Pan, Q, Shai, O, Lee, LJ, Frey, BJ, Blencowe, BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high‐throughput sequencing. Nat Genet 2008, 40:1413–1415.
Wang, ET, Sandberg, R, Luo, S, Khrebtukova, I, Zhang, L, Mayr, C, Kingsmore, SF, Schroth, GP, Burge, CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470–476.
Chen, K, Dai, X, Wu, J. Alternative splicing: an important mechanism in stem cell biology. World J Stem Cells 2015, 7:1–10.
Ule, J, Darnell, RB. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol 2006, 16:102–110.
Raj, B, Blencowe, BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 2015, 87:14–27.
Vuong, CK, Black, DL, Zheng, S. The neurogenetics of alternative splicing. Nat Rev Neurosci 2016, 17:265–281.
Scotti, MM, Swanson, MS. RNA mis‐splicing in disease. Nat Rev Genet 2016, 17:19–32.
De Conti, L, Baralle, M, Buratti, E. Exon and intron definition in pre‐mRNA splicing. WIREs RNA 2013, 4:49–60.
Hong, X, Scofield, DG, Lynch, M. Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 2006, 23:2392–2404.
Robberson, BL, Cote, GJ, Berget, SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990, 10:84–94.
Berget, SM. Exon recognition in vertebrate splicing. J Biol Chem 1995, 270:2411–2414.
Dominski, Z, Kole, R. Selection of splice sites in pre‐mRNAs with short internal exons. Mol Cell Biol 1991, 11:6075–6083.
Sorek, R, Shemesh, R, Cohen, Y, Basechess, O, Ast, G, Shamir, R. A non‐EST‐based method for exon‐skipping prediction. Genome Res 2004, 14:1617–1623.
Zhang, C, Krainer, AR, Zhang, MQ. Evolutionary impact of limited splicing fidelity in mammalian genes. Trends Genet 2007, 23:484–488.
Beachy, PA, Helfand, SL, Hogness, DS. Segmental distribution of bithorax complex proteins during Drosophila development. Nature 1985, 313:545–551.
Cooper, TA, Ordahl, CP. A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 1985, 260:11140–11148.
Small, SJ, Haines, SL, Akeson, RA. Polypeptide variation in an N‐CAM extracellular immunoglobulin‐like fold is developmentally regulated through alternative splicing. Neuron 1988, 1:1007–1017.
Santoni, MJ, Barthels, D, Vopper, G, Boned, A, Goridis, C, Wille, W. Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J 1989, 8:385–392.
McAllister, L, Rehm, EJ, Goodman, GS, Zinn, K. Alternative splicing of micro‐exons creates multiple forms of the insect cell adhesion molecule fasciclin I. J Neurosci 1992, 12:895–905.
Volfovsky, N, Haas, BJ, Salzberg, SL. Computational discovery of internal micro‐exons. Genome Res 2003, 13:1216–1221.
Wu, TD, Watanabe, CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21:1859–1875.
Wang, Z, Gerstein, M, Snyder, M. RNA‐Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57–63.
Trapnell, C, Pachter, L, Salzberg, SL. TopHat: discovering splice junctions with RNA‐Seq. Bioinformatics 2009, 25:1105–1111.
Wang, K, Singh, D, Zeng, Z, Coleman, SJ, Huang, Y, Savich, GL, He, X, Mieczkowski, P, Grimm, SA, Perou, CM, et al. MapSplice: accurate mapping of RNA‐seq reads for splice junction discovery. Nucleic Acids Res 2010, 38:e178.
Wu, J, Anczukow, O, Krainer, AR, Zhang, MQ, Zhang, C. OLego: fast and sensitive mapping of spliced mRNA‐Seq reads using small seeds. Nucleic Acids Res 2013, 41:5149–5163.
Dobin, A, Davis, CA, Schlesinger, F, Drenkow, J, Zaleski, C, Jha, S, Batut, P, Chaisson, M, Gingeras, TR. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics 2013, 29:15–21.
Kim, D, Langmead, B, Salzberg, SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015, 12:357–360.
Irimia, M, Weatheritt, RJ, Ellis, JD, Parikshak, NN, Gonatopoulos‐Pournatzis, T, Babor, M, Quesnel‐Vallieres, M, Tapial, J, Raj, B, O`Hanlon, D, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 2014, 159:1511–1523.
Li, YI, Sanchez‐Pulido, L, Haerty, W, Ponting, CP. RBFOX and PTBP1 proteins regulate the alternative splicing of micro‐exons in human brain transcripts. Genome Res 2015, 25:1–13.
Yan, Q, Weyn‐Vanhentenryck, SM, Wu, J, Sloan, SA, Zhang, Y, Chen, K, Wu, JQ, Barres, BA, Zhang, C. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc Natl Acad Sci USA 2015, 112:3445–3450.
Sterner, DA, Carlo, T, Berget, SM. Architectural limits on split genes. Proc Natl Acad Sci USA 1996, 93:15081–15085.
Carlo, T, Sterner, DA, Berget, SM. An intron splicing enhancer containing a G‐rich repeat facilitates inclusion of a vertebrate micro‐exon. RNA 1996, 2:342–353.
Carlo, T, Sierra, R, Berget, SM. A 5′ splice site‐proximal enhancer binds SF1 and activates exon bridging of a microexon. Mol Cell Biol 2000, 20:3988–3995.
Gehman, LT, Stoilov, P, Maguire, J, Damianov, A, Lin, CH, Shiue, L, Ares, M Jr, Mody, I, Black, DL. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet 2011, 43:706–711.
Weyn‐Vanhentenryck, SM, Mele, A, Yan, Q, Sun, S, Farny, N, Zhang, Z, Xue, C, Herre, M, Silver, PA, Zhang, MQ, et al. HITS‐CLIP and integrative modeling define the Rbfox splicing‐regulatory network linked to brain development and autism. Cell Rep 2014, 6:1139–1152.
Kuroyanagi, H. Fox‐1 family of RNA‐binding proteins. Cell Mol Life Sci 2009, 66:3895–3907.
Ule, J, Ule, A, Spencer, J, Williams, A, Hu, JS, Cline, M, Wang, H, Clark, T, Fraser, C, Ruggiu, M, et al. Nova regulates brain‐specific splicing to shape the synapse. Nat Genet 2005, 37:844–852.
Zhang, C, Frias, MA, Mele, A, Ruggiu, M, Eom, T, Marney, CB, Wang, H, Licatalosi, DD, Fak, JJ, Darnell, RB. Integrative modeling defines the Nova splicing‐regulatory network and its combinatorial controls. Science 2010, 329:439–443.
Ho, TH, Charlet, BN, Poulos, MG, Singh, G, Swanson, MS, Cooper, TA. Muscleblind proteins regulate alternative splicing. EMBO J 2004, 23:3103–3112.
Charizanis, K, Lee, KY, Batra, R, Goodwin, M, Zhang, C, Yuan, Y, Shiue, L, Cline, M, Scotti, MM, Xia, G, et al. Muscleblind‐like 2‐mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 2012, 75:437–450.
Ule, J, Stefani, G, Mele, A, Ruggiu, M, Wang, X, Taneri, B, Gaasterland, T, Blencowe, BJ, Darnell, RB. An RNA map predicting Nova‐dependent splicing regulation. Nature 2006, 444:580–586.
Sun, S, Zhang, Z, Fregoso, O, Krainer, AR. Mechanisms of activation and repression by the alternative splicing factors RBFOX1/2. RNA 2012, 18:274–283.
Zhang, C, Zhang, Z, Castle, J, Sun, S, Johnson, J, Krainer, AR, Zhang, MQ. Defining the regulatory network of the tissue‐specific splicing factors Fox‐1 and Fox‐2. Genes Dev 2008, 22:2550–2563.
Darnell, RB. HITS‐CLIP: panoramic views of protein‐RNA regulation in living cells. WIREs RNA 2010, 1:266–286.
Lykke‐Andersen, S, Jensen, TH. Nonsense‐mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 2015, 16:665–677.
Tsyba, L, Skrypkina, I, Rynditch, A, Nikolaienko, O, Ferenets, G, Fortna, A, Gardiner, K. Alternative splicing of mammalian intersectin 1: domain associations and tissue specificities. Genomics 2004, 84:106–113.
Tsyba, L, Gryaznova, T, Dergai, O, Dergai, M, Skrypkina, I, Kropyvko, S, Boldyryev, O, Nikolaienko, O, Novokhatska, O, Rynditch, A. Alternative splicing affecting the SH3A domain controls the binding properties of intersectin 1 in neurons. Biochem Biophys Res Commun 2008, 372:929–934.
Ohnishi, T, Shirane, M, Hashimoto, Y, Saita, S, Nakayama, KI. Identification and characterization of a neuron‐specific isoform of protrudin. Genes Cells 2014, 19:97–111.
Zibetti, C, Adamo, A, Binda, C, Forneris, F, Toffolo, E, Verpelli, C, Ginelli, E, Mattevi, A, Sala, C, Battaglioli, E. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J Neurosci 2010, 30:2521–2532.
Toffolo, E, Rusconi, F, Paganini, L, Tortorici, M, Pilotto, S, Heise, C, Verpelli, C, Tedeschi, G, Maffioli, E, Sala, C, et al. Phosphorylation of neuronal Lysine‐Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. J Neurochem 2014, 128:603–616.
Quesnel‐Vallieres, M, Dargaei, Z, Irimia, M, Gonatopoulos‐Pournatzis, T, Ip, JY, Wu, M, Sterne‐Weiler, T, Nakagawa, S, Woodin, MA, Blencowe, BJ, et al. Misregulation of an activity‐dependent splicing network as a common mechanism underlying autism spectrum disorders. Mol Cell 2016, 64:1023–1034.
Quesnel‐Vallieres, M, Irimia, M, Cordes, SP, Blencowe, BJ. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev 2015, 29:746–759.
Kamiguchi, H, Lemmon, V. A neuronal form of the cell adhesion molecule L1 contains a tyrosine‐based signal required for sorting to the axonal growth cone. J Neurosci 1998, 18:3749–3756.
Kamiguchi, H, Long, KE, Pendergast, M, Schaefer, AW, Rapoport, I, Kirchhausen, T, Lemmon, V. The neural cell adhesion molecule L1 interacts with the AP‐2 adaptor and is endocytosed via the clathrin‐mediated pathway. J Neurosci 1998, 18:5311–5321.
De Angelis, E, Brummendorf, T, Cheng, L, Lemmon, V, Kenwrick, S. Alternative use of a mini exon of the L1 gene affects L1 binding to neural ligands. J Biol Chem 2001, 276:32738–32742.
Jacob, J, Haspel, J, Kane‐Goldsmith, N, Grumet, M. L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2. J Neurobiol 2002, 51:177–189.
Jouet, M, Rosenthal, A, Armstrong, G, MacFarlane, J, Stevenson, R, Paterson, J, Metzenberg, A, Ionasescu, V, Temple, K, Kenwrick, S. X‐linked spastic paraplegia (SPG1), MASA syndrome and X‐linked hydrocephalus result from mutations in the L1 gene. Nat Genet 1994, 7:402–407.
Gaggero, A, De Ambrosis, A, Mezzanzanica, D, Piazza, T, Rubartelli, A, Figini, M, Canevari, S, Ferrini, S. A novel isoform of pro‐interleukin‐18 expressed in ovarian tumors is resistant to caspase‐1 and −4 processing. Oncogene 2004, 23:7552–7560.
Whiting, P, McKernan, RM, Iversen, LL. Another mechanism for creating diversity in γ‐aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ 2 phosphorylation site. Proc Natl Acad Sci USA 1990, 87:9966–9970.
Moss, SJ, Doherty, CA, Huganir, RL. Identification of the cAMP‐dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the β 1, γ 2S, and γ 2L subunits of the γ‐aminobutyric acid type A receptor. J Biol Chem 1992, 267:14470–14476.
Krishek, BJ, Xie, X, Blackstone, C, Huganir, RL, Moss, SJ, Smart, TG. Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 1994, 12:1081–1095.
Huntsman, MM, Tran, BV, Potkin, SG, Bunney, WE Jr, Jones, EG. Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the γ‐amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998, 95:15066–15071.
Rusconi, F, Paganini, L, Braida, D, Ponzoni, L, Toffolo, E, Maroli, A, Landsberger, N, Bedogni, F, Turco, E, Pattini, L, et al. LSD1 neurospecific alternative splicing controls neuronal excitability in mouse models of epilepsy. Cereb Cortex 2015, 25:2729–2740.
Rusconi, F, Grillo, B, Ponzoni, L, Bassani, S, Toffolo, E, Paganini, L, Mallei, A, Braida, D, Passafaro, M, Popoli, M, et al. LSD1 modulates stress‐evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci USA 2016, 113:3651–3656.