Ahn,, B. Y., Jones,, E. V., & Moss,, B. (1990). Identification of the vaccinia virus gene encoding an 18‐kilodalton subunit of RNA polymerase and demonstration of a 5′ poly(A) leader on its early transcript. Journal of Virology, 64, 3019–3024.
Ahn,, B. Y., & Moss,, B. (1989). Capped poly(A) leaders of variable lengths at the 5′ ends of vaccinia virus late mRNAs. Journal of Virology, 63, 226–232.
Arndt,, W. D., White,, S. D., Johnson,, B. P., Huynh,, T., Liao,, J., Harrington,, H., … Jacobs,, B. L. (2016). Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti‐poxvirus drug, IBT, than vaccinia virus. Virology, 497, 125–135.
Arsenio,, J., Deschambault,, Y., & Cao,, J. (2008). Antagonizing activity of vaccinia virus E3L against human interferons in Huh7 cells. Virology, 377, 124–132.
Arthur,, L., Pavlovic‐Djuranovic,, S., Smith‐Koutmou,, K., Green,, R., Szczesny,, P., & Djuranovic,, S. (2015). Translational control by lysine‐encoding A‐rich sequences. Science Advances, 1, e1500154.
Backes,, S., Shapiro,, J. S., Sabin,, L. R., Pham,, A. M., Reyes,, I., Moss,, B., … tenOever,, B. R. (2012). Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host %26 Microbe, 12, 200–210.
Backes,, S., Sperling,, K. M., Zwilling,, J., Gasteiger,, G., Ludwig,, H., Kremmer,, E., … Sutter,, G. (2010). Viral host‐range factor C7 or K1 is essential for modified vaccinia virus Ankara late gene expression in human and murine cells, irrespective of their capacity to inhibit protein kinase R‐mediated phosphorylation of eukaryotic translation initiation factor 2alpha. The Journal of General Virology, 91, 470–482.
Baldick,, C. J., Jr., & Moss,, B. (1993). Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate‐stage genes. Journal of Virology, 67, 3515–3527.
Barbosa,, E., & Moss,, B. (1978). mRNA(nucleoside‐2′‐)‐methyltransferase from vaccinia virus. Characteristics and substrate specificity. The Journal of Biological Chemistry, 253, 7698–7702.
Barco,, A., Feduchi,, E., & Carrasco,, L. (2000). A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): Effects on cellular and viral gene expression. Journal of Virology, 74, 2383–2392.
Bertholet,, C., Van Meir,, E., ten Heggeler‐Bordier,, B., & Wittek,, R. (1987). Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell, 50, 153–162.
Bravo Cruz,, A. G., & Shisler,, J. L. (2016). Vaccinia virus K1 ankyrin repeat protein inhibits NF‐kappaB activation by preventing RelA acetylation. The Journal of General Virology, 97, 2691–2702.
Brennan,, G., Kitzman,, J. O., Rothenburg,, S., Shendure,, J., & Geballe,, A. P. (2014). Adaptive gene amplification as an intermediate step in the expansion of virus host range. PLoS Pathogens, 10, e1004002.
Brennan,, G., Kitzman,, J. O., Shendure,, J., & Geballe,, A. P. (2015). Experimental evolution identifies vaccinia virus mutations in A24R and A35R that antagonize the protein kinase R pathway and accompany collapse of an extragenic gene amplification. Journal of Virology, 89, 9986–9997.
Brum,, L. M., Lopez,, M. C., Varela,, J. C., Baker,, H. V., & Moyer,, R. W. (2003). Microarray analysis of A549 cells infected with rabbitpox virus (RPV): A comparison of wild‐type RPV and RPV deleted for the host range gene, SPI‐1. Virology, 315, 322–334.
Buck,, A. H., Ivens,, A., Gordon,, K., Craig,, N., Houzelle,, A., Roche,, A., … Beard,, P. M. (2015). Quantitative analysis of microRNAs in vaccinia virus infection reveals diversity in their susceptibility to modification and suppression. PLoS One, 10, e0131787.
Burgess,, H. M., & Mohr,, I. (2015). Cellular 5′‐3` mRNA exonuclease Xrn1 controls double‐stranded RNA accumulation and anti‐viral responses. Cell Host %26 Microbe, 17, 332–344.
Burgess,, H. M., Pourchet,, A., Hajdu,, C. H., Chiriboga,, L., Frey,, A. B., & Mohr,, I. (2018). Targeting poxvirus decapping enzymes and mRNA decay to generate an effective oncolytic virus. Molecular Therapy — Oncolytics, 8, 71–81.
Cacoullos,, N., & Bablanian,, R. (1991). Polyadenylated RNA sequences produced in vaccinia virus‐infected cells under aberrant conditions inhibit protein synthesis in vitro. Virology, 184, 747–751.
Carpentier,, K. S., Esparo,, N. M., Child,, S. J., & Geballe,, A. P. (2016). A single amino acid dictates protein kinase R susceptibility to unrelated viral antagonists. PLoS Pathogens, 12, e1005966.
Carroll,, K., Elroy‐Stein,, O., Moss,, B., & Jagus,, R. (1993). Recombinant vaccinia virus K3L gene product prevents activation of double‐stranded RNA‐dependent, initiation factor 2 alpha‐specific protein kinase. The Journal of Biological Chemistry, 268, 12837–12842.
Chan,, W. M., & McFadden,, G. (2014). Oncolytic poxviruses. Annual Review of Virology, 1, 119–141.
Chang,, H. W., Watson,, J. C., & Jacobs,, B. L. (1992). The E3L gene of vaccinia virus encodes an inhibitor of the interferon‐induced, double‐stranded RNA‐dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 89, 4825–4829.
Chen,, J. S., Li,, H. C., Lin,, S. I., Yang,, C. H., Chien,, W. Y., Syu,, C. L., & Lo,, S. Y. (2015). Cleavage of Dicer protein by I7 protease during vaccinia virus infection. PLoS One, 10, e0120390.
Chen,, Q., Sun,, L., & Chen,, Z. J. (2016). Regulation and function of the cGAS‐STING pathway of cytosolic DNA sensing. Nature Immunology, 17, 1142–1149.
Cone,, K. R., Kronenberg,, Z. N., Yandell,, M., & Elde,, N. C. (2017). Emergence of a viral RNA polymerase variant during gene copy number amplification promotes rapid evolution of vaccinia virus. Journal of Virology, 91, e01428.
Craig,, A. W., Cosentino,, G. P., Donze,, O., & Sonenberg,, N. (1996). The kinase insert domain of interferon‐induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. The Journal of Biological Chemistry, 271, 24526–24533.
Daffis,, S., Szretter,, K. J., Schriewer,, J., Li,, J., Youn,, S., Errett,, J., … Diamond,, M. S. (2010). 2`‐O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468, 452–456.
Dai,, A., Cao,, S., Dhungel,, P., Luan,, Y., Liu,, Y., Xie,, Z., & Yang,, Z. (2017). Ribosome profiling reveals translational upregulation of cellular oxidative phosphorylation mRNAs during vaccinia virus‐induced host shutoff. Journal of Virology, 91, e01858.
Dar,, A. C., & Sicheri,, F. (2002). X‐ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Molecular Cell, 10, 295–305.
Davies,, M. V., Chang,, H. W., Jacobs,, B. L., & Kaufman,, R. J. (1993). The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double‐stranded RNA‐dependent protein kinase by different mechanisms. Journal of Virology, 67, 1688–1692.
Davies,, M. V., Elroy‐Stein,, O., Jagus,, R., Moss,, B., & Kaufman,, R. J. (1992). The vaccinia virus K3L gene product potentiates translation by inhibiting double‐stranded‐RNA‐activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Journal of Virology, 66, 1943–1950.
Davison,, A. J., & Moss,, B. (1989). Structure of vaccinia virus late promoters. Journal of Molecular Biology, 210, 771–784.
de Magistris,, L., & Stunnenberg,, H. G. (1988). Cis‐acting sequences affecting the length of the poly(A) head of vaccinia virus late transcripts. Nucleic Acids Research, 16, 3141–3156.
Decroly,, E., Ferron,, F., Lescar,, J., & Canard,, B. (2012). Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews. Microbiology, 10, 51–65.
Dhungel,, P., Cao,, S., & Yang,, Z. (2017). The 5′‐poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap‐dependent translation. PLoS Pathogens, 13, e1006602.
DiGiuseppe,, S., Rollins,, M. G., Bartom,, E. T., & Walsh,, D. (2018). ZNF598 plays distinct roles in interferon‐stimulated gene expression and poxvirus protein synthesis. Cell Reports, 23, 1249–1258.
Dueck,, K. J., Hu,, Y. S., Chen,, P., Deschambault,, Y., Lee,, J., Varga,, J., & Cao,, J. (2015). Mutational analysis of vaccinia virus E3 protein: The biological functions do not correlate with its biochemical capacity to bind double‐stranded RNA. Journal of Virology, 89, 5382–5394.
Elde,, N. C., Child,, S. J., Eickbush,, M. T., Kitzman,, J. O., Rogers,, K. S., Shendure,, J., … Malik,, H. S. (2012). Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell, 150, 831–841.
Elde,, N. C., Child,, S. J., Geballe,, A. P., & Malik,, H. S. (2009). Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature, 457, 485–489.
Ensinger,, M. J., Martin,, S. A., Paoletti,, E., & Moss,, B. (1975). Modification of the 5′‐terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 72, 2525–2529.
Gale,, M., Jr., Tan,, S. L., Wambach,, M., & Katze,, M. G. (1996). Interaction of the interferon‐induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by unique domains: Implications for kinase regulation. Molecular and Cellular Biology, 16, 4172–4181.
Gallie,, D. R., Sleat,, D. E., Watts,, J. W., Turner,, P. C., & Wilson,, T. M. (1987). The 5′‐leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Research, 15, 3257–3273.
Garzia,, A., Jafarnejad,, S. M., Meyer,, C., Chapat,, C., Gogakos,, T., Morozov,, P., … Sonenberg,, N. (2017). The E3 ubiquitin ligase and RNA‐binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nature Communications, 8, 16056.
Grinberg,, M., Gilad,, S., Meiri,, E., Levy,, A., Isakov,, O., Ronen,, R., … Shemer‐Avni,, Y. (2012). Vaccinia virus infection suppresses the cell microRNA machinery. Archives of Virology, 157, 1719–1727.
Guerra,, S., Lopez‐Fernandez,, L. A., Pascual‐Montano,, A., Munoz,, M., Harshman,, K., & Esteban,, M. (2003). Cellular gene expression survey of vaccinia virus infection of human HeLa cells. Journal of Virology, 77, 6493–6506.
Herdy,, B., Jaramillo,, M., Svitkin,, Y. V., Rosenfeld,, A. B., Kobayashi,, M., Walsh,, D., … Sonenberg,, N. (2012). Translational control of the activation of transcription factor NF‐kappaB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nature Immunology, 13, 543–550.
Hinnebusch,, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, 83, 779–812.
Izmailyan,, R., Hsao,, J. C., Chung,, C. S., Chen,, C. H., Hsu,, P. W., Liao,, C. L., & Chang,, W. (2012). Integrin beta1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. Journal of Virology, 86, 6677–6687.
Jan,, E., Mohr,, I., & Walsh,, D. (2016). A cap‐to‐tail guide to mRNA translation strategies in virus‐infected cells. Annual Review of Virology, 3, 283–307.
Jentarra,, G. M., Heck,, M. C., Youn,, J. W., Kibler,, K., Langland,, J. O., Baskin,, C. R., … Jacobs,, B. L. (2008). Vaccinia viruses with mutations in the E3L gene as potential replication‐competent, attenuated vaccines: Scarification vaccination. Vaccine, 26, 2860–2872.
Jha,, S., Rollins,, M. G., Fuchs,, G., Procter,, D. J., Hall,, E. A., Cozzolino,, K., … Walsh,, D. (2017). Trans‐kingdom mimicry underlies ribosome customization by a poxvirus kinase. Nature, 546, 651–655.
Joazeiro,, C. A. P. (2017). Ribosomal stalling during translation: Providing substrates for ribosome‐associated protein quality control. Annual Review of Cell and Developmental Biology, 33, 343–368.
Kates,, J., & Beeson,, J. (1970). Ribonucleic acid synthesis in vaccinia virus. II. Synthesis of polyriboadenylic acid. Journal of Molecular Biology, 50, 19–33.
Katsafanas,, G. C., & Moss,, B. (2007). Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host %26 Microbe, 2, 221–228.
Kawagishi‐Kobayashi,, M., Cao,, C., Lu,, J., Ozato,, K., & Dever,, T. E. (2000). Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology, 276, 424–434.
Kawagishi‐Kobayashi,, M., Silverman,, J. B., Ung,, T. L., & Dever,, T. E. (1997). Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Molecular and Cellular Biology, 17, 4146–4158.
Kim,, S. G., Buel,, G. R., & Blenis,, J. (2013). Nutrient regulation of the mTOR complex 1 signaling pathway. Molecules and Cells, 35, 463–473.
Koutmou,, K. S., Schuller,, A. P., Brunelle,, J. L., Radhakrishnan,, A., Djuranovic,, S., & Green,, R. (2015). Ribosomes slide on lysine‐encoding homopolymeric a stretches. eLife, 4, e05534.
Langland,, J. O., & Jacobs,, B. L. (2002). The role of the PKR‐inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology, 299, 133–141.
Langland,, J. O., & Jacobs,, B. L. (2004). Inhibition of PKR by vaccinia virus: Role of the N‐ and C‐terminal domains of E3L. Virology, 324, 419–429.
Lee‐Chen,, G. J., & Niles,, E. G. (1988). Map positions of the 5′ ends of eight mRNAs synthesized from the late genes in the vaccinia virus HindIII D fragment. Virology, 163, 80–92.
Li,, Y., Carroll,, D. S., Gardner,, S. N., Walsh,, M. C., Vitalis,, E. A., & Damon,, I. K. (2007). On the origin of smallpox: Correlating variola phylogenics with historical smallpox records. Proceedings of the National Academy of Sciences of the United States of America, 104, 15787–15792.
Liu,, J., & McFadden,, G. (2015). SAMD9 is an innate antiviral host factor with stress response properties that can be antagonized by poxviruses. Journal of Virology, 89, 1925–1931.
Liu,, R., & Moss,, B. (2016). Opposing roles of double‐stranded RNA effector pathways and viral Defense proteins revealed with CRISPR‐Cas9 knockout cell lines and vaccinia virus mutants. Journal of Virology, 90, 7864–7879.
Liu,, S. W., Katsafanas,, G. C., Liu,, R., Wyatt,, L. S., & Moss,, B. (2015). Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. Cell Host %26 Microbe, 17, 320–331.
Liu,, S. W., Wyatt,, L. S., Orandle,, M. S., Minai,, M., & Moss,, B. (2014). The D10 decapping enzyme of vaccinia virus contributes to decay of cellular and viral mRNAs and to virulence in mice. Journal of Virology, 88, 202–211.
Lu,, C., & Bablanian,, R. (1996). Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus‐infected cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 2037–2042.
Ludwig,, H., Suezer,, Y., Waibler,, Z., Kalinke,, U., Schnierle,, B. S., & Sutter,, G. (2006). Double‐stranded RNA‐binding protein E3 controls translation of viral intermediate RNA, marking an essential step in the life cycle of modified vaccinia virus Ankara. The Journal of General Virology, 87, 1145–1155.
Marcet‐Palacios,, M., Duggan,, B. L., Shostak,, I., Barry,, M., Geskes,, T., Wilkins,, J. A., … Bleackley,, R. C. (2011). Granzyme B inhibits vaccinia virus production through proteolytic cleavage of eukaryotic initiation factor 4 gamma 3. PLoS Pathogens, 7, e1002447.
McFadden,, G. (2005). Poxvirus tropism. Nature Reviews. Microbiology, 3, 201–213.
McMahon,, R., Zaborowska,, I., & Walsh,, D. (2011). Noncytotoxic inhibition of viral infection through eIF4F‐independent suppression of translation by 4EGi‐1. Journal of Virology, 85, 853–864.
Meade,, N., Furey,, C., Li,, H., Verma,, R., Chai,, Q., Rollins,, M. G., … Walsh,, D. (2018). Poxviruses evade cytosolic sensing through disruption of an mTORC1‐mTORC2 regulatory circuit. Cell, 174, 1143–1157 e1117.
Meng,, X., Chao,, J., & Xiang,, Y. (2008). Identification from diverse mammalian poxviruses of host‐range regulatory genes functioning equivalently to vaccinia virus C7L. Virology, 372, 372–383.
Meng,, X., Jiang,, C., Arsenio,, J., Dick,, K., Cao,, J., & Xiang,, Y. (2009). Vaccinia virus K1L and C7L inhibit antiviral activities induced by type I interferons. Journal of Virology, 83, 10627–10636.
Moretti,, J., Roy,, S., Bozec,, D., Martinez,, J., Chapman,, J. R., Ueberheide,, B., … Blander,, J. M. (2017). STING senses microbial viability to orchestrate stress‐mediated autophagy of the endoplasmic reticulum. Cell, 171, 809–823 e813.
Moss,, B. (2007). Poxviridae: The viruses and their replication. In D. M. K. P. M. Howley, (Ed.), Fields virology (pp. 2849–2883). Philadelphia, PA: Lippincott Williams %26 Wilkins.
Moss,, B. (2011). Smallpox vaccines: Targets of protective immunity. Immunological Reviews, 239, 8–26.
Mulder,, J., Robertson,, M. E., Seamons,, R. A., & Belsham,, G. J. (1998). Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap‐binding complex, within infected cells. Journal of Virology, 72, 8813–8819.
Muthukrishnan,, S., Moss,, B., Cooper,, J. A., & Maxwell,, E. S. (1978). Influence of 5′‐terminal cap structure on the initiation of translation of vaccinia virus mRNA. The Journal of Biological Chemistry, 253, 1710–1715.
Myskiw,, C., Arsenio,, J., Booy,, E. P., Hammett,, C., Deschambault,, Y., Gibson,, S. B., & Cao,, J. (2011). RNA species generated in vaccinia virus infected cells activate cell type‐specific MDA5 or RIG‐I dependent interferon gene transcription and PKR dependent apoptosis. Virology, 413, 183–193.
Myskiw,, C., Arsenio,, J., van Bruggen,, R., Deschambault,, Y., & Cao,, J. (2009). Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF‐kappaB, and IRF3 pathways. Journal of Virology, 83, 6757–6768.
Parrish,, S., & Moss,, B. (2007). Characterization of a second vaccinia virus mRNA‐decapping enzyme conserved in poxviruses. Journal of Virology, 81, 12973–12978.
Parrish,, S., Resch,, W., & Moss,, B. (2007). Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104, 2139–2144.
Patel,, D. D., & Pickup,, D. J. (1987). Messenger RNAs of a strongly‐expressed late gene of cowpox virus contain 5′‐terminal poly(A) sequences. The EMBO Journal, 6, 3787–3794.
Peng,, C., Haller,, S. L., Rahman,, M. M., McFadden,, G., & Rothenburg,, S. (2016). Myxoma virus M156 is a specific inhibitor of rabbit PKR but contains a loss‐of‐function mutation in Australian virus isolates. Proceedings of the National Academy of Sciences of the United States of America, 113, 3855–3860.
Proud,, C. G. (2015). Mnks, eIF4E phosphorylation and cancer. Biochimica et Biophysica Acta, 1849, 766–773.
Rahman,, M. M., Liu,, J., Chan,, W. M., Rothenburg,, S., & McFadden,, G. (2013). Myxoma virus protein M029 is a dual function immunomodulator that inhibits PKR and also conscripts RHA/DHX9 to promote expanded host tropism and viral replication. PLoS Pathogens, 9, e1003465.
Rahman,, M. M., & McFadden,, G. (2017). Myxoma virus dsRNA binding protein M029 inhibits the type I IFN‐induced antiviral state in a highly species‐specific fashion. Viruses, 9, e27.
Ramelot,, T. A., Cort,, J. R., Yee,, A. A., Liu,, F., Goshe,, M. B., Edwards,, A. M., … Kennedy,, M. A. (2002). Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2alpha. Journal of Molecular Biology, 322, 943–954.
Rice,, A. D., Turner,, P. C., Embury,, J. E., Moldawer,, L. L., Baker,, H. V., & Moyer,, R. W. (2011). Roles of vaccinia virus genes E3L and K3L and host genes PKR and RNase L during intratracheal infection of C57BL/6 mice. Journal of Virology, 85, 550–567.
Rosel,, J. L., Earl,, P. L., Weir,, J. P., & Moss,, B. (1986). Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. Journal of Virology, 60, 436–449.
Rothenburg,, S., Seo,, E. J., Gibbs,, J. S., Dever,, T. E., & Dittmar,, K. (2009). Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nature Structural %26 Molecular Biology, 16, 63–70.
Rozelle,, D. K., Filone,, C. M., Kedersha,, N., & Connor,, J. H. (2014). Activation of stress response pathways promotes formation of antiviral granules and restricts virus replication. Molecular and Cellular Biology, 34, 2003–2016.
Sasani,, T. A., Cone,, K. R., Quinlan,, A. R., & Elde,, N. C. (2018). Long read sequencing reveals poxvirus evolution through rapid homogenization of gene arrays. eLife, 7, e35453.
Saxton,, R. A., & Sabatini,, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 169, 361–371.
Schuller,, A. P., & Green,, R. (2018). Roadblocks and resolutions in eukaryotic translation. Nature Reviews Molecular Cell Biology, 19, 526–541.
Schwer,, B., & Stunnenberg,, H. G. (1988). Vaccinia virus late transcripts generated in vitro have a poly(A) head. The EMBO Journal, 7, 1183–1190.
Schwer,, B., Visca,, P., Vos,, J. C., & Stunnenberg,, H. G. (1987). Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell, 50, 163–169.
Seo,, E. J., Liu,, F., Kawagishi‐Kobayashi,, M., Ung,, T. L., Cao,, C., Dar,, A. C., … Dever,, T. E. (2008). Protein kinase PKR mutants resistant to the poxvirus pseudosubstrate K3L protein. Proceedings of the National Academy of Sciences of the United States of America, 105, 16894–16899.
Seo,, G. J., Yang,, A., Tan,, B., Kim,, S., Liang,, Q., Choi,, Y., … Jung,, J. U. (2015). Akt kinase‐mediated checkpoint of cGAS DNA sensing pathway. Cell Reports, 13, 440–449.
Shchelkunov,, S. N. (2013). An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathogens, 9, e1003756.
Shirokikh,, N. E., & Spirin,, A. S. (2008). Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proceedings of the National Academy of Sciences of the United States of America, 105, 10738–10743.
Shisler,, J. L. (2015). Immune evasion strategies of molluscum contagiosum virus. Advances in Virus Research, 92, 201–252.
Shuman,, S., & Moss,, B. (1988). Vaccinia virus poly(A) polymerase. Specificity for nucleotides and nucleotide analogs. The Journal of Biological Chemistry, 263, 8405–8412.
Simpson‐Holley,, M., Kedersha,, N., Dower,, K., Rubins,, K. H., Anderson,, P., Hensley,, L. E., & Connor,, J. H. (2011). Formation of antiviral cytoplasmic granules during orthopoxvirus infection. Journal of Virology, 85, 1581–1593.
Soares,, J. A., Leite,, F. G., Andrade,, L. G., Torres,, A. A., De Sousa,, L. P., Barcelos,, L. S., et al. (2009). Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infections is required for both host survival and viral replication. Journal of Virology, 83, 6883–6899.
Stanford,, M. M., Barrett,, J. W., Nazarian,, S. H., Werden,, S., & McFadden,, G. (2007). Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. Journal of Virology, 81, 1251–1260.
Strnadova,, P., Ren,, H., Valentine,, R., Mazzon,, M., Sweeney,, T. R., Brierley,, I., & Smith,, G. L. (2015). Inhibition of translation initiation by protein 169: A vaccinia virus strategy to suppress innate and adaptive immunity and alter virus virulence. PLoS Pathogens, 11, e1005151.
Sundaramoorthy,, E., Leonard,, M., Mak,, R., Liao,, J., Fulzele,, A., & Bennett,, E. J. (2017). ZNF598 and RACK1 regulate mammalian ribosome‐associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Molecular Cell, 65, 751–760 e754.
Urushibara,, T., Furuichi,, Y., Nishimura,, C., & Miura,, K. (1975). A modified structure at the 5′‐terminus of mRNA of vaccinia virus. FEBS Letters, 49, 385–389.
Walsh,, D., Arias,, C., Perez,, C., Halladin,, D., Escandon,, M., Ueda,, T., … Mohr,, I. (2008). Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus‐infected cells. Molecular and Cellular Biology, 28, 2648–2658.
Walsh,, D., & Mohr,, I. (2014). Coupling 40S ribosome recruitment to modification of a cap‐binding initiation factor by eIF3 subunit e. Genes %26 Development, 28, 835–840.
Wei,, C., Gershowitz,, A., & Moss,, B. (1975). N6, O2`‐dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature, 257, 251–253.
Wei,, C., & Moss,, B. (1977). 5`‐terminal capping of RNA by guanylyltransferase from HeLa cell nuclei. Proceedings of the National Academy of Sciences of the United States of America, 74, 3758–3761.
Wei,, C. M., & Moss,, B. (1975). Methylated nucleotides block 5′‐terminus of vaccinia virus messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 72, 318–322.
Welnowska,, E., Castelló,, A., Moral,, P., & Carrasco,, L. (2009). Translation of mRNAs from vesicular stomatitis virus and vaccinia virus is differentially blocked in cells with depletion of eIF4GI and/or eIF4GII. Journal of Molecular Biology, 394, 506–521.
Werden,, S. J., Barrett,, J. W., Wang,, G., Stanford,, M. M., & McFadden,, G. (2007). M‐T5, the ankyrin repeat, host range protein of myxoma virus, activates Akt and can be functionally replaced by cellular PIKE‐A. Journal of Virology, 81, 2340–2348.
Werden,, S. J., Lanchbury,, J., Shattuck,, D., Neff,, C., Dufford,, M., & McFadden,, G. (2009). The myxoma virus m‐t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus‐infected cells. Journal of Virology, 83, 12068–12083.
Werden,, S. J., & McFadden,, G. (1784). The role of cell signaling in poxvirus tropism: The case of the M‐T5 host range protein of myxoma virus. Biochimica et Biophysica Acta, 2008, 228–237.
Willis,, K. L., Langland,, J. O., & Shisler,, J. L. (2011). Viral double‐stranded RNAs from vaccinia virus early or intermediate gene transcripts possess PKR activating function, resulting in NF‐kappaB activation, when the K1 protein is absent or mutated. The Journal of Biological Chemistry, 286, 7765–7778.
Willis,, K. L., Patel,, S., Xiang,, Y., & Shisler,, J. L. (2009). The effect of the vaccinia K1 protein on the PKR‐eIF2alpha pathway in RK13 and HeLa cells. Virology, 394, 73–81.
Wolf,, A. S., & Grayhack,, E. J. (2015). Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats. RNA, 21, 935–945.
Wright,, C. F., & Moss,, B. (1987). In vitro synthesis of vaccinia virus late mRNA containing a 5′ poly(A) leader sequence. Proceedings of the National Academy of Sciences of the United States of America, 84, 8883–8887.
Xu,, G., Greene,, G. H., Yoo,, H., Liu,, L., Marques,, J., Motley,, J., & Dong,, X. (2017). Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature, 545, 487–490.
Yang,, Z., Bruno,, D. P., Martens,, C. A., Porcella,, S. F., & Moss,, B. (2010). Simultaneous high‐resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107, 11513–11518.
Yang,, Z., Bruno,, D. P., Martens,, C. A., Porcella,, S. F., & Moss,, B. (2011). Genome‐wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. Journal of Virology, 85, 5897–5909.
Yang,, Z., Cao,, S., Martens,, C. A., Porcella,, S. F., Xie,, Z., Ma,, M., … Moss,, B. (2015). Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. Journal of Virology, 89, 6874–6886.
Yu,, Y., Yoon,, S. O., Poulogiannis,, G., Yang,, Q., Ma,, X. M., Villen,, J., … Blenis,, J. (2011). Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 332, 1322–1326.
Zaborowska,, I., Kellner,, K., Henry,, M., Meleady,, P., & Walsh,, D. (2012). Recruitment of host translation initiation factor eIF4G by the vaccinia virus ssDNA‐binding protein I3. Virology, 425, 11–22.
Zaborowska,, I., & Walsh,, D. (2009). PI3K signaling regulates rapamycin‐insensitive translation initiation complex formation in vaccinia virus‐infected cells. Journal of Virology, 83, 3988–3992.
Zhang,, P., Jacobs,, B. L., & Samuel,, C. E. (2008). Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. Journal of Virology, 82, 840–848.
Zhang,, P., Langland,, J. O., Jacobs,, B. L., & Samuel,, C. E. (2009). Protein kinase PKR‐dependent activation of mitogen‐activated protein kinases occurs through mitochondrial adapter IPS‐1 and is antagonized by vaccinia virus E3L. Journal of Virology, 83, 5718–5725.