Pinol‐Roma, S, Choi, YD, Matunis, MJ, Dreyfuss, G. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA‐binding proteins. Genes Dev 1988, 2:215–227.
Dreyfuss, G, Matunis, MJ, Pinol‐Roma, S, Burd, CG. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993, 62:289–321.
Dreyfuss, G, Kim, VN, Kataoka, N. Messenger‐RNA‐binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002, 3:195–205.
Beyer, AL, Christensen, ME, Walker, BW, LeStourgeon, WM. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell 1977, 11:127–138.
Jean‐Philippe, J, Paz, S, Caputi, M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013, 14:18999–19024.
Kenan, DJ, Query, CC, Keene, JD. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 1991, 16:214–220.
Dreyfuss, G, Philipson, L, Mattaj, IW. Ribonucleoprotein particles in cellular processes. J Cell Biol 1988, 106:1419–1425.
Guil, S, Long, JC, Caceres, JF. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006, 26:5744–5758.
Roy, R, Durie, D, Li, H, Liu, BQ, Skehel, JM, Mauri, F, Cuorvo, LV, Barbareschi, M, Guo, L, Holcik, M, et al. hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF‐2/S6K2 signalling. Nucleic Acids Res 2014, 42:12483–12497.
Pino, I, Pio, R, Toledo, G, Zabalegui, N, Vicent, S, Rey, N, Lozano, MD, Torre, W, Garcia‐Foncillas, J, Montuenga, LM. Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer 2003, 41:131–143.
Brockstedt, E, Rickers, A, Kostka, S, Laubersheimer, A, Dorken, B, Wittmann‐Liebold, B, Bommert, K, Otto, A. Identification of apoptosis‐associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem 1998, 273:28057–28064.
Shi, Y, Frost, PJ, Hoang, BQ, Benavides, A, Sharma, S, Gera, JF, Lichtenstein, AK. IL‐6‐induced stimulation of c‐myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA‐binding protein, hnRNP A1. Cancer Res 2008, 68:10215–10222.
Iervolino, A, Santilli, G, Trotta, R, Guerzoni, C, Cesi, V, Bergamaschi, A, Gambacorti‐Passerini, C, Calabretta, B, Perrotti, D. hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR/ABL leukemogenesis. Mol Cell Biol 2002, 22:2255–2266.
Ting, NS, Pohorelic, B, Yu, Y, Lees‐Miller, SP, Beattie, TL. The human telomerase RNA component, hTR, activates the DNA‐dependent protein kinase to phosphorylate heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 2009, 37:6105–6115.
Yu, C, Guo, J, Liu, Y, Jia, J, Jia, R, Fan, M. Oral squamous cancer cell exploits hnRNP A1 to regulate cell cycle and proliferation. J Cell Physiol 2015, 230:2252–2261.
Liu, X, Zhou, Y, Lou, Y, Zhong, H. Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase. Gene 2016, 576:791–797.
Chen, M, Zhang, J, Manley, JL. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res 2010, 70:8977–8980.
Clower, CV, Chatterjee, D, Wang, Z, Cantley, LC, Vander Heiden, MG, Krainer, AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci USA 2010, 107:1894–1899.
Lewis, SM, Veyrier, A, Hosszu Ungureanu, N, Bonnal, S, Vagner, S, Holcik, M. Subcellular relocalization of a trans‐acting factor regulates XIAP IRES‐dependent translation. Mol Biol Cell 2007, 18:1302–1311.
Ko, CC, Chen, YJ, Chen, CT, Liu, YC, Cheng, FC, Hsu, KC, Chow, LP. Chemical proteomics identifies heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as the molecular target of quercetin in its anti‐cancer effects in PC‐3 cells. J Biol Chem 2014, 289:22078–22089.
Loh, TJ, Moon, H, Cho, S, Jang, H, Liu, YC, Tai, H, Jung, DW, Williams, DR, Kim, HR, Shin, MG, et al. CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep 2015, 34:1231–1238.
Zhou, ZJ, Dai, Z, Zhou, SL, Fu, XT, Zhao, YM, Shi, YH, Zhou, J, Fan, J. Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int J Cancer 2013, 132:1080–1089.
Bonomi, S, di Matteo, A, Buratti, E, Cabianca, DS, Baralle, FE, Ghigna, C, Biamonti, G. HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal‐to‐epithelial transition. Nucleic Acids Res 2013, 41:8665–8679.
Buvoli, M, Cobianchi, F, Bestagno, MG, Mangiarotti, A, Bassi, MT, Biamonti, G, Riva, S. Alternative splicing in the human gene for the core protein A1 generates another hnRNP protein. EMBO J 1990, 9:1229–1235.
Mayeda, A, Krainer, AR. Regulation of alternative pre‐mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 1992, 68:365–375.
Jean‐Philippe, J, Paz, S, Lu, ML, Caputi, M. A truncated hnRNP A1 isoform, lacking the RGG‐box RNA binding domain, can efficiently regulate HIV‐1 splicing and replication. Biochim Biophys Acta 1839, 2014:251–258.
Siomi, H, Dreyfuss, G. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 1995, 129:551–560.
Pinol‐Roma, S, Dreyfuss, G. Shuttling of pre‐mRNA binding proteins between nucleus and cytoplasm. Nature 1992, 355:730–732.
Allemand, E, Guil, S, Myers, M, Moscat, J, Caceres, JF, Krainer, AR. Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc Natl Acad Sci USA 2005, 102:3605–3610.
Kim, S, Merrill, BM, Rajpurohit, R, Kumar, A, Stone, KL, Papov, VV, Schneiders, JM, Szer, W, Wilson, SH, Paik, WK, et al. Identification of N(G)‐methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly‐Gly‐Gly‐Arg‐Gly‐Gly‐Gly/Phe is a preferred recognition motif. Biochemistry 1997, 36:5185–5192.
Rajpurohit, R, Paik, WK, Kim, S. Effect of enzymic methylation of heterogeneous ribonucleoprotein particle A1 on its nucleic‐acid binding and controlled proteolysis. Biochem J 1994, 304(Pt 3):903–909.
Shen, EC, Henry, MF, Weiss, VH, Valentini, SR, Silver, PA, Lee, MS. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 1998, 12:679–691.
Municio, MM, Lozano, J, Sanchez, P, Moscat, J, Diaz‐Meco, MT. Identification of heterogeneous ribonucleoprotein A1 as a novel substrate for protein kinase C zeta. J Biol Chem 1995, 270:15884–15891.
Idriss, H, Kumar, A, Casas‐Finet, JR, Guo, H, Damuni, Z, Wilson, SH. Regulation of in vitro nucleic acid strand annealing activity of heterogeneous nuclear ribonucleoprotein protein A1 by reversible phosphorylation. Biochemistry 1994, 33:11382–11390.
Wang, F, Fu, X, Chen, P, Wu, P, Fan, X, Li, N, Zhu, H, Jia, TT, Ji, H, Wang, Z, et al. SPSB1‐mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 2017, 27:540–558.
Nadler, SG, Merrill, BM, Roberts, WJ, Keating, KM, Lisbin, MJ, Barnett, SF, Wilson, SH, Williams, KR. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt‐dependent binding mode transitions. Biochemistry 1991, 30:2968–2976.
Chen, H, Hewison, M, Hu, B, Adams, JS. Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 2003, 100:6109–6114.
Burd, CG, Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high‐affinity binding sites in pre‐mRNA splicing. EMBO J 1994, 13:1197–1204.
Hamilton, BJ, Nagy, E, Malter, JS, Arrick, BA, Rigby, WF. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J Biol Chem 1993, 268:8881–8887.
Zhu, J, Mayeda, A, Krainer, AR. Exon identity established through differential antagonism between exonic splicing silencer‐bound hnRNP A1 and enhancer‐bound SR proteins. Mol Cell 2001, 8:1351–1361.
Caputi, M, Mayeda, A, Krainer, AR, Zahler, AM. hnRNP A/B proteins are required for inhibition of HIV‐1 pre‐mRNA splicing. EMBO J 1999, 18:4060–4067.
Del Gatto, F, Breathnach, R. Exon and intron sequences, respectively, repress and activate splicing of a fibroblast growth factor receptor 2 alternative exon. Mol Cell Biol 1995, 15:4825–4834.
Holcik, M, Korneluk, RG. XIAP, the guardian angel. Nat Rev Mol Cell Biol 2001, 2:550–556.
Frenzel, A, Grespi, F, Chmelewskij, W, Villunger, A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009, 14:584–596.
Bevilacqua, E, Wang, X, Majumder, M, Gaccioli, F, Yuan, CL, Wang, C, Zhu, X, Jordan, LE, Scheuner, D, Kaufman, RJ, et al. eIF2alpha phosphorylation tips the balance to apoptosis during osmotic stress. J Biol Chem 2010, 285:17098–17111.
Durie, D, Lewis, SM, Liwak, U, Kisilewicz, M, Gorospe, M, Holcik, M. RNA‐binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene 2011, 30:1460–1469.
Yoon, A, Peng, G, Brandenburger, Y, Zollo, O, Xu, W, Rego, E, Ruggero, D. Impaired control of IRES‐mediated translation in X‐linked dyskeratosis congenita. Science 2006, 312:902–906.
Holcik, M, Sonenberg, N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005, 6:318–327.
Bonnal, S, Pileur, F, Orsini, C, Parker, F, Pujol, F, Prats, AC, Vagner, S. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans‐acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005, 280:4144–4153.
Jo, OD, Martin, J, Bernath, A, Masri, J, Lichtenstein, A, Gera, J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c‐myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008, 283:23274–23287.
Martin, J, Masri, J, Cloninger, C, Holmes, B, Artinian, N, Funk, A, Ruegg, T, Anderson, L, Bashir, T, Bernath, A, et al. Phosphomimetic substitution of heterogeneous nuclear ribonucleoprotein A1 at serine 199 abolishes AKT‐dependent internal ribosome entry site‐transacting factor (ITAF) function via effects on strand annealing and results in mammalian target of rapamycin complex 1 (mTORC1) inhibitor sensitivity. J Biol Chem 2011, 286:16402–16413.
Cammas, A, Pileur, F, Bonnal, S, Lewis, SM, Lévêque, N, Holcik, M, Vagner, S. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell 2007, 18:5048–5059.
Arnaud, E, Touriol, C, Boutonnet, C, Gensac, MC, Vagner, S, Prats, H, Prats, AC. A new 34‐kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non‐AUG start codon and behaves as a survival factor. Mol Cell Biol 1999, 19:505–514.
Vagner, S, Gensac, MC, Maret, A, Bayard, F, Amalric, F, Prats, H, Prats, AC. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 1995, 15:35–44.
Bikfalvi, A, Klein, S, Pintucci, G, Rifkin, DB. Biological roles of fibroblast growth factor‐2. Endocr Rev 1997, 18:26–45.
Galy, B, Creancier, L, Prado‐Lourenco, L, Prats, AC, Prats, H. p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001, 20:4613–4620.
Galy, B, Creancier, L, Zanibellato, C, Prats, AC, Prats, H. Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post‐transcriptional mechanism. Oncogene 2001, 20:1669–1677.
Faye, MD, Holcik, M. The role of IRES trans‐acting factors in carcinogenesis. Biochim Biophys Acta 1849, 2015:887–897.
Liwak, U, Faye, MD, Holcik, M. Translation control in apoptosis. Exp Oncol 2012, 34:218–230.
Patry, C, Bouchard, L, Labrecque, P, Gendron, D, Lemieux, B, Toutant, J, Lapointe, E, Wellinger, R, Chabot, B. Small interfering RNA‐mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 2003, 63:7679–7688.
Nguyen, M, Watanabe, H, Budson, AE, Richie, JP, Hayes, DF, Folkman, J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994, 86:356–361.
LaCasse, EC, Mahoney, DJ, Cheung, HH, Plenchette, S, Baird, S, Korneluk, RG. IAP‐targeted therapies for cancer. Oncogene 2008, 27:6252–6275.
Pardo, OE, Lesay, A, Arcaro, A, Lopes, R, Ng, BL, Warne, PH, McNeish, IA, Tetley, TD, Lemoine, NR, Mehmet, H, et al. Fibroblast growth factor 2‐mediated translational control of IAPs blocks mitochondrial release of Smac/DIABLO and apoptosis in small cell lung cancer cells. Mol Cell Biol 2003, 23:7600–7610.
Warnakulasuriyarachchi, D, Cerquozzi, S, Cheung, HH, Holcik, M. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 2004, 279:17148–17157.
Zhao, TT, Graber, TE, Jordan, LE, Cloutier, M, Lewis, SM, Goulet, I, Cote, J, Holcik, M. hnRNP A1 regulates UV‐induced NF‐kappaB signalling through destabilization of cIAP1 mRNA. Cell Death Differ 2009, 16:244–252.
Petersen, SL, Wang, L, Yalcin‐Chin, A, Li, L, Peyton, M, Minna, J, Harran, P, Wang, X. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac‐mimetic‐induced apoptosis. Cancer Cell 2007, 12:445–456.
Varfolomeev, E, Blankenship, JW, Wayson, SM, Fedorova, AV, Kayagaki, N, Garg, P, Zobel, K, Dynek, JN, Elliott, LO, Wallweber, HJ, et al. IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis. Cell 2007, 131:669–681.
Chen, CY, Shyu, AB. AU‐rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995, 20:465–470.
Bishop, JM. Cellular oncogenes and retroviruses. Annu Rev Biochem 1983, 52:301–354.
Dean, M, Levine, RA, Ran, W, Kindy, MS, Sonenshein, GE, Campisi, J. Regulation of c‐myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 1986, 261:9161–9166.
Karn, J, Watson, JV, Lowe, AD, Green, SM, Vedeckis, W. Regulation of cell cycle duration by c‐myc levels. Oncogene 1989, 4:773–787.
Bates, S, Bonetta, L, MacAllan, D, Parry, D, Holder, A, Dickson, C, Peters, G. CDK6 (PLSTIRE) and CDK4 (PSK‐J3) are a distinct subset of the cyclin‐dependent kinases that associate with cyclin D1. Oncogene 1994, 9:71–79.
Beijersbergen, RL, Bernards, R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta 1996, 1287:103–120.
Chellappan, SP, Hiebert, S, Mudryj, M, Horowitz, JM, Nevins, JR. The E2F transcription factor is a cellular target for the RB protein. Cell 1991, 65:1053–1061.
Dick, FA, Rubin, SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol 2013, 14:297–306.
Shi, Y, Sharma, A, Wu, H, Lichtenstein, A, Gera, J. Cyclin D1 and c‐myc internal ribosome entry site (IRES)‐dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK‐ and ERK‐dependent pathway. J Biol Chem 2005, 280:10964–10973.
Beretta, L, Gingras, AC, Svitkin, YV, Hall, MN, Sonenberg, N. Rapamycin blocks the phosphorylation of 4E‐BP1 and inhibits cap‐dependent initiation of translation. EMBO J 1996, 15:658–664.
Chatterjee, A, Mukhopadhyay, S, Tung, K, Patel, D, Foster, DA. Rapamycin‐induced G1 cell cycle arrest employs both TGF‐beta and Rb pathways. Cancer Lett 2015, 360:134–140.
Blackburn, EH. Switching and signaling at the telomere. Cell 2001, 106:661–673.
O`Sullivan, RJ, Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010, 11:171–181.
Le, PN, Maranon, DG, Altina, NH, Battaglia, CL, Bailey, SM. TERRA, hnRNP A1, and DNA‐PKcs interactions at human telomeres. Front Oncol 2013, 3:91.
Sui, J, Lin, Y‐F, Xu, K, Lee, K‐J, Wang, D, Chen, BPC. DNA‐PKcs phosphorylates hnRNP‐A1 to facilitate the RPA‐to‐POT1 switch and telomere capping after replication. Nucleic Acids Res 2015, 43:5971–5983.
Shay, JW, Keith, WN. Targeting telomerase for cancer therapeutics. Br J Cancer 2008, 98:677–683.
Ding, J, Hayashi, MK, Zhang, Y, Manche, L, Krainer, AR, Xu, RM. Crystal structure of the two‐RRM domain of hnRNP A1 (UP1) complexed with single‐stranded telomeric DNA. Genes Dev 1999, 13:1102–1115.
Ford, LP, Wright, WE, Shay, JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 2002, 21:580–583.
LaBranche, H, Dupuis, S, Ben‐David, Y, Bani, MR, Wellinger, RJ, Chabot, B. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 1998, 19:199–202.
Zhang, QS, Manche, L, Xu, RM, Krainer, AR. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 2006, 12:1116–1128.
Flynn, RL, Centore, RC, O`Sullivan, RJ, Rai, R, Tse, A, Songyang, Z, Chang, S, Karlseder, J, Zou, L. TERRA and hnRNPA1 orchestrate an RPA‐to‐POT1 switch on telomeric single‐stranded DNA. Nature 2011, 471:532–536.
Fiset, S, Chabot, B. hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res 2001, 29:2268–2275.
Xu, Y, Suzuki, Y, Ito, K, Komiyama, M. Telomeric repeat‐containing RNA structure in living cells. Proc Natl Acad Sci USA 2010, 107:14579–14584.
Tahara, H, Shin‐Ya, K, Seimiya, H, Yamada, H, Tsuruo, T, Ide, T. G‐quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 2006, 25:1955–1966.
Azzalin, CM, Lingner, J. Telomeres: the silence is broken. Cell Cycle 2008, 7:1161–1165.
Schoeftner, S, Blasco, MA. Developmentally regulated transcription of mammalian telomeres by DNA‐dependent RNA polymerase II. Nat Cell Biol 2008, 10:228–236.
Azzalin, CM, Reichenbach, P, Khoriauli, L, Giulotto, E, Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007, 318:798–801.
Deng, Z, Norseen, J, Wiedmer, A, Riethman, H, Lieberman, PM. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 2009, 35:403–413.
Feuerhahn, S, Iglesias, N, Panza, A, Porro, A, Lingner, J. TERRA biogenesis, turnover and implications for function. FEBS Lett 2010, 584:3812–3818.
Redon, S, Reichenbach, P, Lingner, J. The non‐coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 2010, 38:5797–5806.
Redon, S, Zemp, I, Lingner, J. A three‐state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res 2013, 41:9117–9128.
Durkin, SG, Glover, TW. Chromosome fragile sites. Annu Rev Genet 2007, 41:169–192.
Glover, TW, Stein, CK. Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 1987, 41:882–890.
Yunis, JJ, Soreng, AL. Constitutive fragile sites and cancer. Science 1984, 226:1199–1204.
Wold, MS. Replication protein A: a heterotrimeric, single‐stranded DNA‐binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997, 66:61–92.
Zou, L. Single‐ and double‐stranded DNA: building a trigger of ATR‐mediated DNA damage response. Genes Dev 2007, 21:879–885.
Zou, L, Elledge, SJ. Sensing DNA damage through ATRIP recognition of RPA‐ssDNA complexes. Science 2003, 300:1542–1548.
Denchi, EL, de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007, 448:1068–1071.
Guo, X, Deng, Y, Lin, Y, Cosme‐Blanco, W, Chan, S, He, H, Yuan, G, Brown, EJ, Chang, S. Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis. EMBO J 2007, 26:4709–4719.
Pandya, P, Orgaz, JL, Sanz‐Moreno, V. Modes of invasion during tumour dissemination. Mol Oncol 2017, 11:5–27.
Yeung, KT, Yang, J. Epithelial‐mesenchymal transition in tumor metastasis. Mol Oncol 2017, 11:28–39.
Li, Z, Chen, K, Jiang, P, Zhang, X, Li, X, Li, Z. CD44v/CD44s expression patterns are associated with the survival of pancreatic carcinoma patients. Diagn Pathol 2014, 9:79.
Screaton, GR, Bell, MV, Bell, JI, Jackson, DG. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp‐1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 1993, 268:12235–12238.
Ringel, J, Jesnowski, R, Schmidt, C, Ringel, J, Kohler, HJ, Rychly, J, Batra, SK, Lohr, M. CD44 in normal human pancreas and pancreatic carcinoma cell lines. Teratog Carcinog Mutagen 2001, 21:97–106.
Louderbough, JM, Schroeder, JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 2011, 9:1573–1586.
Matter, N, Marx, M, Weg‐Remers, S, Ponta, H, Herrlich, P, Konig, H. Heterogeneous ribonucleoprotein A1 is part of an exon‐specific splice‐silencing complex controlled by oncogenic signaling pathways. J Biol Chem 2000, 275:35353–35360.
Keely, PJ, Westwick, JK, Whitehead, IP, Der, CJ, Parise, LV. Cdc42 and Rac1 induce integrin‐mediated cell motility and invasiveness through PI(3)K. Nature 1997, 390:632–636.
Jordan, P, Brazao, R, Boavida, MG, Gespach, C, Chastre, E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999, 18:6835–6839.
Schnelzer, A, Prechtel, D, Knaus, U, Dehne, K, Gerhard, M, Graeff, H, Harbeck, N, Schmitt, M, Lengyel, E. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000, 19:3013–3020.
Radisky, DC, Levy, DD, Littlepage, LE, Liu, H, Nelson, CM, Fata, JE, Leake, D, Godden, EL, Albertson, DG, Nieto, MA, et al. Rac1b and reactive oxygen species mediate MMP‐3‐induced EMT and genomic instability. Nature 2005, 436:123–127.
Pelisch, F, Khauv, D, Risso, G, Stallings‐Mann, M, Blaustein, M, Quadrana, L, Radisky, DC, Srebrow, A. Involvement of hnRNP A1 in the matrix metalloprotease‐3‐dependent regulation of Rac1 pre‐mRNA splicing. J Cell Biochem 2012, 113:2319–2329.
Thiery, JP, Acloque, H, Huang, RY, Nieto, MA. Epithelial‐mesenchymal transitions in development and disease. Cell 2009, 139:871–890.
Karni, R, de Stanchina, E, Lowe, SW, Sinha, R, Mu, D, Krainer, AR. The gene encoding the splicing factor SF2/ASF is a proto‐oncogene. Nat Struct Mol Biol 2007, 14:185–193.
Ghigna, C, Giordano, S, Shen, H, Benvenuto, F, Castiglioni, F, Comoglio, PM, Green, MR, Riva, S, Biamonti, G. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005, 20:881–890.
Golan‐Gerstl, R, Cohen, M, Shilo, A, Suh, SS, Bakacs, A, Coppola, L, Karni, R. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 2011, 71:4464–4472.
Pavlova, NN, Thompson, CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016, 23:27–47.
Wong, N, De Melo, J, Tang, D. PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol 2013, 2013:242513.
David, CJ, Chen, M, Assanah, M, Canoll, P, Manley, JL. HnRNP proteins controlled by c‐Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010, 463:364–368.
Christofk, HR, Vander Heiden, MG, Wu, N, Asara, JM, Cantley, LC. Pyruvate kinase M2 is a phosphotyrosine‐binding protein. Nature 2008, 452:181–186.
Birney, E, Stamatoyannopoulos, JA, Dutta, A, Guigo, R, Gingeras, TR, Margulies, EH, Weng, Z, Snyder, M, Dermitzakis, ET, Thurman, RE, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799–816.
Shiio, Y, Donohoe, S, Yi, EC, Goodlett, DR, Aebersold, R, Eisenman, RN. Quantitative proteomic analysis of Myc oncoprotein function. Embo J 2002, 21:5088–5096.
Schlosser, I, Holzel, M, Hoffmann, R, Burtscher, H, Kohlhuber, F, Schuhmacher, M, Chapman, R, Weidle, UH, Eick, D. Dissection of transcriptional programmes in response to serum and c‐Myc in a human B‐cell line. Oncogene 2005, 24:520–524.
Dvinge, H, Kim, E, Abdel‐Wahab, O, Bradley, RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 2016, 16:413–430.
Babic, I, Anderson, ES, Tanaka, K, Guo, D, Masui, K, Li, B, Zhu, S, Gu, Y, Villa, GR, Akhavan, D, et al. EGFR mutation‐induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab 2013, 17:1000–1008.
Brooks, TA, Hurley, LH. Targeting MYC expression through G‐Quadruplexes. Genes Cancer 2010, 1:641–649.
Cogoi, S, Rapozzi, V, Cauci, S, Xodo, LE. Critical role of hnRNP A1 in activating KRAS transcription in pancreatic cancer cells: a molecular mechanism involving G4 DNA. Biochim Biophys Acta 2017, 1861:1389–1398.