, D, Ortori, CA, et al. Sustained translational repression by eIF2α‐P mediates prion neurodegeneration. Nature 2012, 485:507–511.
Coyne, AN, Yamada, SB, Siddegowda, BB, Estes, PS, Zaepfel, BL, Johannesmeyer, JS, Lockwood, DB, Pham, LT, Hart, MP, Cassel, JA, et al. Fragile X protein mitigates TDP‐43 toxicity by remodeling RNA granules and restoring translation. Hum Mol Genet 2015, 24:6886–6898.
Coyne, AN, Siddegowda, BB, Estes, PS, Johannesmeyer, J, Kovalik, T, Daniel, SG, Pearson, A, Bowser, R, Zarnescu, DC. Futsch/MAP1B mRNA is a translational target of TDP‐43 and is neuroprotective in a Drosophila model of amyotrophic lateral sclerosis. J Neurosci 2014, 34:15962–15974.
Yasuda, K, Zhang, H, Loiselle, D, Haystead, T, Macara, IG, Mili, S. The RNA‐binding protein Fus directs translation of localized mRNAs in APC‐RNP granules. J Cell Biol 2013, 203:737–746.
Mili, S, Moissoglu, K, Macara, IG. Genome‐wide screen reveals APC‐associated RNAs enriched in cell protrusions. Nature 2008, 453:115–119.
Preitner, N, Quan, J, Nowakowski, DW, Hancock, ML, Shi, J, Tcherkezian, J, Young‐Pearse, TL, Flanagan, JG. APC is an RNA‐binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 2014, 158:368–382.
Yokota, Y, Kim, WY, Chen, Y, Wang, X, Stanco, A, Komuro, Y, Snider, W, Anton, ES. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009, 61:42–56.
Barth, AI, Caro‐Gonzalez, HY, Nelson, WJ. Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Semin Cell Dev Biol 2008, 19:245–251.
Koester, MP, Muller, O, Pollerberg, GE. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J Neurosci 2007, 27:12590–12600.
Zhou, FQ, Zhou, J, Dedhar, S, Wu, YH, Snider, WD. NGF‐induced axon growth is mediated by localized inactivation of GSK‐3β and functions of the microtubule plus end binding protein APC. Neuron 2004, 42:897–912.
Shi, SH, Cheng, T, Jan, LY, Jan, YN. APC and GSK‐3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 2004, 14:2025–2032.
Brakeman, JS, Gu, SH, Wang, XB, Dolin, G, Baraban, JM. Neuronal localization of the Adenomatous polyposis coli tumor suppressor protein. Neuroscience 1999, 91:661–672.
Berwick, DC, Harvey, K. The importance of Wnt signalling for neurodegeneration in Parkinson`s disease. Biochem Soc Trans 2012, 40:1123–1128.
Inestrosa, NC, Arenas, E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 2010, 11:77–86.
Groen, EJ, Fumoto, K, Blokhuis, AM, Engelen‐Lee, J, Zhou, Y, van den Heuvel, DM, Koppers, M, van Diggelen, F, van Heest, J, Demmers, JA, et al. ALS‐associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum Mol Genet 2013, 22:3690–3704.
Fallini, C, Bassell, GJ, Rossoll, W. Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res 2012, 1462:81–92.
Millecamps, S, Julien, JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 2013, 14:161–176.
Rishal, I, Fainzilber, M. Axon‐soma communication in neuronal injury. Nat Rev Neurosci 2014, 15:32–42.
Perry, RB, Doron‐Mandel, E, Iavnilovitch, E, Rishal, I, Dagan, SY, Tsoory, M, Coppola, G, McDonald, MK, Gomes, C, Geschwind, DH, et al. Subcellular knockout of importin β1 perturbs axonal retrograde signaling. Neuron 2012, 75:294–305.
Ben‐Yaakov, K, Dagan, SY, Segal‐Ruder, Y, Shalem, O, Vuppalanchi, D, Willis, DE, Yudin, D, Rishal, I, Rother, F, Bader, M, et al. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 2012, 31:1350–1363.
Cox, LJ, Hengst, U, Gurskaya, NG, Lukyanov, KA, Jaffrey, SR. Intra‐axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 2008, 10:149–159.
Fanara, P, Banerjee, J, Hueck, RV, Harper, MR, Awada, M, Turner, H, Husted, KH, Brandt, R, Hellerstein, MK. Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J Biol Chem 2007, 282:23465–23472.
Sirajuddin, M, Rice, LM, Vale, RD. Regulation of microtubule motors by tubulin isotypes and post‐translational modifications. Nat Cell Biol 2014, 16:335–344.
Bilsland, LG, Sahai, E, Kelly, G, Golding, M, Greensmith, L, Schiavo, G. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 2010, 107:20523–20528.
De Vos, KJ, Chapman, AL, Tennant, ME, Manser, C, Tudor, EL, Lau, KF, Brownlees, J, Ackerley, S, Shaw, PJ, McLoughlin, DM, et al. Familial amyotrophic lateral sclerosis‐linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007, 16:2720–2728.
Vande Velde, C, McDonald, KK, Boukhedimi, Y, McAlonis‐Downes, M, Lobsiger, CS, Bel Hadj, S, Zandona, A, Julien, JP, Shah, SB, Cleveland, DW. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 2011, 6:e22031.
Marinkovic, P, Reuter, MS, Brill, MS, Godinho, L, Kerschensteiner, M, Misgeld, T. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2012, 109:4296–4301.
Zhu, YB, Sheng, ZH. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)‐like disease in mutant SOD1 mice. J Biol Chem 2011, 286:23432–23440.
Fallini, C, Bassell, GJ, Rossoll, W. The ALS disease protein TDP‐43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 2012, 21:3703–3718.
Wang, IF, Wu, LS, Chang, HY, Shen, CK. TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor. J Neurochem 2008, 105:797–806.
Narayanan, RK, Mangelsdorf, M, Panwar, A, Butler, TJ, Noakes, PG, Wallace, RH. Identification of RNA bound to the TDP‐43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal Degener 2013, 14:252–260.
Alami, NH, Smith, RB, Carrasco, MA, Williams, LA, Winborn, CS, Han, SS, Kiskinis, E, Winborn, B, Freibaum, BD, Kanagaraj, A, et al. Axonal transport of TDP‐43 mRNA granules is impaired by ALS‐causing mutations. Neuron 2014, 81:536–543.
Magrane, J, Cortez, C, Gan, WB, Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 2014, 23:1413–1424.
Kim, SH, Shanware, NP, Bowler, MJ, Tibbetts, RS. Amyotrophic lateral sclerosis‐associated proteins TDP‐43 and FUS/TLS function in a common biochemical complex to co‐regulate HDAC6 mRNA. J Biol Chem 2010, 285:34097–34105.
Bartoli, KM, Bishop, DL, Saunders, WS. The role of molecular microtubule motors and the microtubule cytoskeleton in stress granule dynamics. Int J Cell Biol 2011, 2011:939848.
Loschi, M, Leishman, CC, Berardone, N, Boccaccio, GL. Dynein and kinesin regulate stress‐granule and P‐body dynamics. J Cell Sci 2009, 122:3973–3982.
Dubey, J, Ratnakaran, N, Koushika, SP. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci 2015, 9:343.
Barber, SC, Shaw, PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 2010, 48:629–641.
Chang, Y, Kong, Q, Shan, X, Tian, G, Ilieva, H, Cleveland, DW, Rothstein, JD, Borchelt, DR, Wong, PC, Lin, CL. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 2008, 3:e2849.
Tanaka, M, Chock, PB, Stadtman, ER. Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci U S A 2007, 104:66–71.
Shan, X, Chang, Y, Lin, CL. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 2007, 21:2753–2764.
Cohen, TJ, Hwang, AW, Unger, T, Trojanowski, JQ, Lee, VM. Redox signalling directly regulates TDP‐43 via cysteine oxidation and disulphide cross‐linking. EMBO J 2012, 31:1241–1252.
Cohen, TJ, Hwang, AW, Restrepo, CR, Yuan, CX, Trojanowski, JQ, Lee, VM. An acetylation switch controls TDP‐43 function and aggregation propensity. Nat Commun 2015, 6:5845.
Duan, W, Li, X, Shi, J, Guo, Y, Li, Z, Li, C. Mutant TAR DNA‐binding protein‐43 induces oxidative injury in motor neuron‐like cell. Neuroscience 2010, 169:1621–1629.
McDonald, KK, Aulas, A, Destroismaisons, L, Pickles, S, Beleac, E, Camu, W, Rouleau, GA, Vande, VC. TAR DNA‐binding protein 43 (TDP‐43) regulates stress granule dynamics via differential regulation of G3BP and TIA‐1. Hum Mol Genet 2011, 20:1400–1410.
Takahashi, M, Higuchi, M, Matsuki, H, Yoshita, M, Ohsawa, T, Oie, M, Fujii, M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 2013, 33:815–829.
Van Damme, P, Dewil, M, Robberecht, W, Van Den Bosch, L. Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis 2005, 2:147–159.
La Via, L, Bonini, D, Russo, I, Orlandi, C, Barlati, S, Barbon, A. Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 2013, 41:617–631.
Smith, WB, Starck, SR, Roberts, RW, Schuman, EM. Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 2005, 45:765–779.
Yamashita, T, Kwak, S. The molecular link between inefficient GluA2 Q/R site‐RNA editing and TDP‐43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res 2014, 1584:28–38.
Udagawa, T, Fujioka, Y, Tanaka, M, Honda, D, Yokoi, S, Riku, Y, Ibi, D, Nagai, T, Yamada, K, Watanabe, H, et al. FUS regulates AMPA receptor function and FTLD/ALS‐associated behaviour via GluA1 mRNA stabilization. Nat Commun 2015, 6:7098.
Cozzolino, M, Ferri, A, Valle, C, Carri, MT. Mitochondria and ALS: implications from novel genes and pathways. Mol Cell Neurosci 2013, 55:44–49.
Deng, J, Yang, M, Chen, Y, Chen, X, Liu, J, Sun, S, Cheng, H, Li, Y, Bigio, EH, Mesulam, M, et al. FUS Interacts with HSP60 to Promote Mitochondrial Damage. PLoS Genet 2015, 11:e1005357.
Wang, W, Li, L, Lin, WL, Dickson, DW, Petrucelli, L, Zhang, T, Wang, X. The ALS disease‐associated mutant TDP‐43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet 2013, 22:4706–4719.
Shan, X, Chiang, PM, Price, DL, Wong, PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP‐43 transgenic mice. Proc Natl Acad Sci U S A 2010, 107:16325–16330.
Tanaka, Y, Kanai, Y, Okada, Y, Nonaka, S, Takeda, S, Harada, A, Hirokawa, N. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 1998, 93:1147–1158.
Dunn, S, Morrison, EE, Liverpool, TB, Molina‐Paris, C, Cross, RA, Alonso, MC, Peckham, M. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 2008, 121:1085–1095.
Herms, A, Bosch, M, Reddy, BJ, Schieber, NL, Fajardo, A, Ruperez, C, Fernandez‐Vidal, A, Ferguson, C, Rentero, C, Tebar, F, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun 2015, 6:7176.
Cozzolino, M, Rossi, S, Mirra, A, Carri, MT. Mitochondrial dynamism and the pathogenesis of amyotrophic lateral sclerosis. Front Cell Neurosci 2015, 9:31.
Yoon, BC, Jung, H, Dwivedy, A, O`Hare, CM, Zivraj, KH, Holt, CE. Local translation of extranuclear lamin B promotes axon maintenance. Cell 2012, 148:752–764.
Aschrafi, A, Natera‐Naranjo, O, Gioio, AE, Kaplan, BB. Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol Cell Neurosci 2010, 43:422–430.
Gioio, AE, Eyman, M, Zhang, H, Lavina, ZS, Giuditta, A, Kaplan, BB. Local synthesis of nuclear‐encoded mitochondrial proteins in the presynaptic nerve terminal. J Neurosci Res 2001, 64:447–453.
Natera‐Naranjo, O, Kar, AN, Aschrafi, A, Gervasi, NM, Macgibeny, MA, Gioio, AE, Kaplan, BB. Local translation of ATP synthase subunit 9 mRNA alters ATP levels and the production of ROS in the axon. Mol Cell Neurosci 2012, 49:263–270.
Kar, AN, Sun, CY, Reichard, K, Gervasi, NM, Pickel, J, Nakazawa, K, Gioio, AE, Kaplan, BB. Dysregulation of the axonal trafficking of nuclear‐encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 2014, 74:333–350.
Brunden, KR, Trojanowski, JQ, Smith, AB 3rd, Lee, VM, Ballatore, C. Microtubule‐stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 2014, 22:5040–5049.
Zhang, B, Maiti, A, Shively, S, Lakhani, F, McDonald‐Jones, G, Bruce, J, Lee, EB, Xie, SX, Joyce, S, Li, C, et al. Microtubule‐binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A 2005, 102:227–231.
Barten, DM, Fanara, P, Andorfer, C, Hoque, N, Wong, PY, Husted, KH, Cadelina, GW, Decarr, LB, Yang, L, Liu, V, et al. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule‐stabilizing agent BMS‐241027. J Neurosci 2012, 32:7137–7145.
Yoshiyama, Y, Zhang, B, Bruce, J, Trojanowski, JQ, Lee, VM. Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau‐induced degeneration in astrocytes. J Neurosci 2003, 23:10662–10671.