Adhikari,, S., Xiao,, W., Zhao,, Y. L., & Yang,, Y. G. (2016). m(6)A: Signaling for mRNA splicing. RNA Biology, 13(9), 756–759. https://doi.org/10.1080/15476286.2016.1201628
Apirion,, D. (1973). Degradation of RNA in Escherichia coli: A hypothesis. Molecular Genetics and Genomics, 122(4), 313–322.
Apirion,, D. (1978). Isolation, genetic mapping and some characterization of a mutation in Escherichia coli that affects the processing of ribonuleic acid. Genetics, 90(4), 659–671.
Arnold,, T. E., Yu,, J., & Belasco,, J. G. (1998). mRNA stabilization by the ompA 5′ untranslated region: Two protective elements hinder distinct pathways for mRNA degradation. RNA, 4(3), 319–330.
Babitzke,, P., & Kushner,, S. R. (1991). The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 88(1), 1–5.
Belasco,, J. G. (2010). All things must pass: Contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nature Reviews. Molecular Cell Biology, 11(7), 467–478. https://doi.org/10.1038/nrm2917
Belasco,, J. G., & Higgins,, C. F. (1988). Mechanisms of mRNA decay in bacteria: A perspective. Gene, 72(1–2), 15–23.
Bennett,, B. D., Kimball,, E. H., Gao,, M., Osterhout,, R., Van Dien,, S. J., & Rabinowitz,, J. D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chemical Biology, 5(8), 593–599. https://doi.org/10.1038/nchembio.186
Bi,, Y., Li,, H., Fan,, S., Xia,, B., & Jin,, C. (2009). 1H, 13C and 15N resonance assignments of RNA pyrophosphohydrolase RppH from Escherichia coli. Biomolecular NMR Assignments, 3(1), 149–151. https://doi.org/10.1007/s12104-009-9162-8
Bird,, J. G., Zhang,, Y., Tian,, Y., Panova,, N., Barvik,, I., Greene,, L., … Nickels,, B. E. (2016). The mechanism of RNA 5′ capping with NAD+, NADH and desphospho‐CoA. Nature, 535(7612), 444–447. https://doi.org/10.1038/nature18622
Bouvet,, P., & Belasco,, J. G. (1992). Control of RNase E‐mediated RNA degradation by 5′‐terminal base pairing in E. coli. Nature, 360(6403), 488–491. https://doi.org/10.1038/360488a0
Bremer,, H., Konrad,, M. W., Gaines,, K., & Stent,, G. S. (1965). Direction of chain growth in enzymic RNA synthesis. Journal of Molecular Biology, 13(2), 540–553.
Brook,, M., & Gray,, N. K. (2012). The role of mammalian poly(A)‐binding proteins in co‐ordinating mRNA turnover. Biochemical Society Transactions, 40(4), 856–864. https://doi.org/10.1042/BST20120100
Cahova,, H., Winz,, M. L., Hofer,, K., Nubel,, G., & Jaschke,, A. (2015). NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature, 519(7543), 374–377. https://doi.org/10.1038/nature14020
Celesnik,, H., Deana,, A., & Belasco,, J. G. (2007). Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Molecular Cell, 27(1), 79–90. https://doi.org/10.1016/j.molcel.2007.05.038
Celesnik,, H., Deana,, A., & Belasco,, J. G. (2008). PABLO analysis of RNA: 5′‐phosphorylation state and 5′‐end mapping. Methods in Enzymology, 447, 83–98. https://doi.org/10.1016/S0076-6879(08)02205-2
Chandler,, D. S. (2011). Pre‐mRNA splicing. In M. Schwab, (Ed.), Encyclopedia of cancer (pp. 2972–2977). Berlin, Heidelberg: Springer.
Chao,, Y., Li,, L., Girodat,, D., Forstner,, K. U., Said,, N., Corcoran,, C., … Vogel,, J. (2017). In vivo cleavage map illuminates the centralrRole of RNase E in coding and non‐coding RNA pathways. Molecular Cell, 65(1), 39–51. https://doi.org/10.1016/j.molcel.2016.11.002
Chen,, Y. G., Kowtoniuk,, W. E., Agarwal,, I., Shen,, Y., & Liu,, D. R. (2009). LC/MS analysis of cellular RNA reveals NAD‐linked RNA. Nature Chemical Biology, 5(12), 879–881. https://doi.org/10.1038/nchembio.235
Condon,, C. (2007). Maturation and degradation of RNA in bacteria. Current Opinion in Microbiology, 10(3), 271–278. https://doi.org/10.1016/j.mib.2007.05.008
Deana,, A., Celesnik,, H., & Belasco,, J. G. (2008). The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature, 451(7176), 355–358. https://doi.org/10.1038/nature06475
Decatur,, W. A., & Fournier,, M. J. (2002). rRNA modifications and ribosome function. Trends in Biochemical Sciences, 27(7), 344–351. https://doi.org/10.1016/S0968-0004(02)02109-6
Deutscher,, M. P. (2009). Chapter 9: Maturation and degradation of ribosomal RNA in bacteria. In C. Condon (Ed.), Molecular biology of RNA processing and decay in prokaryotes (Vol. 85, pp. 369–391). Cambridge, Massachusetts: Academic Press.
Emory,, S. A., Bouvet,, P., & Belasco,, J. G. (1992). A 5′‐terminal stem‐loop structure can stabilize mRNA in Escherichia coli. Genes %26 Development, 6(1), 135–148.
Even,, S., Pellegrini,, O., Zig,, L., Labas,, V., Vinh,, J., Brechemmier‐Baey,, D., & Putzer,, H. (2005). Ribonucleases J1 and J2: Two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Research, 33(7), 2141–2152. https://doi.org/10.1093/nar/gki505
Foley,, P. L., Hsieh,, P. K., Luciano,, D. J., & Belasco,, J. G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. The Journal of Biological Chemistry, 290(15), 9478–9486. https://doi.org/10.1074/jbc.M114.634659
Frick,, D. N., & Bessman,, M. J. (1995). Cloning, purification, and properties of a novel NADH pyrophosphatase: Evidence for a nucleotide pyrophosphatase catalytic domain in MutT‐like enzymes. The Journal of Biological Chemistry, 270(4), 1529–1534.
Gao,, A., Vasilyev,, N., Luciano,, D. J., Levenson‐Palmer,, R., Richards,, J., Marsiglia,, W. M., … Serganov,, A. (2018). Structural and kinetic insights into stimulation of RppH‐dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Research, 46, 6841–6856. https://doi.org/10.1093/nar/gky327
Gartner,, Z. J., & Liu,, D. R. (2001). The generality of DNA‐templated synthesis as a basis for evolving non‐natural small molecules. Journal of the American Chemical Society, 123(28), 6961–6963.
Gartner,, Z. J., Tse,, B. N., Grubina,, R., Doyon,, J. B., Snyder,, T. M., & Liu,, D. R. (2004). DNA‐templated organic synthesis and selection of a library of macrocycles. Science, 305(5690), 1601–1605. https://doi.org/10.1126/science.1102629
Ghosh,, A., & Lima,, C. D. (2010). Enzymology of RNA cap synthesis. WIREs RNA, 1(1), 152–172. https://doi.org/10.1002/wrna.19
Giliberti,, J., O`Donnell,, S., Etten,, W. J., & Janssen,, G. R. (2012). A 5′‐terminal phosphate is required for stable ternary complex formation and translation of leaderless mRNA in Escherichia coli. RNA, 18(3), 508–518. https://doi.org/10.1261/rna.027698.111
Gopalakrishna,, Y., Langley,, D., & Sarkar,, N. (1981). Detection of high levels of polyadenylate‐containing RNA in bacteria by the use of a single‐step RNA isolation procedure. Nucleic Acids Research, 9(14), 3545–3554.
Hausner,, G., Hafez,, M., & Edgell,, D. R. (2014). Bacterial group I introns: Mobile RNA catalysts. Mobile DNA, 5(1), 8. https://doi.org/10.1186/1759-8753-5-8
Hofer,, K., Li,, S., Abele,, F., Frindert,, J., Schlotthauer,, J., Grawenhoff,, J., … Jaschke,, A. (2016). Structure and function of the bacterial decapping enzyme NudC. Nature Chemical Biology, 12(9), 730–734. https://doi.org/10.1038/nchembio.2132
Hor,, J., Gorski,, S. A., & Vogel,, J. (2018). Bacterial RNA biology on a genome scale. Molecular Cell, 70(5), 785–799. https://doi.org/10.1016/j.molcel.2017.12.023
Hsieh,, P. K., Richards,, J., Liu,, Q., & Belasco,, J. G. (2013). Specificity of RppH‐dependent RNA degradation in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8864–8869. https://doi.org/10.1073/pnas.1222670110
Jorgensen,, S. E., Buch,, L. B., & Nierlich,, D. P. (1969). Nucleoside triphosphate termini from RNA synthesized in vivo by Escherichia coli. Science, 164(3883), 1067–1070.
Julius,, C., & Yuzenkova,, Y. (2017). Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Research, 45(14), 8282–8290. https://doi.org/10.1093/nar/gkx452
Kanan,, M. W., Rozenman,, M. M., Sakurai,, K., Snyder,, T. M., & Liu,, D. R. (2004). Reaction discovery enabled by DNA‐templated synthesis and in vitro selection. Nature, 431(7008), 545–549. https://doi.org/10.1038/nature02920
Katahira,, J. (2015). Nuclear export of messenger RNA. Genes (Basel), 6(2), 163–184. https://doi.org/10.3390/genes6020163
Kim,, D., Hong,, J. S., Qiu,, Y., Nagarajan,, H., Seo,, J. H., Cho,, B. K., … Palsson,, B. O. (2012). Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome‐wide transcription start site profiling. PLoS Genetics, 8(8), e1002867. https://doi.org/10.1371/journal.pgen.1002867
Konrad,, M., Toivonen,, J. E., & Cook,, J. (1976). The 5′ ends of bacterial RNA. II. The triphosphate‐terminated ends of primary gene transcripts. Biochimica et Biophysica Acta, 425(1), 63–75.
Kowtoniuk,, W. E., Shen,, Y., Heemstra,, J. M., Agarwal,, I., & Liu,, D. R. (2009). A chemical screen for biological small molecule‐RNA conjugates reveals CoA‐linked RNA. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7768–7773. https://doi.org/10.1073/pnas.0900528106
Krishnan,, K. M., Van Etten,, W. J., 3rd, & Janssen,, G. R. (2010). Proximity of the start codon to a leaderless mRNA`s 5′ terminus is a strong positive determinant of ribosome binding and expression in Escherichia coli. Journal of Bacteriology, 192(24), 6482–6485. https://doi.org/10.1128/JB.00756-10
Kruger,, M. K., Pedersen,, S., Hagervall,, T. G., & Sorensen,, M. A. (1998). The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. Journal of Molecular Biology, 284(3), 621–631. https://doi.org/10.1006/jmbi.1998.2196
Kuhsel,, M. G., Strickland,, R., & Palmer,, J. D. (1990). An ancient group I intron shared by eubacteria and chloroplasts. Science, 250(4987), 1570–1573.
Le Rhun,, A., Lecrivain,, A. L., Reimegard,, J., Proux‐Wera,, E., Broglia,, L., Della Beffa,, C., & Charpentier,, E. (2017). Identification of endoribonuclease specific cleavage positions reveals novel targets of RNase III in Streptococcus pyogenes. Nucleic Acids Research, 45(5), 2329–2340. https://doi.org/10.1093/nar/gkw1316
Lee,, C. R., Kim,, M., Park,, Y. H., Kim,, Y. R., & Seok,, Y. J. (2014). RppH‐dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli. Nucleic Acids Research, 42(20), 12746–12757. https://doi.org/10.1093/nar/gku926
Lee,, E. R., Baker,, J. L., Weinberg,, Z., Sudarsan,, N., & Breaker,, R. R. (2010). An allosteric self‐splicing ribozyme triggered by a bacterial second messenger. Science, 329(5993), 845–848. https://doi.org/10.1126/science.1190713
Li,, S., & Mason,, C. E. (2014). The pivotal regulatory landscape of RNA modifications. Annual Review of Genomics and Human Genetics, 15(1), 127–150. https://doi.org/10.1146/annurev-genom-090413-025405
Li,, X., & Liu,, D. R. (2004). DNA‐templated organic synthesis: nature`s strategy for controlling chemical reactivity applied to synthetic molecules. Angewandte Chemie (International Ed. in English), 43(37), 4848–4870. https://doi.org/10.1002/anie.200400656
Luciano,, D. J., Hui,, M. P., Deana,, A., Foley,, P. L., Belasco,, K. J., & Belasco,, J. G. (2012). Differential control of the rate of 5′‐end‐dependent mRNA degradation in Escherichia coli. Journal of Bacteriology, 194(22), 6233–6239. https://doi.org/10.1128/JB.01223-12
Luciano,, D. J., Vasilyev,, N., Richards,, J., Serganov,, A., & Belasco,, J. G. (2017). A novel RNA phosphorylation state enables 5′ end‐dependent degradation in Escherichia coli. Molecular Cell, 67(1), 44–54 e46. https://doi.org/10.1016/j.molcel.2017.05.035
Luciano,, D. J., Vasilyev,, N., Richards,, J., Serganov,, A., & Belasco,, J. G. (2018). Importance of a diphosphorylated intermediate for RppH‐dependent RNA degradation. RNA Biology, 15(6), 703–706. https://doi.org/10.1080/15476286.2018.1460995
Mackie,, G. A. (1998). Ribonuclease E is a 5′‐end‐dependent endonuclease. Nature, 395(6703), 720–723. https://doi.org/10.1038/27246
Madore,, E., Florentz,, C., Giegé,, R., Sekine,, S.‐i., Yokoyama,, S., & Lapointe,, J. (1999). Effect of modified nucleotides on Escherichia coli tRNA glustructure and on its aminoacylation by glutamyl‐tRNA synthetase. European Journal of Biochemistry, 266(3), 1128–1135. https://doi.org/10.1046/j.1432-1327.1999.00965.x
Malygin,, A. G., & Shemyakin,, M. F. (1979). Adenosine, NAD and FAD can initiate template‐dependent RNA synthesis catalyzed by Escherichia coli RNA polymerase. FEBS Letters, 102(1), 51–54.
Marbaniang,, C. N., & Vogel,, J. (2016). Emerging roles of RNA modifications in bacteria. Current Opinion in Microbiology, 30, 50–57. https://doi.org/10.1016/j.mib.2016.01.001
Mathy,, N., Benard,, L., Pellegrini,, O., Daou,, R., Wen,, T., & Condon,, C. (2007). 5′‐to‐3′ exoribonuclease activity in bacteria: Role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell, 129(4), 681–692. https://doi.org/10.1016/j.cell.2007.02.051
McLennan,, A. G. (2006). The Nudix hydrolase superfamily. Cellular and Molecular Life Sciences, 63(2), 123–143. https://doi.org/10.1007/s00018-005-5386-7
Melefors,, O., & von Gabain,, A. (1991). Genetic studies of cleavage‐initiated mRNA decay and processing of ribosomal 9S RNA show that the Escherichia coli ams and rne loci are the same. Molecular Microbiology, 5(4), 857–864.
Mengin‐Lecreulx,, D., Michaud,, C., Richaud,, C., Blanot,, D., & van Heijenoort,, J. (1988). Incorporation of LL‐diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF. Journal of Bacteriology, 170(5), 2031–2039.
Mildvan,, A. S., Xia,, Z., Azurmendi,, H. F., Saraswat,, V., Legler,, P. M., Massiah,, M. A., … Amzel,, L. M. (2005). Structures and mechanisms of Nudix hydrolases. Archives of Biochemistry and Biophysics, 433(1), 129–143. https://doi.org/10.1016/j.abb.2004.08.017
Mohanty,, B. K., & Kushner,, S. R. (2011). Bacterial/archaeal/organellar polyadenylation. WIREs RNA, 2(2), 256–276. https://doi.org/10.1002/wrna.51
Motorin,, Y., & Helm,, M. (2011). RNA nucleotide methylation. WIREs RNA, 2(5), 611–631. https://doi.org/10.1002/wrna.79
Mudd,, E. A., Krisch,, H. M., & Higgins,, C. F. (1990). RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: Evidence that rne and ams are the same genetic locus. Molecular Microbiology, 4(12), 2127–2135.
Muramatsu,, T., Nureki,, O., Kanno,, H., Niimi,, T., Tateno,, M., Kohno,, T., … Yokoyama,, S. (1990). Recognition of tRNA identity determinants by aminoacyl‐tRNA synthetases. Nucleic Acids Symposium Series, (90s), 119–120.
Ono,, M., & Kuwano,, M. (1979). A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. Journal of Molecular Biology, 129(3), 343–357.
Piton,, J., Larue,, V., Thillier,, Y., Dorleans,, A., Pellegrini,, O., Li de la Sierra‐Gallay,, I., … Condon,, C. (2013). Bacillus subtilis RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8858–8863. https://doi.org/10.1073/pnas.1221510110
Ramanathan,, A., Robb,, G. B., & Chan,, S. H. (2016). mRNA capping: Biological functions and applications. Nucleic Acids Research, 44(16), 7511–7526. https://doi.org/10.1093/nar/gkw551
Richards,, J., Liu,, Q., Pellegrini,, O., Celesnik,, H., Yao,, S., Bechhofer,, D. H., … Belasco,, J. G. (2011). An RNA pyrophosphohydrolase triggers 5′‐exonucleolytic degradation of mRNA in Bacillus subtilis. Molecular Cell, 43(6), 940–949. https://doi.org/10.1016/j.molcel.2011.07.023
Richaud,, C., Higgins,, W., Mengin‐Lecreulx,, D., & Stragier,, P. (1987). Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. Journal of Bacteriology, 169(4), 1454–1459.
Richaud,, C., & Printz,, C. (1988). Nucleotide sequence of the dapF gene and flanking regions from Escherichia coli K12. Nucleic Acids Research, 16(21), 10367.
Sharma,, C. M., Hoffmann,, S., Darfeuille,, F., Reignier,, J., Findeiss,, S., Sittka,, A., … Vogel,, J. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 464(7286), 250–255. https://doi.org/10.1038/nature08756
Shell,, S. S., Wang,, J., Lapierre,, P., Mir,, M., Chase,, M. R., Pyle,, M. M., … Gray,, T. A. (2015). Leaderless transcripts and small proteins are common features of the mycobacterial translational landscape. PLoS Genetics, 11(11), e1005641. https://doi.org/10.1371/journal.pgen.1005641
Shine,, J., & Dalgarno,, L. (1974). The 3′‐terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1342–1346.
Sokolowski,, M., Klassen,, R., Bruch,, A., Schaffrath,, R., & Glatt,, S. (2018). Cooperativity between different tRNA modifications and their modification pathways. Biochimica et Biophysica Acta, 1861(4), 409–418. https://doi.org/10.1016/j.bbagrm.2017.12.003
Taraseviciene,, L., Miczak,, A., & Apirion,, D. (1991). The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Molecular Microbiology, 5(4), 851–855.
Tian,, B., & Manley,, J. L. (2013). Alternative cleavage and polyadenylation: The long and short of it. Trends in Biochemical Sciences, 38(6), 312–320. https://doi.org/10.1016/j.tibs.2013.03.005
Tian,, B., & Manley,, J. L. (2017). Alternative polyadenylation of mRNA precursors. Nature Reviews. Molecular Cell Biology, 18(1), 18–30. https://doi.org/10.1038/nrm.2016.116
Topisirovic,, I., Svitkin,, Y. V., Sonenberg,, N., & Shatkin,, A. J. (2011). Cap and cap‐binding proteins in the control of gene expression. WIREs RNA, 2(2), 277–298. https://doi.org/10.1002/wrna.52
Vasilyev,, N., & Serganov,, A. (2015). Structures of RNA complexes with the Escherichia coli RNA pyrophosphohydrolase RppH unveil the basis for specific 5′‐end‐dependent mRNA decay. The Journal of Biological Chemistry, 290(15), 9487–9499. https://doi.org/10.1074/jbc.M114.634824
Vogel,, J., Bartels,, V., Tang,, T. H., Churakov,, G., Slagter‐Jager,, J. G., Huttenhofer,, A., & Wagner,, E. G. (2003). RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Research, 31(22), 6435–6443.
Vvedenskaya,, I. O., Bird,, J. G., Zhang,, Y., Zhang,, Y., Jiao,, X., Barvik,, I., … Nickels,, B. E. (2018). CapZyme‐Seq comprehensively defines promoter‐sequence determinants for RNA 5′ capping with NAD+. Molecular Cell, 70(3), 553–564. https://doi.org/10.1016/j.molcel.2018.03.014
Wang,, Q., Zhang,, D., Guan,, Z., Li,, D., Pei,, K., Liu,, J., … Yin,, P. (2018). DapF stabilizes the substrate‐favoring conformation of RppH to stimulate its RNA‐pyrophosphohydrolase activity in Escherichia coli. Nucleic Acids Research, 46(13), 6880–6892. https://doi.org/10.1093/nar/gky528
Wang,, X., & He,, C. (2014). Dynamic RNA modifications in posttranscriptional regulation. Molecular Cell, 56(1), 5–12. https://doi.org/10.1016/j.molcel.2014.09.001
Wilson,, R. K., & Roe,, B. A. (1989). Presence of the hypermodified nucleotide N6‐(delta 2‐isopentenyl)‐2‐methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl‐transfer RNA. Proceedings of the National Academy of Sciences of the United States of America, 86(2), 409–413.
Wurtzel,, O., Sesto,, N., Mellin,, J. R., Karunker,, I., Edelheit,, S., Becavin,, C., … Sorek,, R. (2012). Comparative transcriptomics of pathogenic and non‐pathogenic Listeria species. Molecular Systems Biology, 8, 583. https://doi.org/10.1038/msb.2012.11
Xu,, M. Q., Kathe,, S. D., Goodrich‐Blair,, H., Nierzwicki‐Bauer,, S. A., & Shub,, D. A. (1990). Bacterial origin of a chloroplast intron: Conserved self‐splicing group I introns in cyanobacteria. Science, 250(4987), 1566–1570.
Zhang,, D., Liu,, Y., Wang,, Q., Guan,, Z., Wang,, J., Liu,, J., … Yin,, P. (2016). Structural basis of prokaryotic NAD‐RNA decapping by NudC. Cell Research, 26(9), 1062–1066. https://doi.org/10.1038/cr.2016.98
Zheng,, X., Hu,, G. Q., She,, Z. S., & Zhu,, H. (2011). Leaderless genes in bacteria: Clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics, 12, 361. https://doi.org/10.1186/1471-2164-12-361