Singh, RK, Cooper, TA. Pre‐mRNA splicing in disease and therapeutics. Trends Mol Med 2012, 18:472–482.
Ilagan, JO, Chalkley, RJ, Burlingame, AL, Jurica, MS. Rearrangements within human spliceosomes captured after exon ligation. RNA 2013, 19:400–412.
Bessonov, S, Anokhina, M, Will, CL, Urlaub, H, Luhrmann, R. Isolation of an active step I spliceosome and composition of its RNP core. Nature 2008, 452:846–850.
Makarov, EM, Makarova, OV, Urlaub, H, Gentzel, M, Will, CL, Wilm, M, Luhrmann, R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 2002, 298:2205–2208.
Kaida, D, Motoyoshi, H, Tashiro, E, Nojima, T, Hagiwara, M, Ishigami, K, Watanabe, H, Kitahara, T, Yoshida, T, Nakajima, H, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre‐mRNA. Nat Chem Biol 2007, 3:576–583.
Nakajima, H, Hori, Y, Terano, H, Okuhara, M, Manda, T, Matsumoto, S, Shimomura, K. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo) 1996, 49:1204–1211.
Kotake, Y, Sagane, K, Owa, T, Mimori‐Kiyosue, Y, Shimizu, H, Uesugi, M, Ishihama, Y, Iwata, M, Mizui, Y. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 2007, 3:570–575.
Eskens, FA, Ramos, FJ, Burger, H, O`Brien, JP, Piera, A, de Jonge, MJ, Mizui, Y, Wiemer, EA, Carreras, MJ, Baselga, J, et al. Phase I, pharmacokinetic and pharmacodynamic study of the first‐in‐class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 2013, 19:6296–6304.
Hasegawa, M, Miura, T, Kuzuya, K, Inoue, A, Won Ki, S, Horinouchi, S, Yoshida, T, Kunoh, T, Koseki, K, Mino, K, et al. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem Biol 2011, 6:229–233.
Miller‐Wideman, M, Makkar, N, Tran, M, Isaac, B, Biest, N, Stonard, R. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico‐chemical and biological properties. J Antibiot (Tokyo) 1992, 45:914–921.
Jung, HJ, Kim, Y, Shin, JY, Sohng, JK, Kwon, HJ. Antiangiogenic activity of herboxidiene via downregulation of vascular endothelial growth factor receptor‐2 and hypoxia‐inducible factor‐1alpha. Arch Pharm Res 2015, 38:1728–1735.
Kakeya, H, Kaida, D, Sekiya, H, Nagai, K, Yoshida, M, Osada, H. RQN‐18690A (18‐deoxyherboxidiene) targets SF3b, a spliceosome component, and inhibits angiogenesis. J Antibiot (Tokyo) 2015, 69:121–123.
Lagisetti, C, Palacios, G, Goronga, T, Freeman, B, Caufield, W, Webb, TR. Optimization of antitumor modulators of pre‐mRNA splicing. J Med Chem 2013, 56:10033–10044.
Xargay‐Torrent, S, Lopez‐Guerra, M, Rosich, L, Montraveta, A, Roldan, J, Rodriguez, V, Villamor, N, Aymerich, M, Lagisetti, C, Webb, TR, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 2015, 6:22734–22749.
O`Brien, K, Matlin, AJ, Lowell, AM, Moore, MJ. The biflavonoid isoginkgetin is a general inhibitor of Pre‐mRNA splicing. J Biol Chem 2008, 283:33147–33154.
Sasaki, H, Kitoh, Y, Tsukada, M, Miki, K, Koyama, K, Juliawaty, LD, Hakim, EH, Takahashi, K, Kinoshita, K. Inhibitory activities of biflavonoids against amyloid‐beta peptide 42 cytotoxicity in PC‐12 cells. Bioorg Med Chem Lett 2015, 25:2831–2833.
Yoon, SO, Shin, S, Lee, HJ, Chun, HK, Chung, AS. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3‐kinase/Akt‐dependent matrix metalloproteinase‐9 expression. Mol Cancer Ther 2006, 5:2666–2675.
Pawellek, A, McElroy, S, Samatov, T, Mitchell, L, Woodland, A, Ryder, U, Gray, D, Luhrmann, R, Lamond, AI. Identification of small molecule inhibitors of pre‐mRNA splicing. J Biol Chem 2014, 289:34683–34698.
Effenberger, KA, Perriman, RJ, Bray, WM, Lokey, RS, Ares, M Jr, Jurica, MS. A high‐throughput splicing assay identifies new classes of inhibitors of human and yeast spliceosomes. J Biomol Screen 2013, 18:1110–1120.
Morimoto, M, Fukui, M, Ohkubo, S, Tamaoki, T, Tomita, F. Tetrocarcins, new antitumor antibiotics. 3. Antitumor activity of tetrocarcin A. J Antibiot (Tokyo) 1982, 35:1033–1037.
Tamaoki, T, Kasai, M, Shirahata, K, Ohkubo, S, Morimoto, M, Mineura, K, Ishii, S, Tomita, F. Tetrocarcins, novel antitumor antibiotics. II. Isolation, characterization and antitumor activity. J Antibiot (Tokyo) 1980, 33:946–950.
Tomita, F, Tamaoki, T. Tetrocarcins, novel antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activity. J Antibiot (Tokyo) 1980, 33:940–945.
Nakajima, H, Sakaguchi, K, Fujiwara, I, Mizuta, M, Tsuruga, M, Magae, J, Mizuta, N. Apoptosis and inactivation of the PI3‐kinase pathway by tetrocarcin A in breast cancers. Biochem Biophys Res Commun 2007, 356:260–265.
Anether, G, Tinhofer, I, Senfter, M, Greil, R. Tetrocarcin‐A – induced ER stress mediates apoptosis in B‐CLL cells via a Bcl‐2‐‐independent pathway. Blood 2003, 101:4561–4568.
Nakashima, T, Miura, M, Hara, M. Tetrocarcin A inhibits mitochondrial functions of Bcl‐2 and suppresses its anti‐apoptotic activity. Cancer Res 2000, 60:1229–1235.
Effenberger, KA, James, RC, Urabe, VK, Dickey, BJ, Linington, RG, Jurica, MS. The natural product N‐palmitoyl‐l‐leucine selectively inhibits late assembly of human spliceosomes. J Biol Chem 2015, 290:27524–27531.
Samatov, TR, Wolf, A, Odenwalder, P, Bessonov, S, Deraeve, C, Bon, RS, Waldmann, H, Luhrmann, R. Psoromic acid derivatives: a new family of small‐molecule pre‐mRNA splicing inhibitors discovered by a stage‐specific high‐throughput in vitro splicing assay. Chembiochem 2012, 13:640–644.
Correche, ER, Enriz, RD, Piovano, M, Garbarino, J, Gomez‐Lechon, MJ. Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern Lab Anim 2004, 32:605–615.
Deraeve, C, Guo, Z, Bon, RS, Blankenfeldt, W, DiLucrezia, R, Wolf, A, Menninger, S, Stigter, EA, Wetzel, S, Choidas, A, et al. Psoromic acid is a selective and covalent Rab‐prenylation inhibitor targeting autoinhibited RabGGTase. J Am Chem Soc 2012, 134:7384–7391.
Younis, I, Berg, M, Kaida, D, Dittmar, K, Wang, C, Dreyfuss, G. Rapid‐response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 2010, 30:1718–1728.
Shoemaker, RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006, 6:813–823.
Lazo, JS, Nemoto, K, Pestell, KE, Cooley, K, Southwick, EC, Mitchell, DA, Furey, W, Gussio, R, Zaharevitz, DW, Joo, B, et al. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol Pharmacol 2002, 61:720–728.
Hertweck, M, Hiller, R, Mueller, MW. Inhibition of nuclear pre‐mRNA splicing by antibiotics in vitro. Eur J Biochem 2002, 269:175–183.
Aukema, KG, Chohan, KK, Plourde, GL, Reimer, KB, Rader, SD. Small molecule inhibitors of yeast pre‐mRNA splicing. ACS Chem Biol 2009, 4:759–768.
Schlunzen, F, Zarivach, R, Harms, J, Bashan, A, Tocilj, A, Albrecht, R, Yonath, A, Franceschi, F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001, 413:814–821.
Gabashvili, IS, Gregory, ST, Valle, M, Grassucci, R, Worbs, M, Wahl, MC, Dahlberg, AE, Frank, J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 2001, 8:181–188.
Kuhn, AN, van Santen, MA, Schwienhorst, A, Urlaub, H, Luhrmann, R. Stalling of spliceosome assembly at distinct stages by small‐molecule inhibitors of protein acetylation and deacetylation. RNA 2009, 15:153–175.
Marks, PA. Discovery and development of SAHA as an anticancer agent. Oncogene 2007, 26:1351–1356.
Grant, S, Easley, C, Kirkpatrick, P. Vorinostat. Nat Rev Drug Discov 2007, 6:21–22.
Sarli, V, Giannis, A. Selective inhibition of CBP/p300 HAT. Chem Biol 2007, 14:605–606.
Balasubramanyam, K, Altaf, M, Varier, RA, Swaminathan, V, Ravindran, A, Sadhale, PP, Kundu, TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004, 279:33716–33726.
Mermoud, JE, Cohen, P, Lamond, AI. Ser/Thr‐specific protein phosphatases are required for both catalytic steps of pre‐mRNA splicing. Nucleic Acids Res 1992, 20:5263–5269.
Pilch, B, Allemand, E, Facompre, M, Bailly, C, Riou, JF, Soret, J, Tazi, J. Specific inhibition of serine‐ and arginine‐rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB‐506. Cancer Res 2001, 61:6876–6884.
Arakawa, H, Iguchi, T, Morita, M, Yoshinari, T, Kojiri, K, Suda, H, Okura, A, Nishimura, S. Novel indolocarbazole compound 6‐N‐formylamino‐12,13‐dihydro‐1,11‐dihydroxy‐ 13‐(beta‐D‐glucopyranosyl)‐5H‐indolo[2,3‐a]pyrrolo‐[3,4‐c]carbazole‐ 5,7(6H)‐dione (NB‐506): its potent antitumor activities in mice. Cancer Res 1995, 55:1316–1320.
Muraki, M, Ohkawara, B, Hosoya, T, Onogi, H, Koizumi, J, Koizumi, T, Sumi, K, Yomoda, J, Murray, MV, Kimura, H, et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 2004, 279:24246–24254.
Bellare, P, Small, EC, Huang, X, Wohlschlegel, JA, Staley, JP, Sontheimer, EJ. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 2008, 15:444–451.
Verma, R, Peters, NR, D`Onofrio, M, Tochtrop, GP, Sakamoto, KM, Varadan, R, Zhang, M, Coffino, P, Fushman, D, Deshaies, RJ, et al. Ubistatins inhibit proteasome‐dependent degradation by binding the ubiquitin chain. Science 2004, 306:117–120.
Sattler, I, Thiericke, R, Zeeck, A. The manumycin‐group metabolites. Nat Prod Rep 1998, 15:221–240.
Berg, MG, Wan, L, Younis, I, Diem, MD, Soo, M, Wang, C, Dreyfuss, G. A quantitative high‐throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis. Mol Cell Biol 2012, 32:1271–1283.
Darman, RB, Seiler, M, Agrawal, AA, Lim, KH, Peng, S, Aird, D, Bailey, SL, Bhavsar, EB, Chan, B, Colla, S, et al. Cancer‐associated SF3B1 hotspot mutations induce cryptic 3? Splice site selection through use of a different branch point. Cell Rep 2015, 13:1033–1045.
Palacino, J, Swalley, SE, Song, C, Cheung, AK, Shu, L, Zhang, X, Van Hoosear, M, Shin, Y, Chin, DN, Keller, CG, et al. SMN2 splice modulators enhance U1‐pre‐mRNA association and rescue SMA mice. Nat Chem Biol 2015, 11:511–517.
Padgett, RA, Hardy, SF, Sharp, PA. Splicing of adenovirus RNA in a cell‐free transcription system. Proc Natl Acad Sci U S A 1983, 80:5230–5234.
Konarska, MM, Sharp, PA. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 1986, 46:845–855.
Soret, J, Bakkour, N, Maire, S, Durand, S, Zekri, L, Gabut, M, Fic, W, Divita, G, Rivalle, C, Dauzonne, D, et al. Selective modification of alternative splicing by indole derivatives that target serine‐arginine‐rich protein splicing factors. Proc Natl Acad Sci U S A 2005, 102:8764–8769.
Corrionero, A, Minana, B, Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti‐tumor drug spliceostatin A. Genes Dev 2011, 25:445–459.
Effenberger, KA, Anderson, DD, Bray, WM, Prichard, BE, Ma, N, Adams, MS, Ghosh, AK, Jurica, MS. Coherence between cellular responses and in vitro splicing inhibition for the anti‐tumor drug pladienolide B and its analogs. J Biol Chem 2014, 289:1938–1947.
Folco, EG, Coil, KE, Reed, R. The anti‐tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point‐binding region. Genes Dev 2011, 25:440–444.
Roybal, GA, Jurica, MS. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 2010, 38:6664–6672.
Wang, C, Chua, K, Seghezzi, W, Lees, E, Gozani, O, Reed, R. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev 1998, 12:1409–1414.
Schwelnus, W, Richert, K, Opitz, F, Gross, T, Habara, Y, Tani, T, Kaufer, NF. Fission yeast Prp4p kinase regulates pre‐mRNA splicing by phosphorylating a non‐SR‐splicing factor. EMBO Rep 2001, 2:35–41.
Bottner, CA, Schmidt, H, Vogel, S, Michele, M, Kaufer, NF. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe. Curr Genet 2005, 48:151–161.
Mathew, R, Hartmuth, K, Mohlmann, S, Urlaub, H, Ficner, R, Luhrmann, R. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6‐U5 tri‐snRNP into the spliceosome. Nat Struct Mol Biol 2008, 15:435–443.
Schneider, M, Hsiao, HH, Will, CL, Giet, R, Urlaub, H, Luhrmann, R. Human PRP4 kinase is required for stable tri‐snRNP association during spliceosomal B complex formation. Nat Struct Mol Biol 2010, 17:216–221.
Zhou, Z, Fu, XD. Regulation of splicing by SR proteins and SR protein‐specific kinases. Chromosoma 2013, 122:191–207.
Tazi, J, Bakkour, N, Soret, J, Zekri, L, Hazra, B, Laine, W, Baldeyrou, B, Lansiaux, A, Bailly, C. Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 2005, 67:1186–1194.
Tazi, J, Daugeron, MC, Cathala, G, Brunel, C, Jeanteur, P. Adenosine phosphorothioates (ATP alpha S and ATP tau S) differentially affect the two steps of mammalian pre‐mRNA splicing. J Biol Chem 1992, 267:4322–4326.
Wilson, DN. The A‐Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol 2009, 44:393–433.
Chen, S, Anderson, K, Moore, MJ. Evidence for a linear search in bimolecular 3′ splice site AG selection. Proc Natl Acad Sci U S A 2000, 97:593–598.
Brosi, R, Hauri, HP, Kramer, A. Separation of splicing factor SF3 into two components and purification of SF3a activity. J Biol Chem 1993, 268:17640–17646.
Yan, D, Ares, M Jr. Invariant U2 RNA sequences bordering the branchpoint recognition region are essential for interaction with yeast SF3a and SF3b subunits. Mol Cell Biol 1996, 16:818–828.
Cass, DM, Berglund, JA. The SF3b155 N‐terminal domain is a scaffold important for splicing. Biochemistry 2006, 45:10092–10101.
Thickman, KR, Swenson, MC, Kabogo, JM, Gryczynski, Z, Kielkopf, CL. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein‐protein interactions among pre‐mRNA splicing factors. J Mol Biol 2006, 356:664–683.
Gozani, O, Feld, R, Reed, R. Evidence that sequence‐independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev 1996, 10:233–243.
Gozani, O, Potashkin, J, Reed, R. A potential role for U2AF‐SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 1998, 18:4752–4760.
Korneta, I, Magnus, M, Bujnicki, JM. Structural bioinformatics of the human spliceosomal proteome. Nucleic Acids Res 2012, 40:7046–7065.
Will, CL, Schneider, C, MacMillan, AM, Katopodis, NF, Neubauer, G, Wilm, M, Luhrmann, R, Query, CC. A novel U2 and U11/U12 snRNP protein that associates with the pre‐mRNA branch site. EMBO J 2001, 20:4536–4546.
Effenberger, KA, Urabe, VK, Prichard, BE, Ghosh, AK, Jurica, MS. Interchangeable SF3B1 inhibitors interfere with pre‐mRNA splicing at multiple stages. RNA 2016, 22:350–359.
Lardelli, RM, Thompson, JX, Yates, JR 3rd, Stevens, SW. Release of SF3 from the intron branchpoint activates the first step of pre‐mRNA splicing. RNA 2010, 16:516–528.
Coltri, P, Effenberger, K, Chalkley, RJ, Burlingame, AL, Jurica, MS. Breaking up the C complex spliceosome shows stable association of proteins with the lariat intron intermediate. PLoS One 2011, 6:e19061.
Chabot, B, Shkreta, L. Defective control of pre‐messenger RNA splicing in human disease. J Cell Biol 2016, 212:13–27.
Biankin, AV, Waddell, N, Kassahn, KS, Gingras, MC, Muthuswamy, LB, Johns, AL, Miller, DK, Wilson, PJ, Patch, AM, Wu, J, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491:399–405.
Ellis, MJ, Ding, L, Shen, D, Luo, J, Suman, VJ, Wallis, JW, Van Tine, BA, Hoog, J, Goiffon, RJ, Goldstein, TC, et al. Whole‐genome analysis informs breast cancer response to aromatase inhibition. Nature 2012, 486:353–360.
Landau, DA, Carter, SL, Stojanov, P, McKenna, A, Stevenson, K, Lawrence, MS, Sougnez, C, Stewart, C, Sivachenko, A, Wang, L, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013, 152:714–726.
Yoshida, K, Sanada, M, Shiraishi, Y, Nowak, D, Nagata, Y, Yamamoto, R, Sato, Y, Sato‐Otsubo, A, Kon, A, Nagasaki, M, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478:64–69.
DeBoever, C, Ghia, EM, Shepard, PJ, Rassenti, L, Barrett, CL, Jepsen, K, Jamieson, CH, Carson, D, Kipps, TJ, Frazer, KA. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1‐mutated cancers. PLoS Comput Biol 2015, 11:e1004105.
Alsafadi, S, Houy, A, Battistella, A, Popova, T, Wassef, M, Henry, E, Tirode, F, Constantinou, A, Piperno‐Neumann, S, Roman‐Roman, S, et al. Cancer‐associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 2016, 7:10615.
Lagisetti, C, Yermolina, MV, Sharma, LK, Palacios, G, Prigaro, BJ, Webb, TR. Pre‐mRNA splicing‐modulatory pharmacophores: the total synthesis of herboxidiene, a pladienolide‐herboxidiene hybrid analog and related derivatives. ACS Chem Biol 2014, 9:643–648.
He, H, Ratnayake, AS, Janso, JE, He, M, Yang, HY, Loganzo, F, Shor, B, O`Donnell, CJ, Koehn, FE. Cytotoxic spliceostatins from burkholderia sp. and their semisynthetic analogues. J Nat Prod 2014, 77:1864–1870.
Convertini, P, Shen, M, Potter, PM, Palacios, G, Lagisetti, C, de la Grange, P, Horbinski, C, Fondufe‐Mittendorf, YN, Webb, TR, Stamm, S. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res 2014, 42:4947–4961.
Arai, K, Buonamici, S, Chan, B, Corson, L, Endo, A, Gerard, B, Hao, MH, Karr, C, Kira, K, Lee, L, et al. Total synthesis of 6‐deoxypladienolide d and assessment of splicing inhibitory activity in a mutant SF3B1 cancer cell line. Org Lett 2014, 16:5560–5563.
Villa, R, Kashyap, MK, Kumar, D, Kipps, TJ, Castro, JE, La Clair, JJ, Burkart, MD. Stabilized cyclopropane analogs of the splicing inhibitor FD‐895. J Med Chem 2013, 56:6576–6582.
Liu, X, Biswas, S, Berg, MG, Antapli, CM, Xie, F, Wang, Q, Tang, MC, Tang, GL, Zhang, L, Dreyfuss, G, et al. Genomics‐guided discovery of thailanstatins A, B, and C As pre‐mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod 2013, 76:685–693.
Gao, Y, Vogt, A, Forsyth, CJ, Koide, K. Comparison of splicing factor 3b inhibitors in human cells. Chembiochem 2013, 14:49–52.
Villa, R, Mandel, AL, Jones, BD, La Clair, JJ, Burkart, MD. Structure of FD‐895 revealed through total synthesis. Org Lett 2012, 14:5396–5399.
Osman, S, Albert, BJ, Wang, Y, Li, M, Czaicki, NL, Koide, K. Structural requirements for the antiproliferative activity of pre‐mRNA splicing inhibitor FR901464. Chemistry 2011, 17:895–904.
Gundluru, MK, Pourpak, A, Cui, X, Morris, SW, Webb, TR. Design, synthesis and initial biological evaluation of a novel pladienolide analog scaffold. Med Chem Commun 2011, 2:904–908.
Lagisetti, C, Pourpak, A, Goronga, T, Jiang, Q, Cui, X, Hyle, J, Lahti, JM, Morris, SW, Webb, TR. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity. J Med Chem 2009, 52:6979–6990.
Albert, BJ, Mcpherson, PA, O`brien, K, Czaicki, NL, Destefino, V, Osman, S, Li, M, Day, BW, Grabowski, PJ, Moore, MJ, et al. Meayamycin inhibits pre‐messenger RNA splicing and exhibits picomolar activity against multidrug‐resistant cells. Mol Cancer Ther 2009, 8:2308–2318.
Lagisetti, C, Pourpak, A, Jiang, Q, Cui, X, Goronga, T, Morris, SW, Webb, TR. Antitumor compounds based on a natural product consensus pharmacophore. J Med Chem 2008, 51:6220–6224.
Albert, BJ, Sivaramakrishnan, A, Naka, T, Czaicki, NL, Koide, K. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J Am Chem Soc 2007, 129:2648–2659.
Sakai, T, Sameshima, T, Matsufuji, M, Kawamura, N, Dobashi, K, Mizui, Y. Pladienolides, new substances from culture of Streptomyces platensis Mer‐11107. I. Taxonomy, fermentation, isolation and screening. J Antibiot (Tokyo) 2004, 57:173–179.
Motoyoshi, H, Horigome, M, Ishigami, K, Yoshida, T, Horinouchi, S, Yoshida, M, Watanabe, H, Kitahara, T. Structure‐activity relationship for FR901464: a versatile method for the conversion and preparation of biologically active biotinylated probes. Biosci Biotechnol Biochem 2004, 68:2178–2182.
Mizui, Y, Sakai, T, Iwata, M, Uenaka, T, Okamoto, K, Shimizu, H, Yamori, T, Yoshimatsu, K, Asada, M. Pladienolides, new substances from culture of Streptomyces platensis Mer‐11107. III. in vitro and in vivo antitumor activities. J Antibiot (Tokyo) 2004, 57:188–196.
Sakai, Y, Tsujita, T, Akiyama, T, Yoshida, T, Mizukami, T, Akinaga, S, Horinouchi, S, Yoshida, M, Yoshida, T. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. II. The effects on cell cycle progression and gene expression. J Antibiot (Tokyo) 2002, 55:863–872.
Thompson, CF, Jamison, TF, Jacobsen, EN. FR901464: total synthesis, proof of structure, and evaluation of synthetic analogues. J Am Chem Soc 2001, 123:9974–9983.
Nakajima, H, Sato, B, Fujita, T, Takase, S, Terano, H, Okuhara, M. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico‐chemical properties and biological activities. J Antibiot (Tokyo) 1996, 49:1196–1203.
Fan, L, Lagisetti, C, Edwards, CC, Webb, TR, Potter, PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol 2011, 6:582–589.
Larrayoz, M, Blakemore, SJ, Dobson, RC, Blunt, MD, Rose‐Zerilli, MJ, Walewska, R, Duncombe, A, Oscier, D, Koide, K, Forconi, F, et al. The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl‐1. Leukemia 2015, 30:351–360.
Hsu, TY, Simon, LM, Neill, NJ, Marcotte, R, Sayad, A, Bland, CS, Echeverria, GV, Sun, T, Kurley, SJ, Tyagi, S, et al. The spliceosome is a therapeutic vulnerability in MYC‐driven cancer. Nature 2015, 525:384–388.
Kashyap, MK, Kumar, D, Villa, R, La Clair, JJ, Benner, C, Sasik, R, Jones, H, Ghia, EM, Rassenti, LZ, Kipps, TJ, et al. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD‐895 and pladienolide‐B. Haematologica 2015, 100:945–954.
Lee, SC, Dvinge, H, Kim, E, Cho, H, Micol, JB, Chung, YR, Durham, BH, Yoshimi, A, Kim, YJ, Thomas, M, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 2016, 22:672–678.
Laetsch, TW, Liu, X, Vu, A, Sliozberg, M, Vido, M, Elci, OU, Goldsmith, KC, Hogarty, MD. Multiple components of the spliceosome regulate Mcl1 activity in neuroblastoma. Cell Death Dis 2014, 5:e1072.
Papasaikas, P, Tejedor, JR, Vigevani, L, Valcarcel, J. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol Cell 2015, 57:7–22.
Yokoi, A, Kotake, Y, Takahashi, K, Kadowaki, T, Matsumoto, Y, Minoshima, Y, Sugi, NH, Sagane, K, Hamaguchi, M, Iwata, M, et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J 2011, 278:4870–4880.
Moore, MJ, Wang, Q, Kennedy, CJ, Silver, PA. An alternative splicing network links cell‐cycle control to apoptosis. Cell 2010, 142:625–636.
Seki‐Asano, M, Okazaki, T, Yamagishi, M, Sakai, N, Takayama, Y, Hanada, K, Morimoto, S, Takatsuki, A, Mizoue, K. Isolation and characterization of a new 12‐membered macrolide FD‐895. J Antibiot (Tokyo) 1994, 47:1395–1401.
Gao, Y, Koide, K. Chemical perturbation of Mcl‐1 pre‐mRNA splicing to induce apoptosis in cancer cells. ACS Chem Biol 2013, 8:895–900.
Bae, J, Leo, CP, Hsu, SY, Hsueh, AJ. MCL‐1S, a splicing variant of the antiapoptotic BCL‐2 family member MCL‐1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 2000, 275:25255–25261.
Boise, LH, Gonzalez‐Garcia, M, Postema, CE, Ding, L, Lindsten, T, Turka, LA, Mao, X, Nunez, G, Thompson, CB. bcl‐x, a bcl‐2‐related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993, 74:597–608.
Munding, EM, Shiue, L, Katzman, S, Donohue, JP, Ares, M Jr. Competition between pre‐mRNAs for the splicing machinery drives global regulation of splicing. Mol Cell 2013, 51:338–348.
Lin, CY, Loven, J, Rahl, PB, Paranal, RM, Burge, CB, Bradner, JE, Lee, TI, Young, RA. Transcriptional amplification in tumor cells with elevated c‐Myc. Cell 2012, 151:56–67.
Ghosh, AK, Chen, ZH. Enantioselective syntheses of FR901464 and Spliceostatin A: potent inhibitors of spliceosome. Org Lett 2013, 15:5088–5091.
Ghosh, AK, Veitschegger, AM, Sheri, VR, Effenberger, KA, Prichard, BE, Jurica, MS. Enantioselective synthesis of spliceostatin E and evaluation of biological activity. Org Lett 2014, 16:6200–6203.
Albert, BJ, Sivaramakrishnan, A, Naka, T, Koide, K. Total synthesis of FR901464, an antitumor agent that regulates the transcription of oncogenes and tumor suppressor genes. J Am Chem Soc 2006, 128:2792–2793.
Ghosh, AK, Anderson, DD. Enantioselective total synthesis of pladienolide B: a potent spliceosome inhibitor. Org Lett 2012, 14:4730–4733.
Kanada, RM, Itoh, D, Nagai, M, Niijima, J, Asai, N, Mizui, Y, Abe, S, Kotake, Y. Total synthesis of the potent antitumor macrolides pladienolide B and D. Angew Chem Int Ed Engl 2007, 46:4350–4355.
Ghosh, AK, Li, J. A stereoselective synthesis of (+)‐herboxidiene/GEX1A. Org Lett 2011, 13:66–69.
Ghosh, AK, Ma, N, Effenberger, KA, Jurica, MS. Total synthesis of GEX1Q1, assignment of C‐5 stereoconfiguration and evaluation of spliceosome inhibitory activity. Org Lett 2014, 16:3154–3157.
Goronga, T, Boyd, VA, Lagisetti, C, Jeffries, C, Webb, TR. Radiosynthesis of antitumor spliceosome modulators. Appl Radiat Isot 2011, 69:1231–1234.
Furumai, R, Uchida, K, Komi, Y, Yoneyama, M, Ishigami, K, Watanabe, H, Kojima, S, Yoshida, M. Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci 2010, 101:2483–2489.
Ghosh, AK, Chen, ZH, Effenberger, KA, Jurica, MS. Enantioselective total syntheses of FR901464 and spliceostatin A and evaluation of splicing activity of key derivatives. J Org Chem 2014, 79:5697–5709.