Deana, A, Belasco, JG. Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 2005, 19:2526–2533.
McGary, K, Nudler, E. RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 2013, 16:112–117.
Corbin, RW, Paliy, O, Yang, F, Shabanowitz, J, Platt, M, Lyons, CE, Root, K, McAuliffe, J, Jordan, MI, Kustu, S, et al. Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci USA 2003, 100:9232–9237.
Nie, L, Wu, G, Zhang, W. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 2006, 174:2229–2243.
Maier, T, Schmidt, A, Güell, M, Kühner, S, Gavin, AC, Aebersold, R, Serrano, L. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 2011, 7:1–12.
Lu, P, Vogel, C, Wang, R, Yao, X, Marcotte, EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2006, 25:117–124.
Melnikov, S, Ben‐Shem, A, Garreau de Loubresse, N, Jenner, L, Yusupova, G, Yusupov, M. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 2012, 19:560–567.
Steitz, JA, Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3` terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci USA 1975, 72:4734–4738.
Shine, J, Dalgarno, L. Terminal‐sequence analysis of bacterial ribosomal RNA. Correlation between the 3`‐terminal‐polypyrimidine sequence of 16‐S RNA and translational specificity of the ribosome. Eur J Biochem 1975, 57:221–230.
Kaminishi, T, Wilson, DN, Takemoto, C, Harms, JM, Kawazoe, M, Schluenzen, F, Hanawa‐Suetsugu, K, Shirouzu, M, Fucini, P, Yokoyama, S. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine‐Dalgarno interaction. Structure 2007, 15:289–297.
Laursen, BS, Sorensen, HP, Mortensen, KK, Sperling‐Petersen, HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005, 69:101–123.
Yusupova, G, Jenner, L, Rees, B, Moras, D, Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature 2006, 444:391–394.
Korostelev, A, Trakhanov, S, Asahara, H, Laurberg, M, Lancaster, L, Noller, HF. Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc Natl Acad Sci USA 2007, 104:16840–16843.
Vellanoweth, RL, Rabinowitz, JC. The influence of ribosome‐binding‐site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 1992, 6:1105–1114.
Stormo, GD, Schneider, TD, Gold, LM. Characterization of translational initiation sites in E. coli. Nucleic Acids Res 1982, 10:2971–2996.
Ma, J, Campbell, A, Karlin, S. Correlations between Shine‐Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 2002, 184:5733–5745.
Chang, B, Halgamuge, S, Tang, S‐L. Analysis of SD sequences in completed microbial genomes: non‐SD‐led genes are as common as SD‐led genes. Gene 2006, 373:90–99.
Ringquist, S, Shinedling, S, Barrick, D, Green, L, Binkley, J, Stormo, GD, Gold, L. Translation initiation in Escherichia coli: sequences within the ribosome‐binding site. Mol Microbiol 1992, 6:1219–1229.
Barrick, D, Villanueba, K, Childs, J, Kalil, R, Schneider, TD, Lawrence, CE, Gold, L, Stormo, GD. Quantitative analysis of ribosome binding sites in E. coli. Nucleic Acids Res 1994, 22:1287–1295.
de Smit, MH, van Duin, J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 1990, 87:7668–7672.
Salis, HM, Mirsky, EA, Voigt, CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 2009, 27:946–950.
Ruiz de los Mozos, I, Vergara‐Irigaray, M, Segura, V, Villanueva, M, Bitarte, N, Saramago, M, Domingues, S, Arraiano, CM, Fechter, P, Romby, P, et al. Base pairing interaction between 5′‐ and 3′‐UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet 2013, 9:e1004001.
Ingolia, NT, Ghaemmaghami, S, Newman, JRS, Weissman, JS. Genome‐wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324:218–223.
Li, G‐W, Oh, E, Weissman, JS. The anti‐Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 2013, 484:538–541.
Quax, TE, Wolf, YI, Koehorst, JJ, Wurtzel, O, van der Oost, R, Ran, W, Blombach, F, Makarova, KS, Brouns, SJ, Forster, AC, et al. Differential translation tunes uneven production of operon‐encoded proteins. Cell Rep 2013, 4:938–944.
Li, G‐W, Burkhardt, D, Gross, C, Weissman, JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 2014, 157:624–635.
de Smit, MH, van Duin, J. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 2003, 331:737–743.
Studer, SM, Joseph, S. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 2006, 22:105–115.
Espah Borujeni, A, Channarasappa, AS, Salis, HM. Translation rate is controlled by coupled trade‐offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 2014, 42:2646–2659.
Moll, I, Grill, S, Gualerzi, CO, Bläsi, U. Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 2002, 43:239–246.
Zheng, X, Hu, G‐Q, She, Z‐S, Zhu, H. Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics 2011, 12:361.
Sørensen, MA, Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 1991, 222:265–280.
Farwell, MA, Roberts, MW, Rabinowitz, JC. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol Microbiol 1992, 6:3375–3383.
Tzareva, NV, Makhno, VI, Boni, IV. Ribosome‐messenger recognition in the absence of the Shine‐Dalgarno interactions. FEBS Lett 1994, 337:189–194.
Kolb, A, Hermoso, JM, Thomas, JO, Szer, W. Nucleic acid helix‐unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc Natl Acad Sci USA 1977, 74:2379–2383.
Qu, X, Lancaster, L, Noller, HF, Bustamante, C, Tinoco, I. Ribosomal protein S1 unwinds double‐stranded RNA in multiple steps. Proc Natl Acad Sci USA 2012, 109:14458–14463.
Duval, M et al. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 2013, 11:e1001731.
Sorokin, A, Serror, P, Pujic, P, Azevedo, V, Ehrlich, SD. The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 1995, 141(Pt 2): 311–319.
Pan, A, Dutta, C, Das, J. Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Gene 1998, 215:405–413.
Gouy, M, Gautier, C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 1982, 10:7055–7074.
Sharp, PM, Cowe, E, Higgins, DG, Shields, DC, Wolfe, KH, Wright, F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within‐species diversity. Nucleic Acids Res 1988, 16:8207–8211.
Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 1981, 151:389–409.
Sharp, PM, Devine, KM. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do ‘prefer’ optimal codons. Nucleic Acids Res 1989, 17:5029–5039.
Tuller, T, Carmi, A, Vestsigian, K, Navon, S, Dorfan, Y, Zaborske, J, Pan, T, Dahan, O, Furman, I, Pilpel, Y. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 2010, 141:344–354.
Robinson, M, Lilley, R, Little, S, Emtage, JS, Yarranton, G, Stephens, P, Millican, A, Eaton, M, Humphreys, G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 1984, 12:6663–6671.
Irwin, B, Heck, JD, Hatfield, GW. Codon pair utilization biases influence translational elongation step times. J Biol Chem 1995, 270:22801–22806.
Kudla, G, Murray, AW, Tollervey, D, Plotkin, JB. Coding‐sequence determinants of gene expression in Escherichia coli. Science 2009, 324:255–258.
Goodman, DB, Church, GM, Kosuri, S. Causes and effects of N‐terminal codon bias in bacterial genes. Science 2013, 342:475–479.
Lind, PA, Berg, OG, Andersson, DI. Mutational robustness of ribosomal protein genes. Science 2010, 330:825–827.
Agashe, D, Martinez‐Gomez, NC, Drummond, DA, Marx, CJ. Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol 2013, 30:549–560.
Vogel, U, Jensen, KF. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 1994, 176:2807–2813.
Proshkin, S, Rahmouni, AR, Mironov, A, Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 2010, 328:504–508.
Yanofsky, C. Attenuation in the control of expression of bacterial operons. Nature 1981, 289:751–758.
Nechooshtan, G, Elgrably‐Weiss, M, Altuvia, S. Changes in transcriptional pausing modify the folding dynamics of the pH‐responsive RNA element. Nucleic Acids Res 2013, 42:622–630.
Opperman, T, Richardson, JP. Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli Rho gene. J Bacteriol 1994, 176:5033–5043.
Richardson, JP, Grimley, C, Lowery, C. Transcription termination factor Rho activity is altered in Escherichia coli with suA gene mutations. Proc Natl Acad Sci USA 1975, 72:1725–1728.
Richardson, JP. Rho‐dependent transcription termination. Biochim Biophys Acta 1990, 1048:127–138.
Bernstein, JA, Khodursky, AB, Lin, P‐H, Lin‐Chao, S, Cohen, SN. Global analysis of mRNA decay and abundance in Escherichia coli at single‐gene resolution using two‐color fluorescent DNA microarrays. Proc Natl Acad Sci USA 2002, 99:9697–9702.
McDowall, KJ, Lin‐Chao, S, Cohen, SN. A + U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 1994, 269:10790–10796.
Condon, C, Putzer, H. The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 2002, 30:5339–5346.
Jester, BC, Romby, P, Lioliou, E. When ribonucleases come into play in pathogens: a survey of gram‐positive bacteria. Int J Microbiol 2012, 2012:1–18.
Washburn, RS, Marra, A, Bryant, AP, Rosenberg, M, Gentry, DR. Rho is not essential for viability or virulence in Staphylococcus aureus. Antimicrob Agents Chemother 2001, 45:1099–1103.
Quirk, PG, Dunkley, EA, Lee, P, Krulwich, TA. Identification of a putative Bacillus subtilis Rho gene. J Bacteriol 1993, 175:8053.
Washio, T, Sasayama, J, Tomita, M. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 1998, 26:5456–5463.
Kröger, M, Wahl, R. Compilation of DNA sequences of Escherichia coli K12: description of the interactive databases ECD and ECDC. Nucleic Acids Res 1998, 26:46–49.
de Hoon, MJL, Makita, Y, Nakai, K, Miyano, S. Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Comput Biol 2005, 1:e25.
Duval, M, Simonetti, A, Caldelari, I, Marzi, S. Multiple ways to regulate translation initiation in bacteria: mechanisms, regulatory circuits, dynamics. Biochimie 2015, 114:18–29.
Bouloc, P, Repoila, F. Fresh layers of RNA‐mediated regulation in Gram‐positive bacteria. Curr Opin Microbiol 2016, 30:30–35.
Wagner, EGH, Romby, P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 2015, 90:133–208.
Mellin, JR, Cossart, P. Unexpected versatility in bacterial riboswitches. Trends Genet 2015, 31:150–156.
Dethoff, EA, Chugh, J, Mustoe, AM, Al‐Hashimi, HM. Functional complexity and regulation through RNA dynamics. Nature 2012, 482:322–330.
Lindahl, L, Jaskunas, SR, Dennis, PP, Nomura, M. Cluster of genes in Escherichia coli for ribosomal proteins, ribosomal RNA, and RNA polymerase subunits. Proc Natl Acad Sci USA 1975, 72:2743–2747.
Zengel, JM, Lindahl, L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog Nucleic Acid Res Mol Biol 1994, 47:331–370.
Fallon, AM, Jinks, CS, Strycharz, GD, Nomura, M. Regulation of ribosomal protein synthesis in Escherichia coli by selective mRNA inactivation. Proc Natl Acad Sci USA 1979, 76:3411–3415.
Dean, D, Nomura, M. Feedback regulation of ribosomal protein gene expression in Escherichia coli. Proc Natl Acad Sci USA 1980, 77:3590–3594.
Fu, Y, Deiorio‐Haggar, K, Anthony, J, Meyer, MM. Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to gammaproteobacteria. Nucleic Acids Res 2013, 41:3491–3503.
Draper, DE. In: Ilan, J, ed. Translational regulation of gene expression. Translational Regulation of Ribosomal Proteins, New York: Plenum Press; 1987, 1–26.
Yates, J, Dean, D, Strycharz, W, Nomura, M. E. coli ribosomal protein L10 inhibits translation of L10 and L7/L12 mRNAs by acting at a single site. Nature 1981, 294:190–192.
Nevskaya, N, Tishchenko, S, Gabdoulkhakov, A, Nikonova, E, Nikonov, O, Nikulin, A, Platonova, O, Garber, M, Nikonov, S, Piendl, W. Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA. Nucleic Acids Res 2005, 33:478–485.
Baughman, G, Nomura, M. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell 1983, 34:979–988.
Kraft, A, Lutz, C, Lingenhel, A, Grobner, P, Piendl, W. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics 1999, 152:1363.
Cole, JR, Nomura, M. Changes in the half‐life of ribosomal protein messenger RNA caused by translational repression. J Mol Biol 1986, 188:383–392.
Aseev, LV, Bylinkina, NS, Boni, IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. RNA 2015, 21:851–861.
Brot, N, Caldwell, P, Weissbach, H. Autogenous control of Escherichia coli ribosomal protein L10 synthesis in vitro. Proc Natl Acad Sci USA 1980, 77:2592.
Babina, AM, Soo, MW, Fu, Y, Meyer, MM. An S6:S18 complex inhibits translation of E. coli rpsF. RNA 2015, 21:2039–2046. doi:10.1261/rna.049544.115.
Portier, C, Dondon, L, Grunberg‐Manago, M. Translational autocontrol of the Escherichia coli ribosomal protein S15. J Mol Biol 1990, 211:407.
Philippe, C, Bénard, L, Eyermann, F, Cachia, C, Kirillov, SV, Portier, C, Ehresmann, B, Ehresmann, C. Structural elements of rps0 mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15. Nucleic Acids Res 1994, 22:2538–2546.
Serganov, A, Ennifar, E, Portier, C, Ehresmann, B, Ehresmann, C. Do mRNA and rRNA binding sites of E. coli ribosomal protein S15 share common structural determinants? J Mol Biol 2002, 320:963–978.
Philippe, C, Eyermann, F, Bénard, L, Portier, C, Ehresmann, B, Ehresmann, C. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci USA 1993, 90:4394–4398.
Marzi, S, Myasnikov, AG, Serganov, A, Ehresmann, C, Romby, P, Yusupov, M, Klaholz, BP. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 2007, 130:1019–1031.
Schlax, PJ, Xavier, KA, Gluick, T, Draper, D. Translational repression of the Escherichia coli α operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex. J Biol Chem 2001, 276:38494–38501.
Springer, M, Plumbridge, JA, Butler, JS, Graffe, M, Dondon, J, Mayaux, JF, Fayat, G, Lestienne, P, Blanquet, S, Grunberg‐Manago, M. Autogenous control of Escherichia coli threonyl‐tRNA synthetase expression in vivo. J Mol Biol 1985, 185:93–104.
Lesage, P, Chiaruttini, C, Graffe, M, Dondon, J, Milet, M, Springer, M. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. J Mol Biol 1992, 228:366–386.
Moine, H, Romby, P, Springer, M, Grunberg‐Manago, M, Ebel, JP, Ehresmann, B, Ehresmann, C. Escherichia coli threonyl‐tRNA synthetase and tRNA(Thr) modulate the binding of the ribosome to the translational initiation site of the thrS mRNA. J Mol Biol 1990, 216:299–310.
Torres‐Larios, A, Dock‐Bregeon, AC, Romby, P, Rees, B, Sankaranarayanan, R, Caillet, J, Springer, M, Ehresmann, C, Ehresmann, B, Moras, D. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nat Struct Biol 2002, 9:343–347.
Brunel, C, Caillet, J, Lesage, P, Graffe, M, Dondon, J, Moine, H, Romby, P, Ehresmann, C, Ehresmann, B, Grunberg‐Manago, M, et al. Domains of the Escherichia coli threonyl‐tRNA synthetase translational operator and their relation to threonine tRNA isoacceptors. J Mol Biol 1992, 227:621–634.
Romby, P, Caillet, J, Ebel, C, Sacerdot, C, Graffe, M, Eyermann, F, Brunel, C, Moine, H, Ehresmann, C, Ehresmann, B, Springer, M. The expression of E. coli threonyl‐tRNA synthetase is regulated at the translational level by symmetrical operator‐repressor interactions. EMBO J 1996, 15:5976–5987.
Nogueira, T, de Smit, M, Graffe, M, Springer, M. The relationship between translational control and mRNA degradation for the Escherichia coli threonyl‐tRNA synthetase gene. J Mol Biol 2001, 310:709–722.
Jutras, BL, Jones, GS, Verma, A, Brown, NA, Antonicello, AD, Chenail, AM, Stevenson, B. Posttranscriptional self‐regulation by the Lyme disease bacterium`s BpuR DNA/RNA‐binding protein. J Bacteriol 2013, 195:4915–4923.
Romeo, T, Gong, M, Liu, MY, Brun‐Zinkernagel, AM. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 1993, 175:4744–4755.
Xia, B, Etchegaray, JP, Inouye, M. Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli. J Biol Chem 2001, 276:35581–35588.
Van Assche, E, Van Puyvelde, S, Vanderleyden, J, Steenackers, HP. RNA‐binding proteins involved in post‐transcriptional regulation in bacteria. Front Microbiol 2015, 6:1–16.
Yakhnin, H, Yakhnin, AV, Baker, CS, Sineva, E, Berezin, I, Romeo, T, Babitzke, P. Complex regulation of the global regulatory gene csrA: CsrA‐mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol Microbiol 2011, 81:689–704.
Chowdhury, S, Maris, C, Allain, FHT, Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J 2006, 25:2487–2497.
Schubert, M, Lapouge, K, Duss, O, Oberstrass, FC, Jelesarov, I, Haas, D, Allain, FH. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 2007, 14:807–813.
Lu, C, Smith, AM, Fuchs, RT, Ding, F, Rajashankar, K, Henkin, TM, Ke, A. Crystal structures of the SAM‐III/S(MK) riboswitch reveal the SAM‐dependent translation inhibition mechanism. Nat Struct Mol Biol 2008, 15:1076–1083.
Johnson, JE Jr, Reyes, FE, Polaski, JT, Batey, RT. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 2012, 492:133–137.
Dubey, AK. RNA sequence and secondary structure participate in high‐affinity CsrA‐RNA interaction. RNA 2005, 11:1579–1587.
Baker, CS, Morozov, I, Suzuki, K, Romeo, T, Babitzke, P. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 2002, 44:1599–1610.
Dubey, AK, Baker, CS, Suzuki, K, Jones, AD, Pandit, P, Romeo, T, Babitzke, P. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 2003, 185:4450–4460.
Mercante, J, Edwards, AN, Dubey, AK, Babitzke, P, Romeo, T. Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 2009, 392:511–528.
Romeo, T, Vakulskas, CA, Babitzke, P. Post‐transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 2012, 15:313–324.
Liu, MY, Romeo, T. The global regulator CsrA of Escherichia coli is a specific mRNA‐binding protein. J Bacteriol 1997, 179:4639–4642.
Pannuri, A, Yakhnin, H, Vakulskas, CA, Edwards, AN, Babitzke, P, Romeo, T. Translational repression of NhaR, a novel pathway for multi‐tier regulation of biofilm circuitry by CsrA. J Bacteriol 2011, 194:79–89.
Figueroa‐Bossi, N, Schwartz, A, Guillemardet, B, D`Heygère, F, Bossi, L, Boudvillain, M. RNA remodeling by bacterial global regulator CsrA promotes Rho‐dependent transcription termination. Genes Dev 2014, 28:1239–1251.
Wei, BL, Brun‐Zinkernagel, AM, Simecka, JW, Prüss, BM, Babitzke, P, Romeo, T. Positive regulation of motility and flhDC expression by the RNA‐binding protein CsrA of Escherichia coli. Mol Microbiol 2001, 40:245–256.
Weilbacher, T, Suzuki, K, Dubey, AK, Wang, X, Gudapaty, S, Morozov, I, Baker, CS, Georgellis, D, Babitzke, P, Romeo, T. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 2003, 48:657–670.
Barrick, JE, Breaker, RR. The distributions, mechanisms, and structures of metabolite‐binding riboswitches. Genome Biol 2007, 8:R239.
Sun, EI, Leyn, SA, Kazanov, MD, Saier, MH Jr, Novichkov, PS, Rodionov, DA. Comparative genomics of metabolic capacities of regulons controlled by cis‐regulatory RNA motifs in bacteria. BMC Genomics 2013, 14:597.
Serganov, A, Nudler, E. A decade of riboswitches. Cell 2013, 152:17–24.
Serganov, A, Huang, L, Patel, DJ. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 2008, 455:1263–1267.
Dambach, M, Winkler, W. Expanding roles for metabolite‐sensing regulatory RNAs. Curr Opin Microbiol 2009, 12:161–169.
Nou, X, Kadner, RJ. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 2000, 97:7190–7195.
Nou, X, Kadner, RJ. Coupled changes in translation and transcription during cobalamin‐dependent regulation of btuB expression in Escherichia coli. J Bacteriol 1998, 180:6719–6728.
Nahvi, A. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004, 32:143–150.
Vitreschak, AG, Rodionov, DA, Mironov, AA, Gelfand, MS. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 2003, 9:1084–1097.
Hollands, K, Proshkin, S, Sklyarova, S, Epshtein, V, Mironov, A, Nudler, E, Groisman, EA. Riboswitch control of Rho‐dependent transcription termination. Proc Natl Acad Sci USA 2012, 109:5376–5381.
Caron, MP, Bastet, L, Lussier, A, Simoneau‐Roy, M, Massé, E, Lafontaine, DA. Dual‐acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci USA 2012, 109:E3444–E3453.
Aytenfisu, AH, Liberman, JA, Wedekind, JE, Mathews, DH. Molecular mechanism for preQ 1‐II riboswitch function revealed by molecular dynamics. RNA 2015, 21:1898–1907.
Meyer, MM, Roth, A, Chervin, SM, Garcia, GA, Breaker, RR. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 2008, 14:685–695.
Fuchs, RT, Grundy, FJ, Henkin, TM. The S(MK) box is a new SAM‐binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 2006, 13:226–233.
Fuchs, RT, Grundy, FJ, Henkin, TM. S‐adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc Natl Acad Sci USA 2007, 104:4876–4880.
Smith, AM, Fuchs, RT, Grundy, FJ, Henkin, TM. The SAM‐responsive SMK box is a reversible riboswitch. Mol Microbiol 2010, 78:1393–1402.
McCown, PJ, Liang, JJ, Weinberg, Z, Breaker, RR. Structural, functional, and taxonomic diversity of three PreQ. Chem Biol 2014, 21:880–889.
Grundy, F, Rollins, S, Henkin, T. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base. J Bacteriol 1994, 176:4518.
Gutierrez‐Preciado, A, Henkin, TM, Grundy, FJ, Yanofsky, C, Merino, E. Biochemical features and functional implications of the RNA‐based T‐Box regulatory mechanism. Microbiol Mol Biol Rev 2009, 73:36–61.
Vitreschak, A. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 2004, 20:44–50.
Sherwood, AV, Grundy, FJ, Henkin, TM. T box riboswitches in actinobacteria: translational regulation via novel tRNA interactions. Proc Natl Acad Sci USA 2015, 112:1113–1118.
Waldminghaus, T, Gaubig, LC, Narberhaus, F. Genome‐wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics 2007, 278:555–564.
Morita, MT, Tanaka, Y, Kodama, TS, Kyogoku, Y, Yanagi, H, Yura, T. Translational induction of heat shock transcription factor sigma32: evidence for a built‐in RNA thermosensor. Genes Dev 1999, 13:655–665.
Kortmann, J, Sczodrok, S, Rinnenthal, J, Schwalbe, H, Narberhaus, F. Translation on demand by a simple RNA‐based thermosensor. Nucleic Acids Res 2011, 39:2855–2868.
Altuvia, S, Kornitzer, D, Teff, D, Oppenheim, AB. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 1989, 210:265–280.
Giuliodori, AM, Di Pietro, F, Marzi, S, Masquida, B, Wagner, R, Romby, P, Gualerzi, CO, Pon, CL. The cspA mRNA is a thermosensor that modulates translation of the cold‐shock protein CspA. Mol Cell 2010, 37:21–33.
Johansson, J, Mandin, P, Renzoni, A, Chiaruttini, C, Springer, M, Cossart, P. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 2002, 110:551–561.
Grosso‐Becera, MV, Servín‐González, L, Soberón‐Chávez, G. RNA structures are involved in thethermoregulation of bacterialvirulence‐associated traits. Trends Microbiol 2015, 23:509–518.
Rinnenthal, J, Klinkert, B, Narberhaus, F, Schwalbe, H. Direct observation of the temperature‐induced melting process of the Salmonella fourU RNA thermometer at base‐pair resolution. Nucleic Acids Res 2010, 38:3834–3847.
Narayan, S, Kombrabail, MH, Das, S, Singh, H, Chary, KV, Rao, BJ, Krishnamoorthy, G. Site‐specific fluorescence dynamics in an RNA ‘thermometer’ reveals the role of ribosome binding in its temperature‐sensitive switch function. Nucleic Acids Res 2015, 43:493–503.
Thomason, MK, Storz, G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 2010, 44:167–188.
Kawano, M, Aravind, L, Storz, G. An antisense RNA controls synthesis of an SOS‐induced toxin evolved from an antitoxin. Mol Microbiol 2007, 64:738–754.
Fozo, EM, Hemm, MR, Storz, G. Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 2008, 72:579–589.
Gerdes, K, Wagner, EGH. RNA antitoxins. Curr Opin Microbiol 2007, 10:117–124.
Peer, A, Margalit, H. Accessibility and evolutionary conservation mark bacterial small‐RNA target‐binding regions. J Bacteriol 2011, 193:1690–1701.
Gottesman, S, Storz, G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011, 3:a003798.
Møller, T, Franch, T, Udesen, C, Gerdes, K, Valentin‐Hansen, P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002, 16:1696–1706.
Prévost, K, Salvail, H, Desnoyers, G, Jacques, JF, Phaneuf, E, Massé, E. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 2007, 64:1260–1273.
Desnoyers, G, Masse, E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 2012, 26:726–739.
Darfeuille, F, Unoson, C, Vogel, J, Wagner, EGH. An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 2007, 26:381–392.
Levine, E, Zhang, Z, Kuhlman, T, Hwa, T. Quantitative characteristics of gene regulation by Small RNA. PLoS Biol 2007, 5:e229.
Massé, E, Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 2002, 99:4620–4625.
Massé, E, Escorcia, FE, Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 2003, 17:2374–2383.
Storz, G, Vogel, J, Wassarman, KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011, 43:880–891.
Battesti, A, Majdalani, N, Gottesman, S. The RpoS‐mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011, 65:189–213.
Mandin, P, Gottesman, S. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 2010, 29:3094–3107.
Beisel, CL, Storz, G. The base‐pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol Cell 2011, 41:286–297.
Moon, K, Gottesman, S. Competition among Hfq‐binding small RNAs in Escherichia coli. Mol Microbiol 2011, 82:1545–1562.
Lease, RA, Cusick, ME, Belfort, M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci USA 1998, 95:12456–12461.
Gaida, SM, Al‐Hinai, MA, Indurthi, DC, Nicolaou, SA, Papoutsakis, ET. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra‐additively against acid stress. Nucleic Acids Res 2013, 41:8726–8737.
Guillier, M, Gottesman, S, Storz, G. Modulating the outer membrane with small RNAs. Genes Dev 2006, 20:2338–2348.
Deiorio‐Haggar, K, Anthony, J, Meyer, MM. RNA structures regulating ribosomal protein biosynthesis in bacilli. RNA Biol 2013, 10:1180–1184.
Lindgreen, S, Umu, SU, Lai, AS, Eldai, H, Liu, W, McGimpsey, S, Wheeler, NE, Biggs, PJ, Thomson, NR, Barquist, L, Poole, AM, Gardner, PP. Robust identification of noncoding RNA from transcriptomes requires phylogenetically‐informed sampling. PLoS Comput Biol 2014, 10:e1003907.
Matelska, D, Kurkowska, M, Purta, E, Bujnicki, JM, Dunin‐Horkawicz, S. Loss of conserved non‐coding RNAs in genomes of bacterial endosymbionts. Genome Biol Evol 2016, 8:426–438. doi:10.1093/gbe/evw007.
Christensen, T, Johnsen, M, Fiil, N, Friesen, J. RNA secondary structure and translation inhibition: analysis of mutants in the rplJ leader. EMBO J 1984, 3:1609–1612.
Yakhnin, H, Yakhnin, AV, Babitzke, P. Ribosomal protein L10(L12)4 autoregulates expression of the Bacillus subtilis rplJL operon by a transcription attenuation mechanism. Nucleic Acids Res 2015, 43:7032–7043.
Nahvi, A, Sudarsan, N, Ebert, MS, Zou, X, Brown, KL, Breaker, RR. Genetic control by a metabolite binding mRNA. Chem Biol 2002, 9:1043.
DebRoy, S, Gebbie, M, Ramesh, A, Goodson, JR, Cruz, MR, van Hoof, A, Winkler, WC, Garsin, DA. A riboswitch‐containing sRNA controls gene expression by sequestration of a response regulator. Science 2014, 345:937–940.
Fox, KA, Ramesh, A, Stearns, JE, Bourgogne, A, Reyes‐Jara, A, Winkler, WC, Garsin, DA. Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc Natl Acad Sci USA 2009, 106:4435–4440.
Choonee, N, Even, S, Zig, L, Putzer, H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res 2007, 35:1578–1588.
Guillier, M, Allemand, F, Dardel, F, Royer, CA, Springer, M, Chiaruttini, C. Double molecular mimicry in Escherichia coli: binding of ribosomal protein L20 to its two sites in mRNA is similar to its binding to 23S rRNA. Mol Microbiol 2005, 56:1141–1456.
Slinger, BL, Newman, H, Lee, Y, Pei, S, Meyer, MM. Co‐evolution of bacterial ribosomal protein S15 with diverse mRNA regulatory structures. PLoS Genet 2015, 11:e1005720.
Montange, RK, Batey, RT. Structure of the S‐adenosylmethionine riboswitch regulatory mRNA element. Nature 2006, 441:1172–1175.
Gilbert, SD, Rambo, RP, Van Tyne, D, Batey, RT. Structure of the SAM‐II riboswitch bound to S‐adenosylmethionine. Nat Struct Mol Biol 2008, 15:177–182.
Trausch, JJ, Xu, Z, Edwards, AL, Reyes, FE, Ross, PE, Knight, R, Batey, RT. Structural basis for diversity in the SAM clan of riboswitches. Proc Natl Acad Sci USA 2014, 111:6624–6629.
Richter, A, Backofen, R. Accessibility and conservation: general features of bacterial small RNA–mRNA interactions? RNA Biol 2014, 9:954–965.
Peer, A, Margalit, H. Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. RNA 2014, 20:994–1003.
Skippington, E, Ragan, MA. Evolutionary dynamics of small RNAs in 27 Escherichia coli and Shigella genomes. Genome Biol Evol 2012, 4:330–345.
Davis, BM, Quinones, M, Pratt, J, Ding, Y, Waldor, MK. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 2005, 187:4005–4014.
Nawrocki, EP, Eddy, SR. Infernal 1.1: 100‐fold faster RNA homology searches. Bioinformatics 2013, 29:2933–2935.
Soskine, M, Tawfik, DS. Mutational effects and the evolution of new protein functions. Nat Rev Genet 2010, 11:572–582.
Pál, C, Papp, B, Lercher, MJ. An integrated view of protein evolution. Nat Rev Genet 2006, 7:337–348.
DePristo, MA, Weinreich, DM, Hartl, DL. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 2005, 6:678–687.