Abbondanzieri,, E. A., Greenleaf,, W. J., Shaevitz,, J. W., Landick,, R., & Block,, S. M. (2005). Direct observation of base‐pair stepping by RNA polymerase. Nature, 438, 460–465.
Abdelraheim,, S. R., Spiller,, D. G., & McLennan,, A. G. (2017). Mouse Nudt13 is a mitochondrial NUDIX hydrolase with NAD(P)H pyrophosphohydrolase activity. The Protein Journal, 36, 425–432.
Agrimi,, G., Brambilla,, L., Frascotti,, G., Pisano,, I., Porro,, D., Vai,, M., & Palmieri,, L. (2011). Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis. Applied and Environmental Microbiology, 77, 2239–2246.
Bennett,, B. D., Kimball,, E. H., Gao,, M., Osterhout,, R., Van Dien,, S. J., & Rabinowitz,, J. D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chemical Biology, 5, 593–599.
Berghoff,, B. A., & Wagner,, E. G. H. (2017). RNA‐based regulation in type I toxin‐antitoxin systems and its implication for bacterial persistence. Current Genetics, 63, 1011–1016.
Bird,, J. G., Zhang,, Y., Tian,, Y., Panova,, N., Barvik,, I., Greene,, L., … Nickels,, B. E. (2016). The mechanism of RNA 5′ capping with NAD+, NADH and desphospho‐CoA. Nature, 535, 444–447.
Bouvier,, M., & Carpousis,, A. J. (2011). A tale of two mRNA degradation pathways mediated by RNase E. Molecular Microbiology, 82, 1305–1310.
Brandis,, G., Pietsch,, F., Alemayehu,, R., & Hughes,, D. (2015). Comprehensive phenotypic characterization of rifampicin resistance mutations in salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 70, 680–685.
Buskila,, A. A., Kannaiah,, S., & Amster‐Choder,, O. (2014). RNA localization in bacteria. RNA Biology, 11, 1051–1060 https://doi.org/10.4161/rna.36135
Cahova,, H., Winz,, M. L., Hofer,, K., Nubel,, G., & Jaschke,, A. (2015). NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature, 519, 374–377.
Campbell,, E. A., Korzheva,, N., Mustaev,, A., Murakami,, K., Nair,, S., Goldfarb,, A., & Darst,, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104, 901–912.
Canto,, C., Menzies,, K. J., & Auwerx,, J. (2015). NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 22, 31–53.
Castello,, A., Hentze,, M. W., & Preiss,, T. (2015). Metabolic enzymes enjoying new partnerships as RNA‐binding proteins. Trends in Endocrinology and Metabolism, 26, 746–757. https://doi.org/10.1016/j.tem.2015.09.012
Cayrol,, B., Geinguenaud,, F., Lacoste,, J., Busi,, F., Le Dérout,, J., Piétrement,, O., … Arluison,, V. (2009). Auto‐assembly of E. coli DsrA small noncoding RNA: Molecular characteristics and functional consequences. RNA Biology, 6, 434–445. https://doi.org/10.4161/rna.6.4.8949
Chen,, Y. G., Kowtoniuk,, W. E., Agarwal,, I., Shen,, Y., & Liu,, D. R. (2009). LC/MS analysis of cellular RNA reveals NAD‐linked RNA. Nature Chemical Biology, 5, 879–881.
de Boer,, H. A., Comstock,, L. J., & Vasser,, M. (1983). The tac promoter: A functional hybrid derived from the trp and lac promoters. Proceedings of the National Academy of Sciences of the United States of America, 80, 21–25.
Dieci,, G., Preti,, M., & Montanini,, B. (2009). Eukaryotic snoRNAs: A paradigm for gene expression flexibility. Genomics, 94, 83–88.
Edwards,, A. N., Patterson‐fortin,, L. M., Vakulskas,, C. A., Jeffrey,, W., Potrykus,, K., Vinella,, D., … Babitzke,, P. (2011). Circuitry linking the Csr and stringent response global regulatory systems. Molecular Cell, 80, 1561–1580. https://doi.org/10.1111/j.1365-2958.2011.07663.x.Circuitry
Feng,, Y., & Cohen,, S. N. (2000). Unpaired terminal nucleotides and 5′ monophosphorylation govern 3′ polyadenylation by Escherichia coli poly(A) polymerase I. Proceedings of the National Academy of Sciences of the United States of America, 97, 6415–6420.
Fozo,, E. M. (2012). New type I toxin‐antitoxin families from “wild” and laboratory strains of E. coli: Ibs‐Sib, ShoB‐OhsC and Zor‐Orz. RNA Biology, 9, 1504–1512.
Frindert,, J., Zhang,, Y., Nubel,, G., Kahloon,, M., Kolmar,, L., Hotz‐Wagenblatt,, A., … Jaschke,, A. (2018). Identification, biosynthesis, and decapping of NAD‐capped RNAs in B. subtilis. Cell Reports, 24, 1890–1901.e8.
Gerhard,, E., Wagner,, H., & Nordstroem,, K. (1986). Structural analysis of an RNA molecule involved in replication control of plasmid Rl. Nucleic Acids Research, 14, 8919–8932. https://doi.org/10.1093/nar/gkn907
Grudzien,, E., Stepinski,, J., Jankowska‐Anyszka,, M., Stolarski,, R., Darzynkiewicz,, E., & Rhoads,, R. E. (2004). Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. RNA, 10, 1479–1487. https://doi.org/10.1261/rna.7380904
Hofer,, K., Li,, S., Abele,, F., Frindert,, J., Schlotthauer,, J., Grawenhoff,, J., … Jaschke,, A. (2016). Structure and function of the bacterial decapping enzyme NudC. Nature Chemical Biology, 12, 730–734.
Huang,, F., Bugg,, C. W., & Yarus,, M. (2000). RNA‐catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry, 39, 15548–15555.
Issur,, M., Bougie,, I., Despins,, S., & Bisaillon,, M. (2013). Enzymatic synthesis of RNAs capped with nucleotide analogues reveals the molecular basis for substrate selectivity of RNA capping enzyme: Impacts on RNA metabolism. PLoS One, 8, e75310.
Jaschke,, A., Hofer,, K., Nubel,, G., & Frindert,, J. (2016). Cap‐like structures in bacterial RNA and epitranscriptomic modification. Current Opinion in Microbiology, 30, 44–49.
Jiao,, X., Doamekpor,, S. K., Bird,, J. G., Nickels,, B. E., Tong,, L., Hart,, R. P., & Kiledjian,, M. (2017). 5′ end nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO‐mediated deNADding. Cell, 168(1015–1027), e1010.
Jones,, C. N., Wilkinson,, K. A., Hung,, K. T., Weeks,, K. M., & Spremulli,, L. L. (2008). Lack of secondary structure characterizes the 5′ ends of mammalian mitochondrial mRNAs. RNA, 14, 862–871.
Jørgensen,, M. G., Thomason,, M. K., Havelund,, J., Jørgensen,, M. G., Thomason,, M. K., Havelund,, J., … Storz,, G. (2013). Dual function of the McaS small RNA in controlling biofilm formation dual function of the McaS small RNA in controlling biofilm formation. Genes %26 Development, 27, 1132–1145. https://doi.org/10.1101/gad.214734.113
Julius,, C., Riaz‐Bradley,, A., & Yuzenkova,, Y. (2018). RNA capping by mitochondrial and multi‐subunit RNA polymerases. Transcription, 9, 292–297.
Julius,, C., & Yuzenkova,, Y. (2017). Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Research, 45, 8282–8290.
Kiledjian,, M. (2018). Eukaryotic RNA 5′‐end NAD(+) capping and DeNADding. Trends in Cell Biology, 28, 454–464.
Koch‐Nolte,, F., Fischer,, S., Haag,, F., & Ziegler,, M. (2011). Compartmentation of NAD+−dependent signalling. FEBS Letters, 585, 1651–1656.
Konopka,, J. B. (2012). N‐acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica, 2012, 1–15.
Kowtoniuk,, W. E., Shen,, Y., Heemstra,, J. M., Agarwal,, I., & Liu,, D. R. (2009). A chemical screen for biological small molecule‐RNA conjugates reveals CoA‐linked RNA. Proceedings of the National Academy of Sciences of the United States of America, 106, 7768–7773.
Kulbachinskiy,, A., & Mustaev,, A. (2006). Region 3.2 of the sigma subunit contributes to the binding of the 3′‐initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation. The Journal of Biological Chemistry, 281, 18273–18276.
Kushner,, S. R. (2004). mRNA decay in prokaryotes and eukaryotes: Different approaches to a similar problem. IUBMB Life, 56, 585–594.
Liu,, S. R., Hu,, C. G., & Zhang,, J. Z. (2016). Regulatory effects of cotranscriptional RNA structure formation and transitions. WIREs RNA, 7, 562–574. https://doi.org/10.1002/wrna.1350
Malecka,, E. M., Strozecka,, J., Sobanska,, D., & Olejniczak,, M. (2015). Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry, 54, 1157–1170.
Malygin,, A. G., & Shemyakin,, M. F. (1979). Adenosine, NAD and FAD can initiate template‐dependent RNA synthesis catalyzed by Escherichia coli RNA polymerase. FEBS Letters, 102, 51–54.
Mandin,, P., & Gottesman,, S. (2009). Regulating the regulator: An RNA decoy acts as an OFF switch for the regulation of an sRNA. Genes %26 Development, 23, 1981–1985.
Mauer,, J., Luo,, X., Blanjoie,, A., Jiao,, X., Grozhik,, A. V., Patil,, D. P., … Jaffrey,, S. R. (2017). Reversible methylation of m6Amin the 5′ cap controls mRNA stability. Nature, 541, 371–375. https://doi.org/10.1038/nature21022
McLennan,, A. G. (2006). The NUDIX hydrolase superfamily. Cellular and Molecular Life Sciences, 63, 123–143.
McLennan,, A. G. (2013). Substrate ambiguity among the NUDIX hydrolases: Biologically significant, evolutionary remnant, or both? Cellular and Molecular Life Sciences, 70, 373–385.
Mei,, S. C., & Brenner,, C. (2014). Quantification of protein copy number in yeast: The NAD+ metabolome. PLoS One, 9, e106496.
Mildvan,, A. S., Xia,, Z., Azurmendi,, H. F., Saraswat,, V., Legler,, P. M., Massiah,, M. A., … Amzel,, L. M. (2005). Structures and mechanisms of NUDIX hydrolases. Archives of Biochemistry and Biophysics, 433, 129–143.
Mohanty,, B. K., & Kushner,, S. R. (2016). Regulation of mRNA decay in bacteria. Annual Review of Microbiology, 70, 25–44.
Moll,, I., Grill,, S., Gualerzi,, C. O., & Blasi,, U. (2002). Leaderless mRNAs in bacteria: Surprises in ribosomal recruitment and translational control. Molecular Microbiology, 43, 239–246.
Montange,, R. K., & Batey,, R. T. (2008). Riboswitches: Emerging themes in RNA structure and function. Annual Review of Biophysics, 37, 117–133.
Negrete,, A., & Shiloach,, J. (2015). Constitutive expression of the sRNA GadY decreases acetate production and improves E. coli growth. Microbial Cell Factories, 14, 1–10. https://doi.org/10.1186/s12934-015-0334-1
Nevo‐Dinur,, K., Nussbaum‐Shochat,, A., Ben‐Yehuda,, S., & Amster‐Choder,, O. (2011). Translation‐independent localization of mRNA in E. coli. Science, 331, 1081–1084.
Opdyke,, J. A., Fozo,, E. M., Hemm,, M. R., & Storz,, G. (2011). RNase III participates in gadY‐dependent cleavage of the gadX‐gadW mRNA. Journal of Molecular Biology, 406, 29–43. https://doi.org/10.1016/j.jmb.2010.12.009
Pulvermacher,, S. C., Stauffer,, L. T., & Stauffer,, G. V. (2009). Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology, 155, 106–114. https://doi.org/10.1099/mic.0.023598-0
Ramanathan,, A., Robb,, G. B., & Chan,, S. H. (2016). mRNA capping: Biological functions and applications. Nucleic Acids Research, 44, 7511–7526.
Reichenbach,, B., Maes,, A., Kalamorz,, F., Hajnsdorf,, E., & Gorke,, B. (2008). The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Research, 36, 2570–2580. https://doi.org/10.1093/nar/gkn091
Ross,, W., Sanchez‐Vazquez,, P., Chen,, A. Y., Lee,, J. H., Burgos,, H. L., & Gourse,, R. L. (2016). ppGpp binding to a site at the RNAP‐DksA Interface accounts for its dramatic effects on transcription initiation during the stringent response. Molecular Cell, 62, 811–823.
Rutherford,, S. T., Lemke,, J. J., Vrentas,, C. E., Gaal,, T., Ross,, W., & Gourse,, R. L. (2007). Effects of DksA, GreA, and GreB on transcription initiation: Insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. Journal of Molecular Biology, 366, 1243–1257.
Sarkar,, N. (1996). Polyadenylation of mRNA in bacteria. Microbiology, 142(Pt 11), 3125–3133.
Shell,, S. S., Wang,, J., Lapierre,, P., Mir,, M., Chase,, M. R., Pyle,, M. M., … Gray,, T. A. (2015). Leaderless transcripts and small proteins are common features of the mycobacterial translational landscape. PLoS Genetics, 11, e1005641.
Silva,, I. J., Saramago,, M., Dressaire,, C., Domingues,, S., Viegas,, S. C., & Arraiano,, C. M. (2011). Importance and key events of prokaryotic RNA decay: The ultimate fate of an RNA molecule. WIREs RNA, 2, 818–836.
Stein,, L. R., & Imai,, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends in Endocrinology and Metabolism: TEM, 23, 420–428.
Tamm,, J., & Polisky,, B. (1985). Characterization of the ColE1 primer‐RNA1 complex: Analysis of a domain of ColE1 RNA1 necessary for its interaction with primer RNA. Proceedings of the National Academy of Sciences of the United States of America, 82, 2257–2261.
Topisirovic,, I., Svitkin,, Y. V., Sonenberg,, N., & Shatkin,, A. J. (2011). Cap and cap‐binding proteins in the control of gene expression. WIREs RNA, 2, 277–298.
Vasilyev,, N., & Serganov,, A. (2015). Structures of RNA complexes with the Escherichia coli RNA pyrophosphohydrolase RppH unveil the basis for specific 5′‐end‐dependent mRNA decay. The Journal of Biological Chemistry, 290, 9487–9499.
Vogel,, U., & Jensen,, K. F. (1994). The RNA chain elongation rate in Escherichia coli depends on the growth rate. Journal of Bacteriology, 176, 2807–2813.
Vvedenskaya,, I. O., Bird,, J. G., Zhang,, Y., Zhang,, Y., Jiao,, X., Barvik,, I., … Nickels,, B. E. (2018). CapZyme‐Seq comprehensively defines promoter‐sequence determinants for RNA 5′ capping with NAD. Molecular Cell, 70, 553–564.e9.
Wagner,, E. G. H. (2013). Cycling of RNAs on Hfq. RNA Biology, 10, 619–626. https://doi.org/10.4161/rna.24044
Walters,, R. W., Matheny,, T., Mizoue,, L. S., Rao,, B. S., Muhlrad,, D., & Parker,, R. (2017). Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 114, 480–485.
Waters,, L. S., & Storz,, G. (2009). Regulatory RNAs in bacteria. Cell, 136, 615–628.
White,, H. B., 3rd. (1976). Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution, 7, 101–104.
Wimpenny,, J. W., & Firth,, A. (1972). Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. Journal of Bacteriology, 111, 24–32.
Wu,, P., Liu,, X., Yang,, L., Sun,, Y., Gong,, Q., Wu,, J., & Shi,, Y. (2017). The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Research, 45, 9625–9639. https://doi.org/10.1093/nar/gkx570
Yao,, S., Sharp,, J. S., & Bechhofer,, D. H. (2009). Bacillus subtilis RNase J1 endonuclease and 5′ exonuclease activities in the turnover of DeltaermC mRNA. RNA, 15, 2331–2339.
Zhang,, D., Liu,, Y., Wang,, Q., Guan,, Z., Wang,, J., Liu,, J., … Yin,, P. (2016). Structural basis of prokaryotic NAD‐RNA decapping by NudC. Cell Research, 26, 1062–1066.