Amon,, J. D., & Koshland,, D. (2016). RNase H enables efficient repair of R‐loop induced DNA damage. eLife, 5, 20533. https://doi.org/10.7554/eLife.20533
Andersen,, C. B., Ballut,, L., Johansen,, J. S., Chamieh,, H., Nielsen,, K. H., Oliveira,, C. L., … Andersen,, G. R. (2006). Structure of the exon junction core complex with a trapped DEAD‐box ATPase bound to RNA. Science, 313(5795), 1968–1972. https://doi.org/10.1126/science.1131981
Andersson,, E. R., Sandberg,, R., & Lendahl,, U. (2011). Notch signaling: Simplicity in design versatility in function. Development, 138(17), 3593–3612. https://doi.org/10.1242/dev.063610
Arun,, G., Akhade,, V. S., Donakonda,, S., & Rao,, M. R. S. (2012). mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Molecular and Cellular Biology, 32(15), 3140–3152. https://doi.org/10.1128/MCB.00006-12
Baldelli,, P., & Meldolesi,, J. (2015). The transcription repressor REST in adult neurons: Physiology, pathology, and diseases. ENeuro, 2(4). https://doi.org/10.1523/ENEURO.0010-15.2015
Ballut,, L., Marchadier,, B., Baguet,, A., Tomasetto,, C., Seraphin,, B., & Le Hir,, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Structural %26 Molecular Biology, 12(10), 861–869. https://doi.org/10.1038/nsmb990
Banroques,, J., Cordin,, O., Doere,, M., Linder,, P., & Tanner,, N. K. (2008). A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP‐dependent binding of RNA substrates in DEAD‐box proteins. Molecular and Cellular Biology, 28(10), 3359–3371. https://doi.org/10.1128/MCB.01555-07
Bates,, G. J., Nicol,, S. M., Wilson,, B. J., Jacobs,, A.‐M. F., Bourdon,, J.‐C., Wardrop,, J., … Fuller‐Pace,, F. V. (2005). The DEAD box protein p68: A novel transcriptional coactivator of the p53 tumour suppressor. The EMBO Journal, 24(3), 543–553. https://doi.org/10.1038/sj.emboj.7600550
Beck,, Z. T., Cloutier,, S. C., Schipma,, M. J., Petell,, C. J., Ma,, W. K., & Tran,, E. J. (2014). Regulation of glucose‐dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics, 198(3), 1001–1014. https://doi.org/10.1534/genetics.114.170019
Bentley,, D. L. (2014). Coupling mRNA processing with transcription in time and space. Nature Reviews Genetics, 15, 163–175. https://doi.org/10.1038/nrg3662
Bernstein,, B. E., Mikkelsen,, T. S., Xie,, X., Kamal,, M., Huebert,, D. J., Cuff,, J., … Lander,, E. S. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2), 315–326. https://doi.org/10.1016/j.cell.2006.02.041
Bjork,, P., & Wieslander,, L. (2014). Mechanisms of mRNA export. Seminars in Cell %26 Developmental Biology, 32, 47–54. https://doi.org/10.1016/j.semcdb.2014.04.027
Bond,, A. T., Mangus,, D. A., He,, F., & Jacobson,, A. (2001). Absence of Dbp2p alters both nonsense‐mediated mRNA decay and rRNA processing. Molecular and Cellular Biology, 21(21), 7366–7379. https://doi.org/10.1128/MCB.21.21.7366-7379.2001
Brooks,, A. N., Duff,, M. O., May,, G., Yang,, L., Bolisetty,, M., Landolin,, J., … Brenner,, S. E. (2015). Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Research, 25(11), 1771–1780. https://doi.org/10.1101/gr.192518.115
Buszczak,, M., & Spradling,, A. C. (2006). The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes %26 Development, 20(8), 977–989. https://doi.org/10.1101/gad.1396306
Camats,, M., Kokolo,, M., Heesom,, K. J., Ladomery,, M., & Bach‐Elias,, M. (2009). P19 H‐ras induces G1/S phase delay maintaining cells in a reversible quiescence state. PLoS One, 4(12), e8513. https://doi.org/10.1371/journal.pone.0008513
Causevic,, M., Hislop,, R. G., Kernohan,, N. M., Carey,, F. A., Kay,, R. A., Steele,, R. J., & Fuller‐Pace,, F. V. (2001). Overexpression and poly‐ubiquitylation of the DEAD‐box RNA helicase p68 in colorectal tumours. Oncogene, 20(53), 7734–7743. https://doi.org/10.1038/sj.onc.1204976
Cautain,, B., Hill,, R., de Pedro,, N., & Link,, W. (2015). Components and regulation of nuclear transport processes. The FEBS Journal, 282(3), 445–462. https://doi.org/10.1111/febs.13163
Chen,, Y., Potratz,, J. P., Tijerina,, P., Del Campo,, M., Lambowitz,, A. M., & Russell,, R. (2008). DEAD‐box proteins can completely separate an RNA duplex using a single ATP. Proceedings of the National Academy of Sciences of the USA, 105(51), 20203–20208. https://doi.org/10.1073/pnas.0811075106
Choi,, Y.‐J., & Lee,, S.‐G. (2012). The DEAD‐box RNA helicase DDX3 interacts with DDX5, co‐localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. Journal of Cellular Biochemistry, 113(3), 985–996. https://doi.org/10.1002/jcb.23428
Clark,, E. L., Coulson,, A., Dalgliesh,, C., Rajan,, P., Nicol,, S. M., Fleming,, S., … Robson,, C. N. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Research, 68(19), 7938–7946. https://doi.org/10.1158/0008-5472.CAN-08-0932
Clark,, E. L., Hadjimichael,, C., Temperley,, R., Barnard,, A., Fuller‐Pace,, F. V., & Robson,, C. N. (2013). p68/DdX5 supports beta‐catenin %26 RNAP II during androgen receptor mediated transcription in prostate cancer. PLoS One, 8(1), e54150. https://doi.org/10.1371/journal.pone.0054150
Cloutier,, S. C., Ma,, W. K., Nguyen,, L. T., & Tran,, E. J. (2012). The DEAD‐box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. The Journal of Biological Chemistry, 287(31), 26155–26166. https://doi.org/10.1074/jbc.M112.383075
Cloutier,, S. C., Wang,, S., Ma,, W. K., Al Husini,, N., Dhoondia,, Z., Ansari,, A., … Tran,, E. J. (2016). Regulated formation of lncRNA‐DNA hybrids enables faster transcriptional induction and environmental adaptation. Molecular Cell, 61(3), 393–404. https://doi.org/10.1016/j.molcel.2015.12.024
Cloutier,, S. C., Wang,, S., Ma,, W. K., Petell,, C. J., & Tran,, E. J. (2013). Long noncoding RNAs promote transcriptional poising of inducible genes. PLoS Biology, 11(11), e1001715. https://doi.org/10.1371/journal.pbio.1001715
Cordin,, O., Banroques,, J., Tanner,, N. K., & Linder,, P. (2006). The DEAD‐box protein family of RNA helicases. Gene, 367, 17–37. https://doi.org/10.1016/j.gene.2005.10.019
Cordin,, O., & Beggs,, J. D. (2013). RNA helicases in splicing. RNA Biology, 10(1), 83–95. https://doi.org/10.4161/rna.22547
Csink,, A. K., Linsk,, R., & Birchler,, J. A. (1994). The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics, 138(1), 153–163.
Damianov,, A., Ying,, Y., Lin,, C.‐H., Lee,, J.‐A., Tran,, D., Vashisht,, A. A., … Black,, D. L. (2016). Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell, 165(3), 606–619. https://doi.org/10.1016/j.cell.2016.03.040
Dardenne,, E., Pierredon,, S., Driouch,, K., Gratadou,, L., Lacroix‐Triki,, M., Espinoza,, M. P., … Auboeuf,, D. (2012). Splicing switch of an epigenetic regulator by RNA helicases promotes tumor‐cell invasiveness. Nature Structural %26 Molecular Biology, 19(11), 1139–1146. https://doi.org/10.1038/nsmb.2390
Dardenne,, E., Polay Espinoza,, M., Fattet,, L., Germann,, S., Lambert,, M.‐P., Neil,, H., … Auboeuf,, D. (2014). RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Reports, 7(6), 1900–1913. https://doi.org/10.1016/j.celrep.2014.05.010
Davis,, B. N., Hilyard,, A. C., Lagna,, G., & Hata,, A. (2008). SMAD proteins control DROSHA‐mediated microRNA maturation. Nature, 454(7200), 56–61. https://doi.org/10.1038/nature07086
Davis,, B. N., Hilyard,, A. C., Nguyen,, P. H., Lagna,, G., & Hata,, A. (2010). Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Molecular Cell, 39(3), 373–384. https://doi.org/10.1016/j.molcel.2010.07.011
Del Campo,, M., & Lambowitz,, A. M. (2009). Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Molecular Cell, 35(5), 598–609. https://doi.org/10.1016/j.molcel.2009.07.032
Du,, C., Li,, D.‐Q., Li,, N., Chen,, L., Li,, S.‐S., Yang,, Y., … Zheng,, Z.‐D. (2017). DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway. Scientific Reports, 7, 42876. https://doi.org/10.1038/srep42876
El Hage,, A., French,, S. L., Beyer,, A. L., & Tollervey,, D. (2010). Loss of topoisomerase I leads to R‐loop‐mediated transcriptional blocks during ribosomal RNA synthesis. Genes %26 Development, 24(14), 1546–1558. https://doi.org/10.1101/gad.573310
Engreitz,, J. M., Haines,, J. E., Perez,, E. M., Munson,, G., Chen,, J., Kane,, M., … Lander,, E. S. (2016). Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 539(7629), 452–455. https://doi.org/10.1038/nature20149
Fiorini,, F., Bagchi,, D., Le Hir,, H., & Croquette,, V. (2015). Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nature Communications, 6, 7581. https://doi.org/10.1038/ncomms8581
Ford,, M. J., Anton,, I. A., & Lane,, D. P. (1988). Nuclear protein with sequence homology to translation initiation factor eIF‐4A. Nature, 332(6166), 736–738. https://doi.org/10.1038/332736a0
Fuller‐Pace,, F. V. (2013). The DEAD box proteins DDX5 (p68) and DDX17 (p72): Multi‐tasking transcriptional regulators. Biochimica et Biophysica Acta, 1829(8), 756–763. https://doi.org/10.1016/j.bbagrm.2013.03.004
Fuller‐Pace,, F. V., & Moore,, H. C. (2011). RNA helicases p68 and p72: Multifunctional proteins with important implications for cancer development. Future Oncology, 7(2), 239–251. https://doi.org/10.2217/fon.11.1
Geißler,, V., Altmeyer,, S., Stein,, B., Uhlmann‐Schiffler,, H., & Stahl,, H. (2013). The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA. Nucleic Acids Research, 41(16), 7875–7888. https://doi.org/10.1093/nar/gkt538
Gregory,, R. I., Yan,, K.‐P., Amuthan,, G., Chendrimada,, T., Doratotaj,, B., Cooch,, N., & Shiekhattar,, R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–240. https://doi.org/10.1038/nature03120
Guenther,, U.‐P., Weinberg,, D. E., Zubradt,, M. M., Tedeschi,, F. A., Stawicki,, B. N., Zagore,, L. L., … Jankowsky,, E. (2018). The helicase Ded1p controls use of near‐cognate translation initiation codons in 5’ UTRs. Nature, 559(7712), 130–134. https://doi.org/10.1038/s41586-018-0258-0
Guil,, S., Gattoni,, R., Carrascal,, M., Abian,, J., Stevenin,, J., & Bach‐Elias,, M. (2003). Roles of hnRNP A1, SR proteins, and p68 helicase in c‐H‐ras alternative splicing regulation. Molecular and Cellular Biology, 23(8), 2927–2941.
Guo,, J., Hong,, F., Loke,, J., Yea,, S., Lim,, C. L., Lee,, U., … Friedman,, S. L. (2010). A DDX5 S480A polymorphism is associated with increased transcription of fibrogenic genes in hepatic stellate cells. The Journal of Biological Chemistry, 285(8), 5428–5437. https://doi.org/10.1074/jbc.M109.035295
Ha,, M., & Kim,, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524. https://doi.org/10.1038/nrm3838
Halls,, C., Mohr,, S., Del Campo,, M., Yang,, Q., Jankowsky,, E., & Lambowitz,, A. M. (2007). Involvement of DEAD‐box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis‐dependent and ‐independent mechanisms, and general RNA chaperone activity. Journal of Molecular Biology, 365(3), 835–855. https://doi.org/10.1016/j.jmb.2006.09.083
He,, F., & Jacobson,, A. (1995). Identification of a novel component of the nonsense‐mediated mRNA decay pathway by use of an interacting protein screen. Genes %26 Development, 9(4), 437–454.
Henn,, A., Cao,, W., Hackney,, D. D., & De La Cruz,, E. M. (2008). The ATPase cycle mechanism of the DEAD‐box rRNA helicase, DbpA. Journal of Molecular Biology, 377(1), 193–205. https://doi.org/10.1016/j.jmb.2007.12.046
Herdy,, B., Mayer,, C., Varshney,, D., Marsico,, G., Murat,, P., Taylor,, C., … Balasubramanian,, S. (2018). Analysis of NRAS RNA G‐quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G‐quadruplex containing transcripts. Nucleic Acids Research. https://doi.org/10.1093/nar/gky861
Hirling,, H., Scheffner,, M., Restle,, T., & Stahl,, H. (1989). RNA helicase activity associated with the human p68 protein. Nature, 339(6225), 562–564. https://doi.org/10.1038/339562a0
Honig,, A., Auboeuf,, D., Parker,, M. M., O`Malley,, B. W., & Berget,, S. M. (2002). Regulation of alternative splicing by the ATP‐dependent DEAD‐box RNA helicase p72. Molecular and Cellular Biology, 22(16), 5698–5707.
Houseley,, J., Rubbi,, L., Grunstein,, M., Tollervey,, D., & Vogelauer,, M. (2008). A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Molecular Cell, 32(5), 685–695. https://doi.org/10.1016/j.molcel.2008.09.027
Huang,, Y., & Liu,, Z.‐R. (2002). The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. Journal of Biological Chemistry, 277(15), 12810–12815. https://doi.org/10.1074/jbc.M200182200
Hug,, N., Longman,, D., & Caceres,, J. F. (2016). Mechanism and regulation of the nonsense‐mediated decay pathway. Nucleic Acids Research, 44(4), 1483–1495. https://doi.org/10.1093/nar/gkw010
Iadevaia,, V., Liu,, R., & Proud,, C. G. (2014). mTORC1 signaling controls multiple steps in ribosome biogenesis. Seminars in Cell %26 Developmental Biology, 36, 113–120. https://doi.org/10.1016/j.semcdb.2014.08.004
Iggo,, R. D., Jamieson,, D. J., MacNeill,, S. A., Southgate,, J., McPheat,, J., & Lane,, D. P. (1991). p68 RNA helicase: Identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Molecular and Cellular Biology, 11(3), 1326–1333.
Ishizuka,, A., Siomi,, M. C., & Siomi,, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes %26 Development, 16(19), 2497–2508. https://doi.org/10.1101/gad.1022002
Jalal,, C., Uhlmann‐Schiffler,, H., & Stahl,, H. (2007). Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Research, 35(11), 3590–3601. https://doi.org/10.1093/nar/gkm058
Jankowsky,, E., Gross,, C. H., Shuman,, S., & Pyle,, A. M. (2000). The DExH protein NPH‐II is a processive and directional motor for unwinding RNA. Nature, 403(6768), 447–451. https://doi.org/10.1038/35000239
Jarmoskaite,, I., & Russell,, R. (2014). RNA helicase proteins as chaperones and remodelers. Annual Review of Biochemistry, 83, 697–725. https://doi.org/10.1146/annurev-biochem-060713-035546
Kahlina,, K., Goren,, I., Pfeilschifter,, J., & Frank,, S. (2004). p68 DEAD box RNA helicase expression in keratinocytes. Regulation, nucleolar localization, and functional connection to proliferation and vascular endothelial growth factor gene expression. Journal of Biological Chemistry, 279(43), 44872–44882. https://doi.org/10.1074/jbc.M402467200
Kar,, A., Fushimi,, K., Zhou,, X., Ray,, P., Shi,, C., Chen,, X., … Wu,, J. Y. (2011). RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem‐loop structure at the 5′ splice site. Molecular and Cellular Biology, 31(9), 1812–1821. https://doi.org/10.1128/MCB.01149-10
Katoh,, K., Rozewicki,, J., & Yamada,, K. D. (2017). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbx108
Kay,, B. K., Williamson,, M. P., & Sudol,, M. (2000). The importance of being proline: The interaction of proline‐rich motifs in signaling proteins with their cognate domains. FASEB Journal, 14(2), 231–241.
Lambert,, M.‐P., Terrone,, S., Giraud,, G., Benoit‐Pilven,, C., Cluet,, D., Combaret,, V., … Bourgeois,, C. F. (2018). The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Research, 46(15), 7686–7700. https://doi.org/10.1093/nar/gky545
Lamm,, G. M., Nicol,, S. M., Fuller‐Pace,, F. V., & Lamond,, A. I. (1996). p72: A human nuclear DEAD box protein highly related to p68. Nucleic Acids Research, 24(19), 3739–3747.
Lane,, D. P., & Hoeffler,, W. K. (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature, 288(5787), 167–170.
Lasko,, P. (2013). The DEAD‐box helicase Vasa: Evidence for a multiplicity of functions in RNA processes and developmental biology. Biochimica et Biophysica Acta, 1829(8), 810–816. https://doi.org/10.1016/j.bbagrm.2013.04.005
Lee,, Y., & Rio,, D. C. (2015). Mechanisms and regulation of alternative pre‐mRNA splicing. Annual Review of Biochemistry, 84, 291–323. https://doi.org/10.1146/annurev-biochem-060614-034316
Lee,, Y. J., Wang,, Q., & Rio,, D. C. (2018). Coordinate regulation of alternative pre‐mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes %26 Development, 32(15–16), 1060–1074. https://doi.org/10.1101/gad.316034.118
Lei,, E. P., & Corces,, V. G. (2006). RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genetics, 38(8), 936–941. https://doi.org/10.1038/ng1850
Lelli,, K. M., Slattery,, M., & Mann,, R. S. (2012). Disentangling the many layers of eukaryotic transcriptional regulation. Annual Review of Genetics, 46, 43–68. https://doi.org/10.1146/annurev-genet-110711-155437
Li,, H., Lai,, P., Jia,, J., Song,, Y., Xia,, Q., Huang,, K., … Yao,, H. (2017). RNA helicase DDX5 inhibits reprogramming to pluripotency by miRNA‐based repression of RYBP and its PRC1‐dependent and ‐independent functions. Cell Stem Cell, 20(4), 462–477.e6. https://doi.org/10.1016/j.stem.2016.12.002
Liberti,, M. V., & Locasale,, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001
Lin,, C., Yang,, L., Yang,, J. J., Huang,, Y., & Liu,, Z.‐R. (2005). ATPase/helicase activities of p68 RNA helicase are required for pre‐mRNA splicing but not for assembly of the spliceosome. Molecular and Cellular Biology, 25(17), 7484–7493. https://doi.org/10.1128/MCB.25.17.7484-7493.2005
Lin,, S., Tian,, L., Shen,, H., Gu,, Y., Li,, J.‐L., Chen,, Z., … Wu,, L. (2013). DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene, 32(40), 4845–4853. https://doi.org/10.1038/onc.2012.482
Linder,, P., & Jankowsky,, E. (2011). From unwinding to clamping—The DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12(8), 505–516. https://doi.org/10.1038/nrm3154
Linder,, P., Lasko,, P. F., Ashburner,, M., Leroy,, P., Nielsen,, P. J., Nishi,, K., … Slonimski,, P. P. (1989). Birth of the D‐E‐A‐D box. Nature, 337, 121–122. https://doi.org/10.1038/337121a0
Liu,, F., Putnam,, A., & Jankowsky,, E. (2008). ATP hydrolysis is required for DEAD‐box protein recycling but not for duplex unwinding. Proceedings of the National Academy of Sciences of the USA, 105(51), 20209–20214. https://doi.org/10.1073/pnas.0811115106
Liu,, Z.‐R. (2002). p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA‐5′ splice site duplex. Molecular and Cellular Biology, 22(15), 5443–5450.
Liu,, Z. R., Sargueil,, B., & Smith,, C. W. (1998). Detection of a novel ATP‐dependent cross‐linked protein at the 5′ splice site‐U1 small nuclear RNA duplex by methylene blue‐mediated photo‐cross‐linking. Molecular and Cellular Biology, 18(12), 6910–6920.
Lorsch,, J. R., & Herschlag,, D. (1998). The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA‐dependent conformational changes. Biochemistry, 37(8), 2194–2206. https://doi.org/10.1021/bi9724319
Lykke‐Andersen,, S., & Jensen,, T. H. (2015). Nonsense‐mediated mRNA decay: An intricate machinery that shapes transcriptomes. Nature Reviews Molecular Cell Biology, 16, 665–677. https://doi.org/10.1038/nrm4063
Ma,, W. K., Cloutier,, S. C., & Tran,, E. J. (2013). The DEAD‐box protein Dbp2 functions with the RNA‐binding protein Yra1 to promote mRNP assembly. Journal of Molecular Biology, 425(20), 3824–3838. https://doi.org/10.1016/j.jmb.2013.05.016
Ma,, W. K., Paudel,, B. P., Xing,, Z., Sabath,, I. G., Rueda,, D., & Tran,, E. J. (2016). Recruitment, duplex unwinding and protein‐mediated inhibition of the dead‐box RNA helicase Dbp2 at actively transcribed chromatin. Journal of Molecular Biology, 428(6), 1091–1106. https://doi.org/10.1016/j.jmb.2016.02.005
Martin,, D. E., Powers,, T., & Hall,, M. N. (2006). Regulation of ribosome biogenesis: Where is TOR? Cell Metabolism, 4(4), 259–260. https://doi.org/10.1016/j.cmet.2006.09.002
Mazurek,, A., Park,, Y., Miething,, C., Wilkinson,, J. E., Gillis,, J., Lowe,, S. W., … Stillman,, B. (2014). Acquired dependence of acute myeloid leukemia on the DEAD‐box RNA helicase DDX5. Cell Reports, 7(6), 1887–1899. https://doi.org/10.1016/j.celrep.2014.05.019
McWilliam,, H., Li,, W., Uludag,, M., Squizzato,, S., Park,, Y. M., Buso,, N., … Lopez,, R. (2013). Analysis tool web services from the EMBL‐EBI. Nucleic Acids Research, 41(Web Server issue), W597–W600. https://doi.org/10.1093/nar/gkt376
Motiño,, O., Frances,, D. E., Mayoral,, R., Castro‐Sanchez,, L., Fernandez‐Velasco,, M., Bosca,, L., … Martin‐Sanz,, P. (2015). Regulation of MicroRNA 183 by Cyclooxygenase 2 in Liver Is DEAD‐Box Helicase p68 (DDX5) Dependent: Role in Insulin Signaling. Molecular and Cellular Biology, 35(14), 2554–2567. https://doi.org/10.1128/MCB.00198-15
Moy,, R. H., Cole,, B. S., Yasunaga,, A., Gold,, B., Shankarling,, G., Varble,, A., … Cherry,, S. (2014). Stem‐loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell, 158(4), 764–777. https://doi.org/10.1016/j.cell.2014.06.023
Nicol,, S. M., Bray,, S. E., Black,, H. D., Lorimore,, S. A., Wright,, E. G., Lane,, D. P., … Fuller‐Pace,, F. V. (2013). The RNA helicase p68 (DDX5) is selectively required for the induction of p53‐dependent p21 expression and cell‐cycle arrest after DNA damage. Oncogene, 32(29), 3461–3469. https://doi.org/10.1038/onc.2012.426
Nicol,, S. M., Causevic,, M., Prescott,, A. R., & Fuller‐Pace,, F. V. (2000). The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Experimental Cell Research, 257(2), 272–280. https://doi.org/10.1006/excr.2000.4886
Nissan,, T. A., Bassler,, J., Petfalski,, E., Tollervey,, D., & Hurt,, E. (2002). 60S pre‐ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. The EMBO Journal, 21(20), 5539–5547.
Park,, J. W., Parisky,, K., Celotto,, A. M., Reenan,, R. A., & Graveley,, B. R. (2004). Identification of alternative splicing regulators by RNA interference in Drosophila. Proceedings of the National Academy of Sciences of the USA, 101(45), 15974–15979. https://doi.org/10.1073/pnas.0407004101
Phillips‐Cremins,, J. E., & Corces,, V. G. (2013). Chromatin insulators: Linking genome organization to cellular function. Molecular Cell, 50(4), 461–474. https://doi.org/10.1016/j.molcel.2013.04.018
Pinskaya,, M., Gourvennec,, S., & Morillon,, A. (2009). H3 lysine 4 di‐ and tri‐methylation deposited by cryptic transcription attenuates promoter activation. The EMBO Journal, 28(12), 1697–1707. https://doi.org/10.1038/emboj.2009.108
Polach,, K. J., & Uhlenbeck,, O. C. (2002). Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry, 41(11), 3693–3702.
Potratz,, J. P., Del Campo,, M., Wolf,, R. Z., Lambowitz,, A. M., & Russell,, R. (2011). ATP‐dependent roles of the DEAD‐box protein Mss116p in group II intron splicing in vitro and in vivo. Journal of Molecular Biology, 411(3), 661–679. https://doi.org/10.1016/j.jmb.2011.05.047
Putnam,, A. A., & Jankowsky,, E. (2013). DEAD‐box helicases as integrators of RNA, nucleotide and protein binding. Biochimica et Biophysica Acta, 1829(8), 884–893. https://doi.org/10.1016/j.bbagrm.2013.02.002
Rappsilber,, J., Ryder,, U., Lamond,, A. I., & Mann,, M. (2002). Large‐scale proteomic analysis of the human spliceosome. Genome Research, 12(8), 1231–1245. https://doi.org/10.1101/gr.473902
Remenyi,, J., Bajan,, S., Fuller‐Pace,, F. V., Arthur,, J. S. C., & Hutvagner,, G. (2016). The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR‐132. Scientific Reports, 6, 22848. https://doi.org/10.1038/srep22848
Rinn,, J. L., & Chang,, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902
Rocak,, S., & Linder,, P. (2004). DEAD‐box proteins: The driving forces behind RNA metabolism. Nature Reviews Molecular Cell Biology, 5(3), 232–241. https://doi.org/10.1038/nrm1335
Rossler,, O. G., Straka,, A., & Stahl,, H. (2001). Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD‐box proteins p68 and p72. Nucleic Acids Research, 29(10), 2088–2096.
Rossow,, K. L., & Janknecht,, R. (2003). Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene, 22(1), 151–156. https://doi.org/10.1038/sj.onc.1206067
Rudolph,, M. G., & Klostermeier,, D. (2015). When core competence is not enough: Functional interplay of the DEAD‐box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Biological Chemistry, 396(8), 849–865. https://doi.org/10.1515/hsz-2014-0277
Salzman,, D. W., Shubert‐Coleman,, J., & Furneaux,, H. (2007). P68 RNA helicase unwinds the human let‐7 microRNA precursor duplex and is required for let‐7‐directed silencing of gene expression. Journal of Biological Chemistry, 282(45), 32773–32779. https://doi.org/10.1074/jbc.M705054200
Samatanga,, B., & Klostermeier,, D. (2014). DEAD‐box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition. Nucleic Acids Research, 42(16), 10644–10654. https://doi.org/10.1093/nar/gku747
Saporita,, A. J., Chang,, H.‐C., Winkeler,, C. L., Apicelli,, A. J., Kladney,, R. D., Wang,, J., … Weber,, J. D. (2011). RNA helicase DDX5 is a p53‐independent target of ARF that participates in ribosome biogenesis. Cancer Research, 71(21), 6708–6717. https://doi.org/10.1158/0008-5472.CAN-11-1472
Sarkar,, M., & Ghosh,, M. K. (2016). DEAD box RNA helicases: Crucial regulators of gene expression and oncogenesis. Frontiers in Bioscience (Landmark Edition), 21, 225–250.
Saxton,, R. A., & Sabatini,, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004
Sengoku,, T., Nureki,, O., Nakamura,, A., Kobayashi,, S., & Yokoyama,, S. (2006). Structural basis for RNA unwinding by the DEAD‐box protein Drosophila Vasa. Cell, 125(2), 287–300. https://doi.org/10.1016/j.cell.2006.01.054
Sever,, R., & Brugge,, J. S. (2015). Signal transduction in cancer. Cold Spring Harbor Perspectives in Medicine, 5(4). https://doi.org/10.1101/cshperspect.a006098
Sharma,, D., & Jankowsky,, E. (2014). The Ded1/DDX3 subfamily of DEAD‐box RNA helicases. Critical Reviews in Biochemistry and Molecular Biology, 49(4), 343–360. https://doi.org/10.3109/10409238.2014.931339
Shi,, Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology, 18(11), 655–670. https://doi.org/10.1038/nrm.2017.86
Shin,, S., Rossow,, K. L., Grande,, J. P., & Janknecht,, R. (2007). Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Research, 67(16), 7572–7578. https://doi.org/10.1158/0008-5472.CAN-06-4652
Suzuki,, H. I., Yamagata,, K., Sugimoto,, K., Iwamoto,, T., Kato,, S., & Miyazono,, K. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533. https://doi.org/10.1038/nature08199
Talwar,, T., Vidhyasagar,, V., Qing,, J., Guo,, M., Kariem,, A., Lu,, Y., … Wu,, Y. (2017). The DEAD‐box protein DDX43 (HAGE) is a dual RNA‐DNA helicase and has a K‐homology domain required for full nucleic acid unwinding activity. The Journal of Biological Chemistry, 292(25), 10429–10443. https://doi.org/10.1074/jbc.M117.774950
Taniguchi,, T., Iizumi,, Y., Watanabe,, M., Masuda,, M., Morita,, M., Aono,, Y., … Sakai,, T. (2016). Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death %26 Disease, 7, e2211. https://doi.org/10.1038/cddis.2016.114
Tedeschi,, F. A., Cloutier,, S. C., Tran,, E. J., & Jankowsky,, E. (2018). The DEAD‐box protein Dbp2p is linked to non‐coding RNAs, the helicase Sen1p, and R‐loops. RNA, 24(12), 1693–1705. https://doi.org/10.1261/rna.067249.118
Thandapani,, P., O`Connor,, T. R., Bailey,, T. L., & Richard,, S. (2013). Defining the RGG/RG motif. Molecular Cell, 50(5), 613–623. https://doi.org/10.1016/j.molcel.2013.05.021
Theissen,, B., Karow,, A. R., Köhler,, J., Gubaev,, A., & Klostermeier,, D. (2008). Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase. Proceedings of the National Academy of Sciences of the USA, 105(2), 548–553. https://doi.org/10.1073/pnas.0705488105
Thomson,, E., Ferreira‐Cerca,, S., & Hurt,, E. (2013). Eukaryotic ribosome biogenesis at a glance. Journal of Cell Science, 126(Pt 21), 4815–4821. https://doi.org/10.1242/jcs.111948
Tran,, E. J., Zhou,, Y., Corbett,, A. H., & Wente,, S. R. (2007). The DEAD‐box protein Dbp5 controls mRNA export by triggering specific RNA:Protein remodeling events. Molecular Cell, 28(5), 850–859. https://doi.org/10.1016/j.molcel.2007.09.019
Uhlmann‐Schiffler,, H., Jalal,, C., & Stahl,, H. (2006). Ddx42p—A human DEAD box protein with RNA chaperone activities. Nucleic Acids Research, 34(1), 10–22. https://doi.org/10.1093/nar/gkj403
Umate,, P., Tuteja,, N., & Tuteja,, R. (2011). Genome‐wide comprehensive analysis of human helicases. Communicative %26 Integrative Biology, 4(1), 118–137. https://doi.org/10.4161/cib.4.1.13844
van Dijk,, E. L., Chen,, C. L., d`Aubenton‐Carafa,, Y., Gourvennec,, S., Kwapisz,, M., Roche,, V., … Morillon,, A. (2011). XUTs are a class of Xrn1‐sensitive antisense regulatory non‐coding RNA in yeast. Nature, 475(7354), 114–117. https://doi.org/10.1038/nature10118
Voigt,, P., Tee,, W.‐W., & Reinberg,, D. (2013). A double take on bivalent promoters. Genes %26 Development, 27(12), 1318–1338. https://doi.org/10.1101/gad.219626.113
von Moeller,, H., Basquin,, C., & Conti,, E. (2009). The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Structural %26 Molecular Biology, 16(3), 247–254. https://doi.org/10.1038/nsmb.1561
Wang,, D., Huang,, J., & Hu,, Z. (2012). RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Molecular %26 Cellular Proteomics, 11(2), M111.011932. https://doi.org/10.1074/mcp.M111.011932
Wang,, H., Gao,, X., Huang,, Y., Yang,, J., & Liu,, Z.‐R. (2009). P68 RNA helicase is a nucleocytoplasmic shuttling protein. Cell Research, 19(12), 1388–1400. https://doi.org/10.1038/cr.2009.113
Wang,, R., Jiao,, Z., Li,, R., Yue,, H., & Chen,, L. (2012). p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF‐kappaB transcription factor p50. Neuro‐Oncology, 14(9), 1116–1124. https://doi.org/10.1093/neuonc/nos131
Wang,, S., Xing,, Z., Pascuzzi,, P. E., & Tran,, E. J. (2017). Metabolic adaptation to nutrients involves coregulation of gene expression by the RNA helicase Dbp2 and the Cyc8 corepressor in Saccharomyces cerevisiae. G3, 7(7), 2235–2247. https://doi.org/10.1534/g3.117.041814
Wang,, Z., Luo,, Z., Zhou,, L., Li,, X., Jiang,, T., & Fu,, E. (2015). DDX5 promotes proliferation and tumorigenesis of non‐small‐cell lung cancer cells by activating beta‐catenin signaling pathway. Cancer Science, 106(10), 1303–1312. https://doi.org/10.1111/cas.12755
Wery,, M., Descrimes,, M., Vogt,, N., Dallongeville,, A.‐S., Gautheret,, D., & Morillon,, A. (2016). Nonsense‐mediated decay restricts LncRNA levels in yeast unless blocked by double‐stranded RNA structure. Molecular Cell, 61(3), 379–392. https://doi.org/10.1016/j.molcel.2015.12.020
Wilson,, B. J., Bates,, G. J., Nicol,, S. M., Gregory,, D. J., Perkins,, N. D., & Fuller‐Pace,, F. V. (2004). The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter‐specific manner. BMC Molecular Biology, 5, 11. https://doi.org/10.1186/1471-2199-5-11
Wongtrakoongate,, P., Riddick,, G., Fucharoen,, S., & Felsenfeld,, G. (2015). Association of the long non‐coding RNA steroid receptor RNA activator (SRA) with TrxG and PRC2 complexes. PLoS Genetics, 11(10), e1005615. https://doi.org/10.1371/journal.pgen.1005615
Wortham,, N. C., Ahamed,, E., Nicol,, S. M., Thomas,, R. S., Periyasamy,, M., Jiang,, J., … Fuller‐Pace,, F. V. (2009). The DEAD‐box protein p72 regulates ERalpha‐/oestrogen‐dependent transcription and cell growth, and is associated with improved survival in ERalpha‐positive breast cancer. Oncogene, 28(46), 4053–4064. https://doi.org/10.1038/onc.2009.261
Xing,, Z., Wang,, S., & Tran,, E. J. (2017). Characterization of the mammalian DEAD‐box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA, 23(7), 1125–1138. https://doi.org/10.1261/rna.060335.116
Yang,, L., Lin,, C., & Liu,, Z.‐R. (2006). P68 RNA helicase mediates PDGF‐induced epithelial mesenchymal transition by displacing Axin from beta‐catenin. Cell, 127(1), 139–155. https://doi.org/10.1016/j.cell.2006.08.036
Yang,, L., Lin,, C., Zhao,, S., Wang,, H., & Liu,, Z.‐R. (2007). Phosphorylation of p68 RNA helicase plays a role in platelet‐derived growth factor‐induced cell proliferation by up‐regulating cyclin D1 and c‐Myc expression. The Journal of Biological Chemistry, 282(23), 16811–16819. https://doi.org/10.1074/jbc.M610488200
Yang,, Q., Del Campo,, M., Lambowitz,, A. M., & Jankowsky,, E. (2007). DEAD‐box proteins unwind duplexes by local strand separation. Molecular Cell, 28(2), 253–263. https://doi.org/10.1016/j.molcel.2007.08.016
Yang,, Q., & Jankowsky,, E. (2005). ATP‐ and ADP‐dependent modulation of RNA unwinding and strand annealing activities by the DEAD‐box protein DED1. Biochemistry, 44(41), 13591–13601. https://doi.org/10.1021/bi0508946
Yang,, Q., & Jankowsky,, E. (2006). The DEAD‐box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Structural %26 Molecular Biology, 13(11), 981–986. https://doi.org/10.1038/nsmb1165
Yao,, H., Brick,, K., Evrard,, Y., Xiao,, T., Camerini‐Otero,, R. D., & Felsenfeld,, G. (2010). Mediation of CTCF transcriptional insulation by DEAD‐box RNA‐binding protein p68 and steroid receptor RNA activator SRA. Genes %26 Development, 24(22), 2543–2555. https://doi.org/10.1101/gad.1967810
Young,, C. L., Khoshnevis,, S., & Karbstein,, K. (2013). Cofactor‐dependent specificity of a DEAD‐box protein. Proceedings of the National Academy of Sciences of the USA, 110(29), E2668–E2676. https://doi.org/10.1073/pnas.1302577110
Zhang,, H., Xing,, Z., Mani,, S. K. K., Bancel,, B., Durantel,, D., Zoulim,, F., … Andrisani,, O. (2016). RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis. Hepatology, 64(4), 1033–1048. https://doi.org/10.1002/hep.28698
Zhao,, L., Watanabe,, M., Yano,, T., Yanagisawa,, J., Nakagawa,, S., Oishi,, H., … Taketani,, Y. (2008). Analysis of the status of the novel estrogen receptor alpha (ERalpha) coactivator p72 in endometrial cancer and its cross talk with erbB‐2 in the transactivation of ERalpha. Molecular Medicine Reports, 1(3), 387–390.
Zhou,, R., Hotta,, I., Denli,, A. M., Hong,, P., Perrimon,, N., & Hannon,, G. J. (2008). Comparative analysis of argonaute‐dependent small RNA pathways in Drosophila. Molecular Cell, 32(4), 592–599. https://doi.org/10.1016/j.molcel.2008.10.018
Zhou,, Z., Licklider,, L. J., Gygi,, S. P., & Reed,, R. (2002). Comprehensive proteomic analysis of the human spliceosome. Nature, 419(6903), 182–185. https://doi.org/10.1038/nature01031
Zonta,, E., Bittencourt,, D., Samaan,, S., Germann,, S., Dutertre,, M., & Auboeuf,, D. (2013). The RNA helicase DDX5/p68 is a key factor promoting c‐fos expression at different levels from transcription to mRNA export. Nucleic Acids Research, 41(1), 554–564. https://doi.org/10.1093/nar/gks1046