Xie, Z, Allen, E, Fahlgren, N, Calamar, A, Givan, SA, Carrington, JC. Expression of Arabidopsis MIRNA genes. Plant Physiol 2005, 138:2145–2154.
Mattioli, C, Pianigiani, G, Pagani, F. Cross talk between spliceosome and microprocessor defines the fate of pre‐mRNA. Wiley Interdiscip Rev RNA 2014, 5:647–658.
Park, W, Li, J, Song, R, Messing, J, Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002, 12:1484–1495.
Han, MH, Goud, S, Song, L, Fedoroff, N. The Arabidopsis double‐stranded RNA‐binding protein HYL1 plays a role in microRNA‐mediated gene regulation. Proc Natl Acad Sci USA 2004, 101:1093–1098.
Lobbes, D, Rallapalli, G, Schmidt, DD, Martin, C, Clarke, J. SERRATE: a new player on the plant microRNA scene. EMBO Rep 2006, 7:1052–1058.
Yang, L, Liu, Z, Lu, F, Dong, A, Huang, H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 2006, 47:841–850.
Dong, Z, Han, MH, Fedoroff, N. The RNA‐binding proteins HYL1 and SE promote accurate in vitro processing of pri‐miRNA by DCL1. Proc Natl Acad Sci USA 2008, 105:9970–9975.
Li, J, Yang, Z, Yu, B, Liu, J, Chen, X. Methylation protects miRNAs and siRNAs from a 3`‐end uridylation activity in Arabidopsis. Curr Biol 2005, 15:1501–1507.
Park, MY, Wu, G, Gonzalez‐Sulser, A, Vaucheret, H, Poethig, RS. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 2005, 102:3691–3696.
Baumberger, N, Baulcombe, D. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 2005, 102:11928–11933.
Iki, T, Yoshikawa, M, Nishikiori, M, Jaudal, MC, Matsumoto‐Yokoyama, E, Mitsuhara, I, Meshi, T, Ishikawa, M. In vitro assembly of plant RNA‐induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 2010, 39:282–291.
Iki, T, Yoshikawa, M, Meshi, T, Ishikawa, M. Cyclophilin 40 facilitates HSP90‐mediated RISC assembly in plants. EMBO J 2012, 31:267–278.
Meister, G, Landthaler, M, Patkaniowska, A, Dorsett, Y, Teng, G, Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004, 15:185–197.
Gregory, RI, Chendrimada, TP, Cooch, N, Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005, 123:631–640.
Bohmert, K, Camus, I, Bellini, C, Bouchez, D, Caboche, M, Benning, C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 1998, 17:170–180.
Fang, Y, Spector, DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 2007, 17:818–823.
Brodersen, P, Sakvarelidze‐Achard, L, Bruun‐Rasmussen, M, Dunoyer, P, Yamamoto, YY, Sieburth, L, Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320:1185–1190.
Fabian, MR, Sonenberg, N, Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010, 79:351–379.
Pomeranz, MC, Hah, C, Lin, P‐C, Kang, SG, Finer, JJ, Blackshear, PJ, Jang, J‐C. The Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol 2010, 152:151–165.
Eystathioy, T, Chan, EK, Tenenbaum, SA, Keene, JD, Griffith, K, Fritzler, MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002, 13:1338–1351.
Karlowski, WM, Zielezinski, A, Carrere, J, Pontier, D, Lagrange, T, Cooke, R. Genome‐wide computational identification of WG/GW Argonaute‐binding proteins in Arabidopsis. Nucleic Acids Res 2010, 38:4231–4245.
Duan, CG, Fang, YY, Zhou, BJ, Zhao, JH, Hou, WN, Zhu, H, Ding, SW, Guo, HS. Suppression of Arabidopsis ARGONAUTE1‐mediated slicing, transgene‐induced RNA silencing, and DNA methylation by distinct domains of the cucumber mosaic virus 2b protein. Plant Cell 2012, 24:259–274.
Ye, R, Wang, W, Iki, T, Liu, C, Wu, Y, Ishikawa, M, Zhou, X, Qi, Y. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell 2012, 46:859–870.
Li, S, Liu, L, Zhuang, X, Yu, Y, Liu, X, Cui, X, Ji, L, Pan, Z, Cao, X, Mo, B, et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013, 153:562–574.
Reis, RS, Hart‐Smith, G, Eamens, AL, Wilkins, MR, Waterhouse, PM. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat Plants 2015, 1:14027
Lanet, E, Delannoy, E, Sormani, R, Floris, M, Brodersen, P, Crete, P, Voinnet, O, Robaglia, C. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 2009, 21:1762–1768.
Kiriakidou, M, Tan, GS, Lamprinaki, S, De Planell‐Saguer, M, Nelson, PT, Mourelatos, Z. An mRNA m 7G cap binding‐like motif within human Ago2 represses translation. Cell 2007, 129:1141–1151.
Ali, GS, Golovkin, M, Reddy, AS. Nuclear localization and in vivo dynamics of a plant‐specific serine/arginine‐rich protein. Plant J 2003, 36:883–893.
Qin, H, Chen, F, Huan, X, Machida, S, Song, J, Yuan, YA. Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double‐stranded RNA‐binding fold for protein‐protein interaction. RNA 2010, 16:474–481.
Schauer, SE, Jacobsen, SE, Meinke, DW, Ray, A. DICER‐LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 2002, 7:487–491.
Kurihara, Y, Takashi, Y, Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri‐miRNA in plant microRNA biogenesis. RNA 2006, 12:206–212.
Fujioka, Y, Utsumi, M, Ohba, Y, Watanabe, Y. Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 2007, 48:1243–1253.
Tagami, Y, Motose, H, Watanabe, Y. A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA. RNA 2009, 15:450–458.
Liu, C, Axtell, MJ, Fedoroff, NV. The helicase and RNaseIIIa domains of Arabidopsis Dicer‐Like1 modulate catalytic parameters during microRNA biogenesis. Plant Physiol 2012, 159:748–758.
Machida, S, Chen, H‐Y, Yuan, YA. Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Res 2011, 39:7828–7836.
Iwata, Y, Takahashi, M, Fedoroff, NV, Hamdan, SM. Dissecting the interactions of SERRATE with RNA and DICER‐LIKE 1 in Arabidopsis microRNA precursor processing. Nucleic Acids Res 2013, 41:9129–9140.
Prigge, MJ, Wagner, DR. The arabidopsis serrate gene encodes a zinc‐finger protein required for normal shoot development. Plant Cell 2001, 13:1263–1279.
Grigg, SP, Canales, C, Hay, A, Tsiantis, M. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 2005, 437:1022–1026.
Zielezinski, A, Dolata, J, Alaba, S, Kruszka, K, Pacak, A, Swida‐Barteczka, A, Knop, K, Stepien, A, Bielewicz, D, Pietrykowska, H. mirEX 2.0‐an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 2015, 15:144.
Hiraguri, A, Itoh, R, Kondo, N, Nomura, Y, Aizawa, D, Murai, Y, Koiwa, H, Seki, M, Shinozaki, K, Fukuhara, T. Specific interactions between Dicer‐like proteins and HYL1/DRB‐family dsRNA‐binding proteins in Arabidopsis thaliana. Plant Mol Biol 2005, 57:173–188.
Yang, SW, Chen, HY, Yang, J, Machida, S, Chua, NH, Yuan, YA. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 2010, 18:594–605.
Wu, F, Yu, L, Cao, W, Mao, Y, Liu, Z, He, Y. The N‐terminal double‐stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre‐microRNA processing. Plant Cell 2007, 19:914–925.
Lu, C, Fedoroff, N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 2000, 12:2351–2366.
Szarzynska, B, Sobkowiak, L, Pant, BD, Balazadeh, S, Scheible, WR, Mueller‐Roeber, B, Jarmolowski, A, Szweykowska‐Kulinska, Z. Gene structures and processing of Arabidopsis thaliana HYL1‐dependent pri‐miRNAs. Nucleic Acids Res 2009, 37:3083–3093.
Kmieciak, M, Simpson, CG, Lewandowska, D, Brown, JW, Jarmolowski, A. Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap‐binding complex. Gene 2002, 283:171–183.
Laubinger, S, Sachsenberg, T, Zeller, G, Busch, W, Lohmann, JU, Ratsch, G, Weigel, D. Dual roles of the nuclear cap‐binding complex and SERRATE in pre‐mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 2008, 105:8795–8800.
Raczynska, KD, Stepien, A, Kierzkowski, D, Kalak, M, Bajczyk, M, McNicol, J, Simpson, CG, Szweykowska‐Kulinska, Z, Brown, JW, Jarmolowski, A. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2013, 42:1224–1244.
Raczynska, KD, Simpson, CG, Ciesiolka, A, Szewc, L, Lewandowska, D, McNicol, J, Szweykowska‐Kulinska, Z, Brown, JW, Jarmolowski, A. Involvement of the nuclear cap‐binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2010, 38:265–278.
Zhang, S, Liu, Y, Yu, B. PRL1, an RNA‐binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 2014, 10:e1004841.
Fang, X, Cui, Y, Li, Y, Qi, Y. Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat Plants 2015, 1:15075.
Zhang, S, Xie, M, Ren, G, Yu, B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci USA 2013, 110:17588–17593.
Wang, L, Song, X, Gu, L, Li, X, Cao, S, Chu, C, Cui, X, Chen, X, Cao, X. NOT2 proteins promote polymerase II‐dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 2013, 25:715–727.
Wang, B, Duan, ChG, Wang, X, Hou, YJ, Yan, J, Gao, C, Kim, JH, Zhang, H, Zhu, JK. HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis. Plant J., 2015, 81:861–870.
Sun, Z, Guo, T, Liu, Y, Liu, Q, Fang, Y. The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLoS Genet 2015, 11:e1005598.
Baranauskė, S, Mickutė, M, Plotnikova, A, Finke, A, Venclovas, Č, Klimašauskas, S, Vilkaitis, G. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER‐LIKE 1 proteins. Nucleic Acids Res 2015, 43:2802–2812.
Ren, G, Xie, M, Dou, Y, Zhang, S, Zhang, C, Yu, B. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 2012, 109:12817–12821.
Yu, B, Bi, L, Zheng, B, Ji, L, Chevalier, D, Agarwal, M, Ramachandran, V, Li, W, Lagrange, T, Walker, JC, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 2008, 105:10073–10078.
Chen, T, Cui, P, Xiong, L. The RNA‐binding protein HOS5 and serine/arginine‐rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2015, 43:8283–8298.
Manavella, PA, Hagmann, J, Ott, F, Laubinger, S, Franz, M, Macek, B, Weigel, D. Fast‐forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 2012, 151:859–870.
Speth, C, Willing, EM, Rausch, S, Schneeberger, K, Laubinger, S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 2013, 76:433–445.
Ren, G, Chen, X, Yu, B. Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol 2012, 22:695–700.
Chen, T, Cui, P, Chen, H, Ali, S, Zhang, S, Xiong, L. A KH‐domain RNA‐binding protein interacts with FIERY2/CTD phosphatase‐like 1 and splicing factors and is important for pre‐mRNA splicing in Arabidopsis. PLoS Genet 2013, 9:e1003875.
Cho, SK, Ben Chaabane, S, Shah, P, Poulsen, CP, Yang, SW. COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 2014, 5:5867.
Zhan, X, Wang, B, Li, H, Liu, R, Kalia, RK, Zhu, J‐K, Chinnusamy, V. Arabidopsis proline‐rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA 2012, 109:18198–18203.
Wu, X, Shi, Y, Li, J, Xu, L, Fang, Y, Li, X, Qi, Y. A role for the RNA‐binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 2013, 23:645–657.
Chaabane, SB, Liu, R, Chinnusamy, V, Kwon, Y, J‐h, P, Kim, SY, Zhu, J‐K, Yang, SW, Lee, B‐h. STA1, an Arabidopsis pre‐mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 2013, 41:1984–1997.
Koster, T, Meyer, K, Weinholdt, C, Smith, LM, Lummer, M, Speth, C, Grosse, I, Weigel, D, Staiger, D. Regulation of pri‐miRNA processing by the hnRNP‐like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 2014, 42:9925–9936.
van Kouwenhove, M, Kedde, M, Agami, R. MicroRNA regulation by RNA‐binding proteins and its implications for cancer. Nat Rev Cancer 2011, 11:644–656.
Kozomara, A, Griffiths‐Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42:D68–D73.
Barciszewska‐Pacak, M, Knop, K, Jarmołowski, A, Szweykowska‐Kulińska, Z. Arabidopsis thaliana microRNA162 level is posttranscriptionally regulated via splicing and polyadenylation site selection. Acta Biochim Pol 2016, doi: 10.18388/abp.2016_1349.
Megraw, M, Baev, V, Rusinov, V, Jensen, ST, Kalantidis, K, Hatzigeorgiou, AG. MicroRNA promoter element discovery in Arabidopsis. RNA 2006, 12:1612–1619.
Zhao, X, Li, L. Comparative analysis of microRNA promoters in Arabidopsis and rice. Genomics Proteomics Bioinformatics 2013, 11:56–60.
Zhao, X, Zhang, H, Li, L. Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 2013, 101:187–194.
Barciszewska‐Pacak, M, Milanowska, K, Knop, K, Bielewicz, D, Nuc, P, Plewka, P, Pacak, AM, Vazquez, F, Karlowski, W, Jarmolowski, A, et al. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 2015, 6:410.
Kruszka, K, Pieczynski, M, Windels, D, Bielewicz, D, Jarmolowski, A, Szweykowska‐Kulinska, Z, Vazquez, F. Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 2012, 169:1664–1672.
Meng, Y, Shao, C, Ma, X, Wang, H, Chen, M. Expression‐based functional investigation of the organ‐specific microRNAs in Arabidopsis. PLoS One 2012, 7:e50870.
Yang, X, Zhang, H, Li, L. Global analysis of gene‐level microRNA expression in Arabidopsis using deep sequencing data. Genomics 2011, 98:40–46.
Merchan, F, Boualem, A, Crespi, M, Frugier, F. Plant polycistronic precursors containing non‐homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 2009, 10:R136.
Jia, F, Rock, CD. MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. Plant Mol Biol 2013, 81:447–460.
Kruszka, K, Pacak, A, Swida‐Barteczka, A, Nuc, P, Alaba, S, Wroblewska, Z, Karlowski, W, Jarmolowski, A, Szweykowska‐Kulinska, Z. Transcriptionally and post‐transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 2014, 65:6123–6135.
Kruszka, K, Pacak, A, Swida‐Barteczka, A, Stefaniak, AK, Kaja, E, Sierocka, I, Karlowski, W, Jarmolowski, A, Szweykowska‐Kulinska, Z. Developmentally regulated expression and complex processing of barley pri‐microRNAs. BMC Genomics 2013, 14:34.
Zhang, L, Chia, JM, Kumari, S, Stein, JC, Liu, Z, Narechania, A, Maher, CA, Guill, K, McMullen, MD, Ware, D. A genome‐wide characterization of microRNA genes in maize. PLoS Genet 2009, 5:e1000716.
Alaba, S, Piszczalka, P, Pietrykowska, H, Pacak, AM, Sierocka, I, Nuc, PW, Singh, K, Plewka, P, Sulkowska, A, Jarmolowski, A. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol 2015, 206:352–367.
Axtell, MJ, Snyder, JA, Bartel, DP. Common functions for diverse small RNAs of land plants. Plant Cell 2007, 19:1750–1769.
Zhang, S, Liu, Y, Yu, B. New insights into pri‐miRNA processing and accumulation in plants. Wiley Interdiscip Rev RNA 2015, 6:533–545.
Brown, JW. A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Res 1986, 14:9549–9559.
Hartmuth, K, Barta, A. In vitro processing of a plant pre‐mRNA in a HeLa cell nuclear extract. Nucleic Acids Res 1986, 14:7513–7528.
Sakharkar, MK, Chow, VT, Kangueane, P. Distributions of exons and introns in the human genome. In Silico Biol 2004, 4:387–393.
Marquez, Y, Brown, JW, Simpson, C, Barta, A, Kalyna, M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 2012, 22:1184–1195.
Simpson, CG, Thow, G, Clark, GP, Jennings, SN, Watters, JA, Brown, JW. Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini‐exon. RNA 2002, 8:47–56.
Reddy, AS. Alternative splicing of pre‐messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 2007, 58:267–294.
Brown, JW, Smith, P, Simpson, CG. Arabidopsis consensus intron sequences. Plant Mol Biol 1996, 32:531–535.
Lewandowska, D, Simpson, CG, Clark, GP, Jennings, NS, Barciszewska‐Pacak, M, Lin, CF, Makalowski, W, Brown, JW, Jarmolowski, A. Determinants of plant U12‐dependent intron splicing efficiency. Plant Cell 2004, 16:1340–1352.
Goodall, GJ, Filipowicz, W. The AU‐rich sequences present in the introns of plant nuclear pre‐mRNAs are required for splicing. Cell 1989, 58:473–483.
Amit, M, Donyo, M, Hollander, D, Goren, A, Kim, E, Gelfman, S, Lev‐Maor, G, Burstein, D, Schwartz, S, Postolsky, B. Differential GC content between exons and introns establishes distinct strategies of splice‐site recognition. Cell Rep 2012, 1:543–556.
Will, CL, Luhrmann, R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011, 3:a003707.
Wang, BB, Brendel, V. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre‐mRNA splicing. Genome Biol 2004, 5:R102.
Kandels‐Lewis, S, Seraphin, B. Role of U6 snRNA in 5`splice site selection. Science 1993, 262:2035–2039.
Pan, Q, Saltzman, AL, Kim, YK, Misquitta, C, Shai, O, Maquat, LE, Frey, BJ, Blencowe, BJ. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense‐mediated mRNA decay to control gene expression. Genes Dev 2006, 20:153–158.
Ni, JZ, Grate, L, Donohue, JP, Preston, C, Nobida, N, O`Brien, G, Shiue, L, Clark, TA, Blume, JE, Ares, M Jr. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense‐mediated decay. Genes Dev 2007, 21:708–718.
Campbell, MA, Haas, BJ, Hamilton, JP, Mount, SM, Buell, CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 2006, 7:327.
Tan, S, Guo, J, Huang, Q, Chen, X, Li‐Ling, J, Li, Q, Ma, F. Retained introns increase putative microRNA targets within 3′ UTRs of human mRNA. FEBS Lett 2007, 581:1081–1086.
Sobkowiak, L, Karlowski, W, Jarmolowski, A, Szweykowska‐Kulinska, Z. Non‐canonical processing of Arabidopsis pri‐miR319a/b/c generates additional microRNAs to target one RAP2.12 mRNA isoform. Front Plant Sci 2012, 3:46.
Ner‐Gaon, H, Halachmi, R, Savaldi‐Goldstein, S, Rubin, E, Ophir, R, Fluhr, R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 2004, 39:877–885.
Reddy, AS, Marquez, Y, Kalyna, M, Barta, A. Complexity of the alternative splicing landscape in plants. Plant Cell 2013, 25:3657–3683.
Filichkin, S, Priest, HD, Megraw, M, Mockler, TC. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Curr Opin Plant Biol 2015, 24:125–135.
Kalyna, M, Lopato, S, Voronin, V, Barta, A. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Res 2006, 34:4395–4405.
Wachter, A, Ruhl, C, Stauffer, E. The role of polypyrimidine tract‐binding proteins and other hnRNP proteins in plant splicing regulation. Front Plant Sci 2012, 3:81.
Koncz, C, Dejong, F, Villacorta, N, Szakonyi, D, Koncz, Z. The spliceosome‐activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci 2012, 3:9.
Reddy, AS. Plant serine/arginine‐rich proteins and their role in pre‐mRNA splicing. Trends Plant Sci 2004, 9:541–547.
Barta, A, Kalyna, M, Reddy, AS. Implementing a rational and consistent nomenclature for serine/arginine‐rich protein splicing factors (SR proteins) in plants. Plant Cell 2010, 22:2926–2929.
Duque, P. A role for SR proteins in plant stress responses. Plant Signal Behav 2011, 6:49–54.
Meyer, K, Koester, T, Staiger, D. Pre‐mRNA splicing in plants: in vivo functions of RNA‐binding proteins implicated in the splicing process. Biomolecules 2015, 5:1717–1740.
Hajheidari, M, Farrona, S, Huettel, B, Koncz, Z, Koncz, C. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C‐terminal domain of Arabidopsis RNA polymerase II. Plant Cell 2012, 24:1626–1642.
Brown, JW, Marshall, DF, Echeverria, M. Intronic noncoding RNAs and splicing. Trends Plant Sci 2008, 13:335–342.
Hirsch, J, Lefort, V, Vankersschaver, M, Boualem, A, Lucas, A, Thermes, C, d`Aubenton‐Carafa, Y, Crespi, M. Characterization of 43 non‐protein‐coding mRNA genes in Arabidopsis, including the MIR162a‐derived transcripts. Plant Physiol 2006, 140:1192–1204.
Kutter, C, Schob, H, Stadler, M, Meins, F Jr, Si‐Ammour, A. MicroRNA‐mediated regulation of stomatal development in Arabidopsis. Plant Cell 2007, 19:2417–2429.
Kurihara, Y, Watanabe, Y. Arabidopsis micro‐RNA biogenesis through Dicer‐like 1 protein functions. Proc Natl Acad Sci USA 2004, 101:12753–12758.
Lu, C, Jeong, DH, Kulkarni, K, Pillay, M, Nobuta, K, German, R, Thatcher, SR, Maher, C, Zhang, L, Ware, D, et al. Genome‐wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat‐miRNAs). Proc Natl Acad Sci USA 2008, 105:4951–4956.
Sunkar, R, Jagadeeswaran, G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 2008, 8:37.
Wu, X, Liu, M, Downie, B, Liang, C, Ji, G, Li, QQ, Hunt, AG. Genome‐wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci USA 2011, 108:12533–12538.
Llave, C, Kasschau, KD, Rector, MA, Carrington, JC. Endogenous and silencing‐associated small RNAs in plants. Plant Cell 2002, 14:1605–1619.
Reinhart, BJ, Bartel, DP. Small RNAs correspond to centromere heterochromatic repeats. Science 2002, 297:1831.
Palatnik, JF, Allen, E, Wu, X, Schommer, C, Schwab, R, Carrington, JC, Weigel, D. Control of leaf morphogenesis by microRNAs. Nature 2003, 425:257–263.
Mayr, C, Bartel, DP. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673–684.
Gunderson, SI, Polycarpou‐Schwarz, M, Mattaj, IW. U1 snRNP inhibits pre‐mRNA polyadenylation through a direct interaction between U1 70K and poly (A) polymerase. Mol Cell 1998, 1:255–264.
Kaida, D, Berg, MG, Younis, I, Kasim, M, Singh, LN, Wan, L, Dreyfuss, G. U1 snRNP protects pre‐mRNAs from premature cleavage and polyadenylation. Nature 2010, 468:664–668.
Martinson, HG. An active role for splicing in 3`‐end formation. Wiley Interdiscip Rev RNA 2011, 2:459–470.
Berg, MG, Singh, LN, Younis, I, Liu, Q, Pinto, AM, Kaida, D, Zhang, Z, Cho, S, Sherrill‐Mix, S, Wan, L, et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 2012, 150:53–64.
Yan, K, Liu, P, Wu, CA, Yang, GD, Xu, R, Guo, QH, Huang, JG, Zheng, CC. Stress‐induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 2012, 48:521–531.
Bielewicz, D, Kalak, M, Kalyna, M, Windels, D, Barta, A, Vazquez, F, Szweykowska‐Kulinska, Z, Jarmolowski, A. Introns of plant pri‐miRNAs enhance miRNA biogenesis. EMBO Rep 2013, 14:622–628.
Schwab, R, Speth, C, Laubinger, S, Voinnet, O. Enhanced microRNA accumulation through stemloop‐adjacent introns. EMBO Rep 2013, 14:615–621.
Mohr, PG, Cahill, DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 2007, 7:181–191.
Knop, K, Stepien, A, Barciszewska‐Pacak, M, Taube, M, Bielewicz, D, Michalak, M, Borst, JW, Jarmolowski, A, Szweykowska‐Kulinska, Z. Active 5` splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron‐containing genes. Nucleic Acids Res 2016, doi: 10.1093/nar/gkw895.
Kim, JY, Kwak, KJ, Jung, HJ, Lee, HJ, Kang, H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER‐LIKE Protein3 mRNA. Plant Cell Physiol 2010, 51:1079–1083.
Bologna, NG, Mateos, JL, Bresso, EG, Palatnik, JF. A loop‐to‐base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 2009, 28:3646–3656.
Addo‐Quaye, C, Snyder, JA, Park, YB, Li, Y‐F, Sunkar, R, Axtell, MJ. Sliced microRNA targets and precise loop‐first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 2009, 15:2112–2121.
Bologna, NG, Schapire, AL, Zhai, J, Chorostecki, U, Boisbouvier, J, Meyers, BC, Palatnik, JF. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 2013, 23:1675–1689.
Janas, MM, Khaled, M, Schubert, S, Bernstein, JG, Golan, D, Veguilla, RA, Fisher, DE, Shomron, N, Levy, C, Novina, CD. Feed‐forward microprocessing and splicing activities at a microRNA‐containing intron. PLoS Genet 2011, 7:e1002330.
Ramalingam, P, Palanichamy, JK, Singh, A, Das, P, Bhagat, M, Kassab, MA, Sinha, S, Chattopadhyay, P. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 2014, 20:76–87.
Agranat‐Tamir, L, Shomron, N, Sperling, J, Sperling, R. Interplay between pre‐mRNA splicing and microRNA biogenesis within the supraspliceosome. Nucleic Acids Res 2014, 42:4640–4651.
Moreno, NN, Giono, LE, Botto, AEC, Muñoz, MJ, Kornblihtt, AR. Chromatin, DNA structure and alternative splicing. FEBS Lett 2015, 589:3370–3378.
Brzyżek, G, Świeżewski, S. Mutual interdependence of splicing and transcription elongation. Transcription 2015, 6:37–39.
Pandya‐Jones, A, Black, DL. Co‐transcriptional splicing of constitutive and alternative exons. RNA 2009, 15:1896–1908.
Singh, J, Padgett, RA. Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009, 16:1128–1133.
Alexander, RD, Innocente, SA, Barrass, JD, Beggs, JD. Splicing‐dependent RNA polymerase pausing in yeast. Mol Cell 2010, 40:582–593.
Oesterreich, FC, Preibisch, S, Neugebauer, KM. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 2010, 40:571–581.
Jones, MA, Williams, BA, McNicol, J, Simpson, CG, Brown, JW, Harmer, SL. Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects. Plant Cell 2012, 24:4066–4082.
Dolata, J, Guo, Y, Kołowerzo, A, Smolinski, D, Brzyzek, G, Jarmolowski, A, Świezewski, S. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis. EMBO J 2015, 34:544–548.
Morlando, M, Ballarino, M, Gromak, N, Pagano, F, Bozzoni, I, Proudfoot, NJ. Primary microRNA transcripts are processed co‐transcriptionally. Nat Struct Mol Biol 2008, 15:902–909.
Dhir, A, Dhir, S, Proudfoot, NJ, Jopling, CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015, 22:319–327.
Otero, G, Fellows, J, Li, Y, de Bizemont, T, Dirac, AM, Gustafsson, CM, Erdjument‐Bromage, H, Tempst, P, Svejstrup, JQ. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 1999, 3:109–118.
Dolata, J, Bajczyk, M, Bielewicz, D, Niedojadlo, K, Niedojadlo, J, Pietrykowska, H, Walczak, W, Szweykowska‐Kulinska, Z, Jarmolowski, A. Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 2016, 172:297–312.
Huang, V, Zheng, J, Qi, Z, Wang, J, Place, RF, Yu, J, Li, H, Li, LC. Ago1 Interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells. PLoS Genet 2013, 9:e1003821.
Ameyar‐Zazoua, M, Rachez, C, Souidi, M, Robin, P, Fritsch, L, Young, R, Morozova, N, Fenouil, R, Descostes, N, Andrau, JC, et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol 2012, 19:998–1004.
Alló, M, Agirre, E, Bessonov, S, Bertucci, P, Acuña, LG, Buggiano, V, Bellora, N, Singh, B, Petrillo, E, Blaustein, M. Argonaute‐1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc Natl Acad Sci USA 2014, 111:15622–15629.
Vaucheret, H. AGO1 homeostasis involves differential production of 21‐nt and 22‐nt miR168 species by MIR168a and MIR168b. PLoS One 2009, 4:e6442.
Vaucheret, H, Mallory, AC, Bartel, DP. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 2006, 22:129–136.