Park, BJ, Wannemuehler, KA, Marston, BJ, Govender, N, Pappas, PG, Chiller, TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23:525–530.
Samanta, P, Singh, N. Complications of invasive mycoses in organ transplant recipients. Expert Rev Anti Infect Ther 2016, 14:1195–1202.
Fedorova, ND, Khaldi, N, Joardar, VS, Maiti, R, Amedeo, P, Anderson, MJ, Crabtree, J, Silva, JC, Badger, JH, Albarraq, A, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 2008, 4:e1000046.
Moran, GP, Coleman, DC, Sullivan, DJ. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell 2011, 10:34–42.
Garcia‐Solache, MA, Casadevall, A. Global warming will bring new fungal diseases for mammals. MBio 2010, 1:e00061–10.
Idnurm, A, Bahn, YS, Nielsen, K, Lin, X, Fraser, JA, Heitman, J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 2005, 3:753–764.
Garcia‐Solache, MA, Izquierdo‐Garcia, D, Smith, C, Bergman, A, Casadevall, A. Fungal virulence in a lepidopteran model is an emergent property with deterministic features. MBio 2013, 4:e00100–e00113.
Perfect, JR. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 2006, 6:463–468.
Chow, ED, Liu, OW, O`Brien, S, Madhani, HD. Exploration of whole‐genome responses of the human AIDS‐associated yeast pathogen Cryptococcus neoformans var. grubii: nitric oxide stress and body temperature. Curr Genet 2007, 52:137–148.
Rosa e Silva, LK, Staats, CC, Goulart, LS, Morello, LG, Pelegrinelli Fungaro, MH, Schrank, A, Vainstein, MH. Identification of novel temperature‐regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 2008, 159:221–229.
Steen, BR, Lian, T, Zuyderduyn, S, MacDonald, WK, Marra, M, Jones, SJ, Kronstad, JW. Temperature‐regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res 2002, 12:1386–1400.
Havel, VE, Wool, NK, Ayad, D, Downey, KM, Wilson, CF, Larsen, P, Djordjevic, JT, Panepinto, JC. Ccr4 promotes resolution of the endoplasmic reticulum stress response during host temperature adaptation in Cryptococcus neoformans. Eukaryot Cell 2011, 10:895–901.
Bloom, AL, Solomons, JT, Havel, VE, Panepinto, JC. Uncoupling of mRNA synthesis and degradation impairs adaptation to host temperature in Cryptococcus neoformans. Mol Microbiol 2013, 89:65–83.
Hu, G, Cheng, PY, Sham, A, Perfect, JR, Kronstad, JW. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 2008, 69:1456–1475.
Fan, W, Kraus, PR, Boily, MJ, Heitman, J. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 2005, 4:1420–1433.
Banerjee, D, Bloom, AL, Panepinto, JC. Opposing PKA and Hog1 signals control the post‐transcriptional response to glucose availability in Cryptococcus neoformans. Mol Microbiol 2016, 102: 306–320.
Sun, M, Schwalb, B, Pirkl, N, Maier, KC, Schenk, A, Failmezger, H, Tresch, A, Cramer, P. Global analysis of eukaryotic mRNA degradation reveals Xrn1‐dependent buffering of transcript levels. Mol Cell 2013, 52:52–62.
Sun, M, Schwalb, B, Schulz, D, Pirkl, N, Etzold, S, Lariviere, L, Maier, KC, Seizl, M, Tresch, A, Cramer, P. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res 2012, 22:1350–1359.
Dahan, N, Choder, M. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. Biochim Biophys Acta 2013, 1829:169–173.
Haimovich, G, Medina, DA, Causse, SZ, Garber, M, Millan‐Zambrano, G, Barkai, O, Chavez, S, Perez‐Ortin, JE, Darzacq, X, Choder, M. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 2013, 153:1000–1011.
Harel‐Sharvit, L, Eldad, N, Haimovich, G, Barkai, O, Duek, L, Choder, M. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 2010, 143:552–563.
Shalem, O, Groisman, B, Choder, M, Dahan, O, Pilpel, Y. Transcriptome kinetics is governed by a genome‐wide coupling of mRNA production and degradation: a role for RNA Pol II. PLoS Genet 2011, 7:e1002273.
Lee, KT, So, YS, Yang, DH, Jung, KW, Choi, J, Lee, DG, Kwon, H, Jang, J, Wang, LL, Cha, S, et al. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun 2016, 7:12766.
Yang, DH, Jung, KW, Bang, S, Lee, JW, Song, MH, Floyd‐Averette, A, Festa, RA, Ianiri, G, Idnurm, A, Thiele, DJ, et al. Rewiring of signaling networks modulating thermotolerance in the human pathogen Cryptococcus neoformans. Genetics 2017, 205:201–219.
D`Souza, CA, Alspaugh, JA, Yue, C, Harashima, T, Cox, GM, Perfect, JR, Heitman, J. Cyclic AMP‐dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 2001, 21:3179–3191.
Richter, JD, Coller, J. Pausing on polyribosomes: make way for elongation in translational control. Cell 2015, 163:292–300.
Brandman, O, Hegde, RS. Ribosome‐associated protein quality control. Nat Struct Mol Biol 2016, 23:7–15.
Simms, CL, Thomas, EN, Zaher, HS. Ribosome‐based quality control of mRNA and nascent peptides. Wiley Interdiscip Rev RNA 2017, 8. doi: 10.1002/wrna.1366.
Shalgi, R, Hurt, JA, Krykbaeva, I, Taipale, M, Lindquist, S, Burge, CB. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 2013, 49:439–452.
Merret, R, Nagarajan, VK, Carpentier, MC, Park, S, Favory, JJ, Descombin, J, Picart, C, Charng, YY, Green, PJ, Deragon, JM, et al. Heat‐induced ribosome pausing triggers mRNA co‐translational decay in Arabidopsis thaliana. Nucleic Acids Res 2015, 43:4121–4132.
Meier, KD, Deloche, O, Kajiwara, K, Funato, K, Riezman, H. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol Biol Cell 2006, 17:1164–1175.
Panepinto, JC, Komperda, KW, Hacham, M, Shin, S, Liu, X, Williamson, PR. Binding of serum mannan binding lectin to a cell integrity‐defective Cryptococcus neoformans ccr4Δ mutant. Infect Immun 2007, 75:4769–4779.
Grigull, J, Mnaimneh, S, Pootoolal, J, Robinson, MD, Hughes, TR. Genome‐wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 2004, 24:5534–5547.
Hu, W, Sweet, TJ, Chamnongpol, S, Baker, KE, Coller, J. Co‐translational mRNA decay in Saccharomyces cerevisiae. Nature 2009, 461:225–229.
Spriggs, KA, Stoneley, M, Bushell, M, Willis, AE. Re‐programming of translation following cell stress allows IRES‐mediated translation to predominate. Biol Cell 2008, 100:27–38.
Qiu, Y, Davis, MJ, Dayrit, JK, Hadd, Z, Meister, DL, Osterholzer, JJ, Williamson, PR, Olszewski, MA. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS One 2012, 7:e47853.
Feldmesser, M, Kress, Y, Novikoff, P, Casadevall, A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 2000, 68:4225–4237.
Hu, G, Hacham, M, Waterman, SR, Panepinto, J, Shin, S, Liu, X, Gibbons, J, Valyi‐Nagy, T, Obara, K, Jaffe, HA, et al. PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J Clin Invest 2008, 118:1186–1197.
Alanio, A, Vernel‐Pauillac, F, Sturny‐Leclere, A, Dromer, F. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy. MBio 2015, 6: e02580–14.
Williamson, PR. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 1994, 176:656–664.
Ben‐Ari, Y, Brody, Y, Kinor, N, Mor, A, Tsukamoto, T, Spector, DL, Singer, RH, Shav‐Tal, Y. The life of an mRNA in space and time. J Cell Sci 2010, 123:1761–1774.
Dever, TE, Feng, L, Wek, RC, Cigan, AM, Donahue, TF, Hinnebusch, AG. Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene‐specific translational control of GCN4 in yeast. Cell 1992, 68:585–596.
Reineke, LC, Cao, Y, Baus, D, Hossain, NM, Merrick, WC. Insights into the role of yeast eIF2A in IRES‐mediated translation. PLoS One 2011, 6:e24492.
Bloom, AL, Panepinto, JC. RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress. Wiley Interdiscip Rev RNA 2014, 5:393–406.
Hu, G, McQuiston, T, Bernard, A, Park, YD, Qiu, J, Vural, A, Zhang, N, Waterman, SR, Blewett, NH, Myers, TG, et al. A conserved mechanism of TOR‐dependent RCK‐mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015, 17:930–942.
Hu, G, McQuiston, T, Bernard, A, Park, YD, Qiu, J, Vural, A, Zhang, N, Waterman, SR, Blewett, NH, Myers, TG, et al. TOR‐dependent post‐transcriptional regulation of autophagy. Autophagy 2015, 11:2390–2392.
Goler‐Baron, V, Selitrennik, M, Barkai, O, Haimovich, G, Lotan, R, Choder, M. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev 2008, 22:2022–2027.
Choi, J, Jung, WH, Kronstad, JW. The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: connections with iron homeostasis. J Microbiol 2015, 53:579–587.
Maeng, S, Ko, YJ, Kim, GB, Jung, KW, Floyd, A, Heitman, J, Bahn, YS. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 2010, 9:360–378.
Chabrier‐Rosello, Y, Gerik, KJ, Koselny, K, DiDone, L, Lodge, JK, Krysan, DJ. Cryptococcus neoformans phosphoinositide‐dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes. Eukaryot Cell 2013, 12:12–22.
Lee, H, Khanal Lamichhane, A, Garraffo, HM, Kwon‐Chung, KJ, Chang, YC. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol Microbiol 2012, 84:130–146.
Bahn, YS, Kojima, K, Cox, GM, Heitman, J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell 2005, 16:2285–2300.
Zanolari, B, Friant, S, Funato, K, Sutterlin, C, Stevenson, BJ, Riezman, H. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 2000, 19:2824–2833.
Pastor‐Flores, D, Ferrer‐Dalmau, J, Bahi, A, Boleda, M, Biondi, RM, Casamayor, A. Depletion of yeast PDK1 orthologs triggers a stress‐like transcriptional response. BMC Genomics 2015, 16:719.
Voordeckers, K, Kimpe, M, Haesendonckx, S, Louwet, W, Versele, M, Thevelein, JM. Yeast 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) orthologs Pkh1‐3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem 2011, 286:22017–22027.
Brewster, JL, Gustin, MC. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 1994, 10:425–439.
Rep, M, Krantz, M, Thevelein, JM, Hohmann, S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway‐dependent genes. J Biol Chem 2000, 275:8290–8300.
Melamed, D, Pnueli, L, Arava, Y. Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 2008, 14:1337–1351.
Uesono, Y, Toh, EA. Transient inhibition of translation initiation by osmotic stress. J Biol Chem 2002, 277:13848–13855.
Warringer, J, Hult, M, Regot, S, Posas, F, Sunnerhagen, P. The HOG pathway dictates the short‐term translational response after hyperosmotic shock. Mol Biol Cell 2010, 21:3080–3092.
Ko, YJ, Yu, YM, Kim, GB, Lee, GW, Maeng, PJ, Kim, S, Floyd, A, Heitman, J, Bahn, YS. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress‐activated HOG signaling pathways. Eukaryot Cell 2009, 8:1197–1217.
Mitchell, A, Romano, GH, Groisman, B, Yona, A, Dekel, E, Kupiec, M, Dahan, O, Pilpel, Y. Adaptive prediction of environmental changes by microorganisms. Nature 2009, 460:220–224.
Choi, J, Vogl, AW, Kronstad, JW. Regulated expression of cyclic AMP‐dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans. Mol Microbiol 2012, 85:700–715.
Geddes, JM, Croll, D, Caza, M, Stoynov, N, Foster, LJ, Kronstad, JW. Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence‐associated proteins and potential biomarkers by protein kinase A. BMC Microbiol 2015, 15:206.
Hu, G, Steen, BR, Lian, T, Sham, AP, Tam, N, Tangen, KL, Kronstad, JW. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 2007, 3:e42.
Hicks, JK, D`Souza, CA, Cox, GM, Heitman, J. Cyclic AMP‐dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 2004, 3:14–26.
Geddes, JM, Caza, M, Croll, D, Stoynov, N, Foster, LJ, Kronstad, JW. Analysis of the protein kinase A‐regulated proteome of Cryptococcus neoformans identifies a role for the ubiquitin‐proteasome pathway in capsule formation. MBio 2016, 7:e01862‐15.
Moriya, H, Shimizu‐Yoshida, Y, Omori, A, Iwashita, S, Katoh, M, Sakai, A. Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 2001, 15:1217–1228.
Lee, P, Cho, BR, Joo, HS, Hahn, JS. Yeast Yak1 kinase, a bridge between PKA and stress‐responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol 2008, 70:882–895.
Rodriguez‐Gil, A, Ritter, O, Hornung, J, Stekman, H, Kruger, M, Braun, T, Kremmer, E, Kracht, M, Schmitz, ML. HIPK family kinases bind and regulate the function of the CCR4‐NOT complex. Mol Biol Cell 2016, 27:1969–1980.
Kronstad, JW, Hu, G, Choi, J. The cAMP/protein kinase A pathway and virulence in Cryptococcus neoformans. Mycobiology 2011, 39:143–150.