Aloni,, R., Peleg,, D., & Meyuhas,, O. (1992). Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Molecular and Cellular Biology, 12, 2203–2212.
Altmann,, M., Schmitz,, N., Berset,, C., & Trachsel,, H. (1997). A novel inhibitor of cap‐dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. The EMBO Journal, 16, 1114–1121.
Aoki,, K., Adachi,, S., Homoto,, M., Kusano,, H., Koike,, K., & Natsume,, T. (2013). LARP1 specifically recognizes the 3′ terminus of poly(a) mRNA. FEBS Letters, 587, 2173–2178.
Aronica,, S. M., Gingras,, A. C., Sonenberg,, N., Cooper,, S., Hague,, N., & Broxmeyer,, H. E. (1997). Macrophage inflammatory protein‐1alpha and interferon‐inducible protein 10 inhibit synergistically induced growth factor stimulation of MAP kinase activity and suppress phosphorylation of eukaryotic initiation factor 4E and 4E binding protein 1. Blood, 89, 3582–3595.
Avni,, D., Biberman,, Y., & Meyuhas,, O. (1997). The 5′ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type‐ and sequence context‐dependent manner. Nucleic Acids Research, 25, 995–1001.
Bayfield,, M. A., Yang,, R., & Maraia,, R. J. (2010). Conserved and divergent features of the structure and function of La and La‐related proteins (LARPs). Biochimica et Biophysica Acta, 1799, 365–378.
Beelman,, C. A., Stevens,, A., Caponigro,, G., LaGrandeur,, T. E., Hatfield,, L., Fortner,, D. M., & Parker,, R. (1996). An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature, 382, 642–646.
Biberman,, Y., & Meyuhas,, O. (1999). TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Letters, 456, 357–360.
Bousquet‐Antonelli,, C., & Deragon,, J. M. (2009). A comprehensive analysis of the La‐motif protein superfamily. RNA, 15, 750–764.
Brunn,, G. J., Fadden,, P., Haystead,, T. A., & Lawrence,, J. C., Jr. (1997). The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)‐pro motif and is activated by antibodies to a region near its COOH terminus. The Journal of Biological Chemistry, 272, 32547–32550.
Brunn,, G. J., Hudson,, C. C., Sekulic,, A., Williams,, J. M., Hosoi,, H., Houghton,, P. J., … Abraham,, R. T. (1997). Phosphorylation of the translational repressor PHAS‐I by the mammalian target of rapamycin. Science, 277, 99–101.
Chantranupong,, L., Wolfson,, R. L., & Sabatini,, D. M. (2015). Nutrient‐sensing mechanisms across evolution. Cell, 161, 67–83.
Damgaard,, C. K., & Lykke‐Andersen,, J. (2011). Translational coregulation of 5′TOP mRNAs by TIA‐1 and TIAR. Genes %26 Development, 25, 2057–2068.
Dehlin,, E., Wormington,, M., Korner,, C. G., & Wahle,, E. (2000). Cap‐dependent deadenylation of mRNA. The EMBO Journal, 19, 1079–1086.
Diggle,, T. A., Bloomberg,, G. B., & Denton,, R. M. (1995). Further characterization of the acid‐soluble phosphoprotein (SDS/PAGE apparent molecular mass of 22 kDa) in rat fat‐cells by peptide sequencing and immuno‐analysis: Effects of insulin and isoprenaline. The Biochemical Journal, 306(Pt 1), 135–139.
Diggle,, T. A., & Denton,, R. M. (1995). Characterisation of a novel "22kDa" phosphoprotein which may be important in insulin action. Biochemical Society Transactions, 23, 209S.
Dominguez,, D., Altmann,, M., Benz,, J., Baumann,, U., & Trachsel,, H. (1999). Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry, 274, 26720–26726.
Dunckley,, T., & Parker,, R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. The EMBO Journal, 18, 5411–5422.
Etchison,, D., & Milburn,, S. (1987). Separation of protein synthesis initiation factor eIF4A from a p220‐associated cap binding complex activity. Molecular and Cellular Biochemistry, 76, 15–25.
Filipowicz,, W., Furuichi,, Y., Sierra,, J. M., Muthukrishnan,, S., Shatkin,, A. J., & Ochoa,, S. (1976). A protein binding the methylated 5′‐terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 73, 1559–1563.
Fonseca,, B. D., Graber,, T. E., Hoang,, H. D., González,, A., Soukas,, A. A., Hernández,, G., … Hall,, M. N. (2016). Evolution of TOR and translation control. In Evolution of the protein synthesis machinery and its regulation (pp. 327–411). Springer International Publishing.
Fonseca,, B. D., Smith,, E. M., Lee,, V. H., MacKintosh,, C., & Proud,, C. G. (2007). PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. The Journal of Biological Chemistry, 282, 24514–24524.
Fonseca,, B. D., Smith,, E. M., Yelle,, N., Alain,, T., Bushell,, M., & Pause,, A. (2014). The ever‐evolving role of mTOR in translation. Seminars in Cell %26 Developmental Biology, 36, 102–112.
Fonseca,, B. D., Zakaria,, C., Jia,, J. J., Graber,, T. E., Svitkin,, Y., Tahmasebi,, S., … Damgaard,, C. K. (2015). La‐related protein 1 (LARP1) represses terminal Oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). The Journal of Biological Chemistry, 290, 15996–16020.
Furuichi,, Y. (2015). Discovery of m(7)G‐cap in eukaryotic mRNAs. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 91, 394–409.
Gandin,, V., Masvidal,, L., Hulea,, L., Gravel,, S. P., Cargnello,, M., McLaughlan,, S., … Topisirovic,, I. (2016). nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR‐sensitive mRNAs. Genome Research, 26, 636–648.
Gentilella,, A., Moron‐Duran,, F. D., Fuentes,, P., Zweig‐Rocha,, G., Riano‐Canalias,, F., Pelletier,, J., … Thomas,, G. (2017). Autogenous control of 5′TOP mRNA stability by 40S ribosomes. Molecular Cell, 67, 55–70.e54.
Geyer,, P. K., Meyuhas,, O., Perry,, R. P., & Johnson,, L. F. (1982). Regulation of ribosomal protein mRNA content and translation in growth‐stimulated mouse fibroblasts. Molecular and Cellular Biology, 2, 685–693.
Gingras,, A. C., Gygi,, S. P., Raught,, B., Polakiewicz,, R. D., Abraham,, R. T., Hoekstra,, M. F., … Sonenberg,, N. (1999). Regulation of 4E‐BP1 phosphorylation: A novel two‐step mechanism. Genes %26 Development, 13, 1422–1437.
Gingras,, A. C., Raught,, B., Gygi,, S. P., Niedzwiecka,, A., Miron,, M., Burley,, S. K., … Sonenberg,, N. (2001). Hierarchical phosphorylation of the translation inhibitor 4E‐BP1. Genes %26 Development, 15, 2852–2864.
Gonzalez,, A., & Hall,, M. N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. The EMBO Journal, 36, 397–408.
Gradi,, A., Svitkin,, Y. V., Imataka,, H., & Sonenberg,, N. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 95, 11089–11094.
Gruner,, S., Peter,, D., Weber,, R., Wohlbold,, L., Chung,, M. Y., Weichenrieder,, O., … Izaurralde,, E. (2016). The structures of eIF4E‐eIF4G complexes reveal an extended interface to regulate translation initiation. Molecular Cell, 64, 467–479.
Haghighat,, A., Mader,, S., Pause,, A., & Sonenberg,, N. (1995). Repression of cap‐dependent translation by 4E‐binding protein 1: Competition with p220 for binding to eukaryotic initiation factor‐4E. The EMBO Journal, 14, 5701–5709.
Haghighat,, A., & Sonenberg,, N. (1997). eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′‐cap structure. The Journal of Biological Chemistry, 272, 21677–21680.
Henis‐Korenblit,, S., Strumpf,, N. L., Goldstaub,, D., & Kimchi,, A. (2000). A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site‐mediated translation. Molecular and Cellular Biology, 20, 496–506.
Herbert,, T. P., Tee,, A. R., & Proud,, C. G. (2002). The extracellular signal‐regulated kinase pathway regulates the phosphorylation of 4E‐BP1 at multiple sites. The Journal of Biological Chemistry, 277, 11591–11596.
Hong,, S., Freeberg,, M. A., Han,, T., Kamath,, A., Yao,, Y., Fukuda,, T., … Inoki,, K. (2017). LARP1 functions as a molecular switch for mTORC1‐mediated translation of an essential class of mRNAs. eLife, 6.
Hopkins,, T. G., Mura,, M., Al‐Ashtal,, H. A., Lahr,, R. M., Abd‐Latip,, N., Sweeney,, K., … Blagden,, S. (2016). The RNA‐binding protein LARP1 is a post‐transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Research, 44, 1227–1246.
Hsieh,, A. C., Liu,, Y., Edlind,, M. P., Ingolia,, N. T., Janes,, M. R., Sher,, A., … Ruggero,, D. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 485, 55–61.
Hsu,, P. P., Kang,, S. A., Rameseder,, J., Zhang,, Y., Ottina,, K. A., Lim,, D., … Sabatini,, D. M. (2011). The mTOR‐regulated phosphoproteome reveals a mechanism of mTORC1‐mediated inhibition of growth factor signaling. Science, 332, 1317–1322.
Hu,, C., Pang,, S., Kong,, X., Velleca,, M., & Lawrence,, J. C., Jr. (1994). Molecular cloning and tissue distribution of PHAS‐I, an intracellular target for insulin and growth factors. Proceedings of the National Academy of Sciences of the United States of America, 91, 3730–3734.
Iadevaia,, V., Caldarola,, S., Tino,, E., Amaldi,, F., & Loreni,, F. (2008). All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5′‐terminal oligopyrimidine (TOP) mRNAs. RNA, 14, 1730–1736.
Igreja,, C., Peter,, D., Weiler,, C., & Izaurralde,, E. (2014). 4E‐BPs require non‐canonical 4E‐binding motifs and a lateral surface of eIF4E to repress translation. Nature Communications, 5, 4790.
Imataka,, H., & Sonenberg,, N. (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Molecular and Cellular Biology, 17, 6940–6947.
Izaurralde,, E., Lewis,, J., Gamberi,, C., Jarmolowski,, A., McGuigan,, C., & Mattaj,, I. W. (1995). A cap‐binding protein complex mediating U snRNA export. Nature, 376, 709–712.
Izaurralde,, E., Lewis,, J., McGuigan,, C., Jankowska,, M., Darzynkiewicz,, E., & Mattaj,, I. W. (1994). A nuclear cap binding protein complex involved in pre‐mRNA splicing. Cell, 78, 657–668.
Jackson,, R. J., Hellen,, C. U., & Pestova,, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews. Molecular Cell Biology, 11, 113–127.
Jefferies,, H. B., Reinhard,, C., Kozma,, S. C., & Thomas,, G. (1994). Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proceedings of the National Academy of Sciences of the United States of America, 91, 4441–4445.
Jiao,, X., Chang,, J. H., Kilic,, T., Tong,, L., & Kiledjian,, M. (2013). A mammalian pre‐mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre‐mRNA processing. Molecular Cell, 50, 104–115.
Kang,, S. A., Pacold,, M. E., Cervantes,, C. L., Lim,, D., Lou,, H. J., Ottina,, K., … Sabatini,, D. M. (2013). mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science, 341, 1236566.
Kershaw,, C. J., Costello,, J. L., Castelli,, L. M., Talavera,, D., Rowe,, W., Sims,, P. F., … Grant,, C. M. (2015). The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genetics, 11, e1004903.
Keys,, H. R., & Sabatini,, D. M. (2017). Juxtacap nucleotide sequence modulates eIF4E binding and translation. BioRxiv. https://doi.org/10.1101/165142
Korner,, C. G., & Wahle,, E. (1997). Poly(a) tail shortening by a mammalian poly(a)‐specific 3′‐exoribonuclease. The Journal of Biological Chemistry, 272, 10448–10456.
Koromilas,, A. E., Lazaris‐Karatzas,, A., & Sonenberg,, N. (1992). mRNAs containing extensive secondary structure in their 5′ non‐coding region translate efficiently in cells overexpressing initiation factor eIF‐4E. The EMBO Journal, 11, 4153–4158.
LaGrandeur,, T. E., & Parker,, R. (1998). Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. The EMBO Journal, 17, 1487–1496.
Lahr,, R. M., Fonseca,, B. D., Ciotti,, G. E., Al‐Ashtal,, H. A., Jia,, J. J., Niklaus,, M. R., … Berman,, A. J. (2017). La‐related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. eLife, 6.
Lahr,, R. M., Mack,, S. M., Heroux,, A., Blagden,, S. P., Bousquet‐Antonelli,, C., Deragon,, J. M., & Berman,, A. J. (2015). The La‐related protein 1‐specific domain repurposes HEAT‐like repeats to directly bind a 5′TOP sequence. Nucleic Acids Research, 43, 8077–8088.
Lamphear,, B. J., Kirchweger,, R., Skern,, T., & Rhoads,, R. E. (1995). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap‐dependent and cap‐independent translational initiation. Journal of Biological Chemistry, 270, 21975–21983.
Levy,, S., Avni,, D., Hariharan,, N., Perry,, R. P., & Meyuhas,, O. (1991). Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proceedings of the National Academy of Sciences of the United States of America, 88, 3319–3323.
Liberman,, N., Gandin,, V., Svitkin,, Y. V., David,, M., Virgili,, G., Jaramillo,, M., … Sonenberg,, N. (2015). DAP5 associates with eIF2beta and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Research, 43, 3764–3775.
Lin,, T. A., Kong,, X., Haystead,, T. A., Pause,, A., Belsham,, G., Sonenberg,, N., & Lawrence,, J. C., Jr. (1994). PHAS‐I as a link between mitogen‐activated protein kinase and translation initiation. Science, 266, 653–656.
Liu,, H., Rodgers,, N. D., Jiao,, X., & Kiledjian,, M. (2002). The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. The EMBO Journal, 21, 4699–4708.
Livingstone,, M., & Bidinosti,, M. (2012). Rapamycin‐insensitive mTORC1 activity controls eIF4E:4E‐BP1 binding. F1000Res, 1, 4.
Lykke‐Andersen,, J. (2002). Identification of a human decapping complex associated with hUpf proteins in nonsense‐mediated decay. Molecular and Cellular Biology, 22, 8114–8121.
Mader,, S., Lee,, H., Pause,, A., & Sonenberg,, N. (1995). The translation initiation factor eIF‐4E binds to a common motif shared by the translation factor eIF‐4 gamma and the translational repressors 4E‐binding proteins. Molecular and Cellular Biology, 15, 4990–4997.
Maraia,, R. J., Mattijssen,, S., Cruz‐Gallardo,, I., & Conte,, M. R. (2017). The La and related RNA‐binding proteins (LARPs): Structures, functions, and evolving perspectives. Wiley Interdisciplinary Reviews: RNA, 8, e1430.
Marcotrigiano,, J., Gingras,, A. C., Sonenberg,, N., & Burley,, S. K. (1997a). Cocrystal structure of the messenger RNA 5′ cap‐binding protein (eIF4E) bound to 7‐methyl‐GDP. Cell, 89, 951–961.
Marcotrigiano,, J., Gingras,, A. C., Sonenberg,, N., & Burley,, S. K. (1997b). X‐ray studies of the messenger RNA 5′ cap‐binding protein (eIF4E) bound to 7‐methyl‐GDP. Nucleic Acids Symposium Series, 8–11.
Matsuo,, H., Li,, H., McGuire,, A. M., Fletcher,, C. M., Gingras,, A. C., Sonenberg,, N., & Wagner,, G. (1997). Structure of translation factor eIF4E bound to m7GDP and interaction with 4E‐binding protein. Nature Structural Biology, 4, 717–724.
Meyuhas,, O. (2000). Synthesis of the translational apparatus is regulated at the translational level. European Journal of Biochemistry, 267, 6321–6330.
Meyuhas,, O., & Kahan,, T. (2015). The race to decipher the TOP secrets of TOP mRNAs. Biochimica et Biophysica Acta, 1849, 801–811.
Meyuhas,, O., Thompson,, E. A., Jr., & Perry,, R. P. (1987). Glucocorticoids selectively inhibit translation of ribosomal protein mRNAs in P1798 lymphosarcoma cells. Molecular and Cellular Biology, 7, 2691–2699.
Miloslavski,, R., Cohen,, E., Avraham,, A., Iluz,, Y., Hayouka,, Z., Kasir,, J., … Meyuhas,, O. (2014). Oxygen sufficiency controls TOP mRNA translation via the TSC‐Rheb‐mTOR pathway in a 4E‐BP‐independent manner. Journal of Molecular Cell Biology, 6, 255–266.
Mothe‐Satney,, I., Brunn,, G. J., McMahon,, L. P., Capaldo,, C. T., Abraham,, R. T., & Lawrence,, J. C., Jr. (2000). Mammalian target of rapamycin‐dependent phosphorylation of PHAS‐I in four (S/T)P sites detected by phospho‐specific antibodies. The Journal of Biological Chemistry, 275, 33836–33843.
Mothe‐Satney,, I., Yang,, D., Fadden,, P., Haystead,, T. A., & Lawrence,, J. C., Jr. (2000). Multiple mechanisms control phosphorylation of PHAS‐I in five (S/T)P sites that govern translational repression. Molecular and Cellular Biology, 20, 3558–3567.
Mura,, M., Hopkins,, T. G., Michael,, T., Abd‐Latip,, N., Weir,, J., Aboagye,, E., … Blagden,, S. P. (2014). LARP1 post‐transcriptionally regulates mTOR and contributes to cancer progression. Oncogene.
Neff,, C. L., & Sachs,, A. B. (1999). Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Molecular and Cellular Biology, 19, 5557–5564.
Niedzwiecka,, A., Marcotrigiano,, J., Stepinski,, J., Jankowska‐Anyszka,, M., Wyslouch‐Cieszynska,, A., … Stolarksi,, R. (2002). Biophysical studies of eIF4E cap‐binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E‐BP1 proteins. Journal of Molecular Biology, 319, 615–35.
Nykamp,, K., Lee,, M. H., & Kimble,, J. (2008). C. Elegans La‐related protein, LARP‐1, localizes to germline P bodies and attenuates Ras‐MAPK signaling during oogenesis. RNA, 14, 1378–1389.
Osborne,, M. J., Volpon,, L., Kornblatt,, J. A., Culjkovic‐Kraljacic,, B., Baguet,, A., & Borden,, K. L. (2013). eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl‐7‐guanosine cap recognition. Proceedings of the National Academy of Sciences of the United States of America, 110, 3877–3882.
Oshiro,, N., Takahashi,, R., Yoshino,, K., Tanimura,, K., Nakashima,, A., Eguchi,, S., … Yonezawa,, K. (2007). The proline‐rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. The Journal of Biological Chemistry, 282, 20329–20339.
Parsyan,, A., Svitkin,, Y., Shahbazian,, D., Gkogkas,, C., Lasko,, P., Merrick,, W. C., & Sonenberg,, N. (2011). mRNA helicases: The tacticians of translational control. Nature Reviews. Molecular Cell Biology, 12, 235–245.
Patursky‐Polischuk,, I., Kasir,, J., Miloslavski,, R., Hayouka,, Z., Hausner‐Hanochi,, M., Stolovich‐Rain,, M., … Meyuhas,, O. (2014). Reassessment of the role of TSC, mTORC1 and MicroRNAs in amino acids‐meditated translational control of TOP mRNAs. PLoS One, 9, e109410.
Patursky‐Polischuk,, I., Stolovich‐Rain,, M., Hausner‐Hanochi,, M., Kasir,, J., Cybulski,, N., Avruch,, J., … Meyuhas,, O. (2009). The TSC‐mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor‐ or rictor‐independent manner. Molecular and Cellular Biology, 29, 640–649.
Pause,, A., Belsham,, G. J., Gingras,, A. C., Donze,, O., Lin,, T. A., Lawrence,, J. C., Jr., & Sonenberg,, N. (1994). Insulin‐dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′‐cap function. Nature, 371, 762–767.
Pellagatti,, A., & Boultwood,, J. (2015). The molecular pathogenesis of the myelodysplastic syndromes. European Journal of Haematology, 95, 3–15.
Perry,, R. P. (2007). Balanced production of ribosomal proteins. Gene, 401, 1–3.
Pestova,, T. V., Shatsky,, I. N., & Hellen,, C. U. (1996). Functional dissection of eukaryotic initiation factor 4F: The 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Molecular and Cellular Biology, 16, 6870–6878.
Peter,, D., Igreja,, C., Weber,, R., Wohlbold,, L., Weiler,, C., Ebertsch,, L., … Izaurralde,, E. (2015). Molecular architecture of 4E‐BP translational inhibitors bound to eIF4E. Molecular Cell, 57, 1074–1087.
Philippe,, L., Vasseur,, J. J., Debart,, F., & Thoreen,, C. C. (2017). La‐related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap‐binding domain and controlled by an adjacent regulatory region. Nucleic Acids Research.
Ponting,, C. P., Mott,, R., Bork,, P., & Copley,, R. R. (2001). Novel protein domains and repeats in Drosophila melanogaster: Insights into structure, function, and evolution. Genome Research, 11, 1996–2008.
Poulin,, F., Gingras,, A. C., Olsen,, H., Chevalier,, S., & Sonenberg,, N. (1998). 4E‐BP3, a new member of the eukaryotic initiation factor 4E‐binding protein family. The Journal of Biological Chemistry, 273, 14002–14007.
Ptushkina,, M., von der Haar,, T., Vasilescu,, S., Frank,, R., Birkenhager,, R., & McCarthy,, J. E. (1998). Cooperative modulation by eIF4G of eIF4E‐binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. The EMBO Journal, 17, 4798–4808.
Saxton,, R. A., & Sabatini,, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168, 960–976.
Shama,, S., Avni,, D., Frederickson,, R. M., Sonenberg,, N., & Meyuhas,, O. (1995). Overexpression of initiation factor eIF‐4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Gene Expression, 4, 241–252.
Shatkin,, A. J., & Manley,, J. L. (2000). The ends of the affair: Capping and polyadenylation. Nature Structural Biology, 7, 838–842.
Shimobayashi,, M., & Hall,, M. N. (2016). Multiple amino acid sensing inputs to mTORC1. Cell Research, 26, 7–20.
Sobel,, S. G., & Wolin,, S. L. (1999). Two yeast La motif‐containing proteins are RNA‐binding proteins that associate with polyribosomes. Molecular Biology of the Cell, 10, 3849–3862.
Sonenberg,, N., Morgan,, M. A., Merrick,, W. C., & Shatkin,, A. J. (1978). A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′‐terminal cap in mRNA. Proceedings of the National Academy of Sciences of the United States of America, 75, 4843–4847.
Sonenberg,, N., Rupprecht,, K. M., Hecht,, S. M., & Shatkin,, A. J. (1979). Eukaryotic mRNA cap binding protein: Purification by affinity chromatography on sepharose‐coupled m7GDP. Proceedings of the National Academy of Sciences of the United States of America, 76, 4345–4349.
Sridhar,, K., Ross,, D. T., Tibshirani,, R., Butte,, A. J., & Greenberg,, P. L. (2009). Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood, 114, 4847–4858.
Stavraka,, C., & Blagden,, S. (2015). The La‐related proteins, a family with connections to cancer. Biomolecules, 5, 2701–2722.
Stolovich,, M., Lerer,, T., Bolkier,, Y., Cohen,, H., & Meyuhas,, O. (2005). Lithium can relieve translational repression of TOP mRNAs elicited by various blocks along the cell cycle in a glycogen synthase kinase‐3‐ and S6‐kinase‐independent manner. The Journal of Biological Chemistry, 280, 5336–5342.
Stolovich,, M., Tang,, H., Hornstein,, E., Levy,, G., Cohen,, R., Bae,, S. S., … Meyuhas,, O. (2002). Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3‐kinase‐mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Molecular and Cellular Biology, 22, 8101–8113.
Tamarkin‐Ben‐Harush,, A., Vasseur,, J. J., Debart,, F., Ulitsky,, I., & Dikstein,, R. (2017). Cap‐proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. eLife, 6.
Tang,, H., Hornstein,, E., Stolovich,, M., Levy,, G., Livingstone,, M., Templeton,, D., … Meyuhas,, O. (2001). Amino acid‐induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3‐kinase‐mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Molecular and Cellular Biology, 21, 8671–8683.
Tcherkezian,, J., Cargnello,, M., Romeo,, Y., Huttlin,, E. L., Lavoie,, G., Gygi,, S. P., & Roux,, P. P. (2014). Proteomic analysis of cap‐dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes %26 Development, 28, 357–371.
Terada,, N., Patel,, H. R., Takase,, K., Kohno,, K., Nairn,, A. C., & Gelfand,, E. W. (1994). Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 91, 11477–11481.
Thoreen,, C. C. (2017). The molecular basis of mTORC1‐regulated translation. Biochemical Society Transactions, 45, 213–221.
Thoreen,, C. C., Chantranupong,, L., Keys,, H. R., Wang,, T., Gray,, N. S., & Sabatini,, D. M. (2012). A unifying model for mTORC1‐mediated regulation of mRNA translation. Nature, 485, 109–113.
Topisirovic,, I., Svitkin,, Y. V., Sonenberg,, N., & Shatkin,, A. J. (2011). Cap and cap‐binding proteins in the control of gene expression. Wiley Interdisciplinary Reviews: RNA, 2, 277–298.
Tsay,, Y. F., Thompson,, J. R., Rotenberg,, M. O., Larkin,, J. C., & Woolford,, J. L., Jr. (1988). Ribosomal protein synthesis is not regulated at the translational level in Saccharomyces cerevisiae: Balanced accumulation of ribosomal proteins L16 and rp59 is mediated by turnover of excess protein. Genes %26 Development, 2, 664–676.
Tsukumo,, Y., Alain,, T., Fonseca,, B. D., Nadon,, R., & Sonenberg,, N. (2016). Translation control during prolonged mTORC1 inhibition mediated by 4E‐BP3. Nature Communications, 7, 11776.
von Der Haar,, T., Ball,, P. D., & McCarthy,, J. E. (2000). Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′‐cap by domains of eIF4G. The Journal of Biological Chemistry, 275, 30551–30555.
Wang,, Z., Jiao,, X., Carr‐Schmid,, A., & Kiledjian,, M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proceedings of the National Academy of Sciences of the United States of America, 99, 12663–12668.
Warner,, J. R. (1999). The economics of ribosome biosynthesis in yeast. Trends in Biochemical Sciences, 24, 437–440.
Wolfson,, R. L., & Sabatini,, D. M. (2017). The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metabolism, 26, 301–309.
Yan,, R., & Rhoads,, R. E. (1995). Human protein synthesis initiation factor eIF‐4 gamma is encoded by a single gene (EIF4G) that maps to chromosome 3q27‐qter. Genomics, 26, 394–398.
Yu,, Y., Yoon,, S. O., Poulogiannis,, G., Yang,, Q., Ma,, X. M., Villen,, J., … Blenis,, J. (2011). Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 332, 1322–1326.