Abovich,, N., & Rosbash,, M. (1997). Cross‐intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell, 89, 403–412.
Arenas,, J. E., & Abelson,, J. N. (1997). Prp43: An RNA helicase‐like factor involved in spliceosome disassembly. Proceedings of the National Academy of Sciences of the United States of America, 94, 11798–11802.
Bai,, R., Wan,, R., Yan,, C., Lei,, J., & Shi,, Y. (2018). Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Science, 360, 1423–1429.
Bai,, R., Yan,, C., Wan,, R., Lei,, J., & Shi,, Y. (2017). Structure of the post‐catalytic spliceosome from Saccharomyces cerevisiae. Cell, 171, 1589–1598.e8.
Berglund,, J. A., Chua,, K., Abovich,, N., Reed,, R., & Rosbash,, M. (1997). The splicing factor BBP interacts specifically with the pre‐mRNA branchpoint sequence UACUAAC. Cell, 89, 781–787.
Bertram,, K., Agafonov,, D. E., Dybkov,, O., Haselbach,, D., Leelaram,, M. N., Will,, C. L., … Stark,, H. (2017). Cryo‐EM structure of a pre‐catalytic human spliceosome primed for activation. Cell, 170, 701–713.e11.
Bertram,, K., Agafonov,, D. E., Liu,, W. T., Dybkov,, O., Will,, C. L., Hartmuth,, K., … Lührmann,, R. (2017). Cryo‐EM structure of a human spliceosome activated for step 2 of splicing. Nature, 542, 318–323.
Bevilacqua,, P. C., Ritchey,, L. E., Su,, Z., & Assmann,, S. M. (2016). Genome‐wide analysis of RNA secondary structure. Annual Review of Genetics, 50, 235–266.
Black,, D. L., Chabot,, B., & Steitz,, J. A. (1985). U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell, 42, 737–750.
Boesler,, C., Rigo,, N., Anokhina,, M. M., Tauchert,, M. J., Agafonov,, D. E., Kastner,, B., … Lührmann,, R. (2016). A spliceosome intermediate with loosely associated tri‐snRNP accumulates in the absence of Prp28 ATPase activity. Nature Communications, 7, 11997.
Buratti,, E., & Baralle,, F. E. (2004). Influence of RNA secondary structure on the pre‐mRNA splicing process. Molecular and Cellular Biology, 24, 10505–10514.
Burgess,, S., Couto,, J. R., & Guthrie,, C. (1990). A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell, 60, 705–717.
Butcher,, S. E. (2009). The spliceosome as ribozyme hypothesis takes a second step. Proceedings of the National Academy of Sciences of the United States of America, 106, 12211–12212.
Cech,, T. R. (1986). The generality of self‐splicing RNA: Relationship to nuclear mRNA splicing. Cell, 44, 207–210.
Chan,, S. P., Kao,, D. I., Tsai,, W. Y., & Cheng,, S. C. (2003). The Prp19p‐associated complex in spliceosome activation. Science, 302, 279–282.
Charpentier,, B., & Rosbash,, M. (1996). Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA, 2, 509–522.
Chen,, J. H., & Lin,, R. J. (1990). The yeast PRP2 protein, a putative RNA‐dependent ATPase, shares extensive sequence homology with two other pre‐mRNA splicing factors. Nucleic Acids Research, 18, 6447.
Collins,, C. A., & Guthrie,, C. (2000). The question remains: Is the spliceosome a ribozyme? Nature Structural Biology, 7, 850–854.
Company,, M., Arenas,, J., & Abelson,, J. (1991). Requirement of the RNA helicase‐like protein PRP22 for release of messenger RNA from spliceosomes. Nature, 349, 487–493.
De Conti,, L., Baralle,, M., & Buratti,, E. (2013). Exon and intron definition in pre‐mRNA splicing. WIREs RNA, 4, 49–60.
Fabrizio,, P., & Abelson,, J. (1990). Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science, 250, 404–409.
Fabrizio,, P., & Abelson,, J. (1992). Thiophosphates in yeast U6 snRNA specifically affect pre‐mRNA splicing in vitro. Nucleic Acids Research, 20, 3659–3664.
Faustino,, N. A., & Cooper,, T. A. (2003). Pre‐mRNA splicing and human disease. Genes %26 Development, 17, 419–437.
Fica,, S. M., & Nagai,, K. (2017). Cryo‐electron microscopy snapshots of the spliceosome: Structural insights into a dynamic ribonucleoprotein machine. Nature Structural %26 Molecular Biology, 24, 791–799.
Fica,, S. M., Oubridge,, C., Galej,, W. P., Wilkinson,, M. E., Bai,, X. C., Newman,, A. J., & Nagai,, K. (2017). Structure of a spliceosome remodelled for exon ligation. Nature, 542, 377–380.
Fica,, S. M., Tuttle,, N., Novak,, T., Li,, N. S., Lu,, J., Koodathingal,, P., … Piccirilli,, J. A. (2013). RNA catalyses nuclear pre‐mRNA splicing. Nature, 503, 229–234.
Gahura,, O., Hammann,, C., Valentova,, A., Puta,, F., & Folk,, P. (2011). Secondary structure is required for 3′ splice site recognition in yeast. Nucleic Acids Research, 39, 9759–9767.
Galej,, W. P., Oubridge,, C., Newman,, A. J., & Nagai,, K. (2013). Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature, 493, 638–643.
Galej,, W. P., Toor,, N., Newman,, A. J., & Nagai,, K. (2018). Molecular mechanism and evolution of nuclear pre‐mRNA and group II intron splicing: Insights from Cryo‐electron microscopy structures. Chemical Reviews, 118, 4156–4176.
Galej,, W. P., Wilkinson,, M. E., Fica,, S. M., Oubridge,, C., Newman,, A. J., & Nagai,, K. (2016). Cryo‐EM structure of the spliceosome immediately after branching. Nature, 537, 197–201.
Goguel,, V., & Rosbash,, M. (1993). Splice site choice and splicing efficiency are positively influenced by pre‐mRNA intramolecular base pairing in yeast. Cell, 72, 893–901.
Goguel,, V., Wang,, Y., & Rosbash,, M. (1993). Short artificial hairpins sequester splicing signals and inhibit yeast pre‐mRNA splicing. Molecular and Cellular Biology, 13, 6841–6848.
Grabowski,, P. J., & Black,, D. L. (2001). Alternative RNA splicing in the nervous system. Progress in Neurobiology, 65, 289–308.
Grainger,, R. J., & Beggs,, J. D. (2005). Prp8 protein: At the heart of the spliceosome. RNA, 11, 533–557.
Haselbach,, D., Komarov,, I., Agafonov,, D. E., Hartmuth,, K., Graf,, B., Dybkov,, O., … Stark,, H. (2018). Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell, 172, 454–464.e11.
Hastings,, M. L., & Krainer,, A. R. (2001). Pre‐mRNA splicing in the new millennium. Current Opinion in Cell Biology, 13, 302–309.
Jurica,, M. S., & Moore,, M. J. (2003). Pre‐mRNA splicing: Awash in a sea of proteins. Molecular Cell, 12, 5–14.
Konarska,, M. M., & Sharp,, P. A. (1987). Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell, 49, 763–774.
Kruger,, K., Grabowski,, P. J., Zaug,, A. J., Sands,, J., Gottschling,, D. E., & Cech,, T. R. (1982). Self‐splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell, 31, 147–157.
Lardelli,, R. M., Thompson,, J. X., Yates,, J. R., 3rd, & Stevens,, S. W. (2010). Release of SF3 from the intron branchpoint activates the first step of pre‐mRNA splicing. RNA, 16, 516–528.
Legrain,, P., Seraphin,, B., & Rosbash,, M. (1988). Early commitment of yeast pre‐mRNA to the spliceosome pathway. Molecular and Cellular Biology, 8, 3755–3760.
Li,, X., Liu,, S., Jiang,, J., Zhang,, L., Espinosa,, S., Hill,, R. C., … Zhao,, R. (2017). CryoEM structure of Saccharomyces cerevisiae U1 snRNP offers insight into alternative splicing. Nature Communications, 8, 1035.
Liu,, S., Li,, X., Zhang,, L., Jiang,, J., Hill,, R. C., Cui,, Y., … Zhao,, R. (2017). Structure of the yeast spliceosomal postcatalytic P complex. Science, 358, 1278–1283.
Lopez,, A. J. (1998). Alternative splicing of pre‐mRNA: Developmental consequences and mechanisms of regulation. Annual Review of Genetics, 32, 279–305.
Madhani,, H. D., & Guthrie,, C. (1992). A novel base‐pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell, 71, 803–817.
Martin,, A., Schneider,, S., & Schwer,, B. (2002). Prp43 is an essential RNA‐dependent ATPase required for release of lariat‐intron from the spliceosome. Journal of Biological Chemistry, 277, 17743–17750.
Mattick,, J. S., & Gagen,, M. J. (2001). The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Molecular Biology and Evolution, 18, 1611–1630.
Mefford,, M. A., & Staley,, J. P. (2009). Evidence that U2/U6 helix I promotes both catalytic steps of pre‐mRNA splicing and rearranges in between these steps. RNA, 15, 1386–1397.
Meyer,, M., Plass,, M., Perez‐Valle,, J., Eyras,, E., & Vilardell,, J. (2011). Deciphering 3′ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Molecular Cell, 43, 1033–1039.
Moore,, M. J., Query,, C. C., & Sharp,, P. A. (1993). Splicing of precursors to mRNA by the spliceosome. In R. Gesteland, & J. Atkins, (Eds.), The RNA World (pp. 303–357). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Nguyen,, T. H., Galej,, W. P., Bai,, X. C., Oubridge,, C., Newman,, A. J., SHW,, S., & Nagai,, K. (2016). Cryo‐EM structure of the yeast U4/U6.U5 tri‐snRNP at 3.7 Å resolution. Nature, 530, 298–302.
Nilsen,, T. W. (2003). The spliceosome: The most complex macromolecular machine in the cell? BioEssays, 25, 1147–1149.
O`Keefe,, R. T., & Newman,, A. J. (1998). Functional analysis of the U5 snRNA loop 1 in the second catalytic step of yeast pre‐mRNA splicing. EMBO Journal, 17, 565–574.
Padgett,, R. A., Konarska,, M. M., Grabowski,, P. J., Hardy,, S. F., & Sharp,, P. A. (1984). Lariat RNA`s as intermediates and products in the splicing of messenger RNA precursors. Science, 225, 898–903.
Parada,, G. E., Munita,, R., Cerda,, C. A., & Gysling,, K. (2014). A comprehensive survey of non‐canonical splice sites in the human transcriptome. Nucleic Acids Research, 42, 10564–10578.
Parker,, R., Siliciano,, P. G., & Guthrie,, C. (1987). Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2‐like snRNA. Cell, 49, 229–239.
Peebles,, C. L., Perlman,, P. S., Mecklenburg,, K. L., Petrillo,, M. L., Tabor,, J. H., Jarrell,, K. A., & Cheng,, H. L. (1986). A self‐splicing RNA excises an intron lariat. Cell, 44, 213–223.
Philips,, A. V., & Cooper,, T. A. (2000). RNA processing and human disease. Cellular and Molecular Life Sciences, 57, 235–249.
Plaschka,, C., Lin,, P. C., Charenton,, C., & Nagai,, K. (2018). Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature, 559, 419–422.
Plaschka,, C., Lin,, P. C., & Nagai,, K. (2017). Structure of a pre‐catalytic spliceosome. Nature, 546, 617–621.
Raghunathan,, P. L., & Guthrie,, C. (1998). RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH‐box splicing factor Brr2. Current Biology, 8, 847–855.
Ruby,, S. W., & Abelson,, J. (1988). An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science, 242, 1028–1035.
Ruskin,, B., Zamore,, P. D., & Green,, M. R. (1988). A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell, 52, 207–219.
Scheres,, S. H., & Nagai,, K. (2017). CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre‐mRNA splicing. Current Opinion in Structural Biology, 46, 130–139.
Schwer,, B., & Gross,, C. H. (1998). Prp22, a DExH‐box RNA helicase, plays two distinct roles in yeast pre‐mRNA splicing. EMBO Journal, 17, 2086–2094.
Schwer,, B., & Guthrie,, C. (1992). A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO Journal, 11, 5033–5039.
Semlow,, D. R., Blanco,, M. R., Walter,, N. G., & Staley,, J. P. (2016). Spliceosomal DEAH‐box ATPases remodel pre‐mRNA to activate alternative splice sites. Cell, 164, 985–998.
Seraphin,, B., Kretzner,, L., & Rosbash,, M. (1988). A U1 snRNA:pre‐mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO Journal, 7, 2533–2538.
Seraphin,, B., & Rosbash,, M. (1989). Mutational analysis of the interactions between U1 small nuclear RNA and pre‐mRNA of yeast. Gene, 82, 145–151.
Shi,, Y. (2017a). The spliceosome: A protein‐directed metalloribozyme. Journal of Molecular Biology, 429, 2640–2653.
Shi,, Y. (2017b). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews. Molecular Cell Biology, 18, 655–670.
Solnick,, D. (1985). Alternative splicing caused by RNA secondary structure. Cell, 43, 667–676.
Spingola,, M., Grate,, L., Haussler,, D., & Ares,, M., Jr. (1999). Genome‐wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA, 5, 221–234.
Staley,, J. P., & Guthrie,, C. (1999). An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Molecular Cell, 3, 55–64.
Tseng,, C. K., Liu,, H. L., & Cheng,, S. C. (2011). DEAH‐box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA, 17, 145–154.
Valadkhan,, S. (2007). The spliceosome: A ribozyme at heart? Biological Chemistry, 388, 693–697.
Valadkhan,, S., Mohammadi,, A., Jaladat,, Y., & Geisler,, S. (2009). Protein‐free small nuclear RNAs catalyze a two‐step splicing reaction. Proceedings of the National Academy of Sciences of the United States of America, 106, 11901–11906.
Venables,, J. P. (2002). Alternative splicing in the testes. Current Opinion in Genetics %26 Development, 12, 615–619.
Wan,, R., Yan,, C., Bai,, R., Huang,, G., & Shi,, Y. (2016). Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science, 353, 895–904.
Wan,, R., Yan,, C., Bai,, R., Lei,, J., & Shi,, Y. (2017). Structure of an intron lariat spliceosome from Saccharomyces cerevisiae. Cell, 171, 120–132.e12.
Wan,, R., Yan,, C., Bai,, R., Wang,, L., Huang,, M., Wong,, C. C. L., & Shi,, Y. (2016). The 3.8 Å structure of the U4/U6.U5 tri‐snRNP: Insights into spliceosome assembly and catalysis. Science, 351, 466–475.
Wang,, E. T., Sandberg,, R., Luo,, S., Khrebtukova,, I., Zhang,, L., Mayr,, C., … Burge,, C. B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476.
Warf,, M. B., & Berglund,, J. A. (2010). Role of RNA structure in regulating pre‐mRNA splicing. Trends in Biochemical Sciences, 35, 169–178.
Wilkinson,, M. E., Fica,, S. M., Galej,, W. P., Norman,, C. M., Newman,, A. J., & Nagai,, K. (2017). Postcatalytic spliceosome structure reveals mechanism of 3′‐splice site selection. Science, 358, 1283–1288.
Wu,, S., Romfo,, C. M., Nilsen,, T. W., & Green,, M. R. (1999). Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature, 402, 832–835.
Yan,, C., Hang,, J., Wan,, R., Huang,, M., Wong,, C. C. L., & Shi,, Y. (2015). Structure of a yeast spliceosome at 3.6‐angstrom resolution. Science, 349, 1182–1191.
Yan,, C., Wan,, R., Bai,, R., Huang,, G., & Shi,, Y. (2016). Structure of a yeast activated spliceosome at 3.5 Å resolution. Science, 353, 904–911.
Yan,, C., Wan,, R., Bai,, R., Huang,, G., & Shi,, Y. (2017). Structure of a yeast step II catalytically activated spliceosome. Science, 355, 149–155.
Yean,, S. L., Wuenschell,, G., Termini,, J., & Lin,, R. J. (2000). Metal‐ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature, 408, 881–884.
Zhan,, X., Yan,, C., Zhang,, X., Lei,, J., & Shi,, Y. (2018). Structure of a human catalytic step I spliceosome. Science, 359, 537–545.
Zhang,, X., Yan,, C., Hang,, J., Finci,, L. I., Lei,, J., & Shi,, Y. (2017). An atomic structure of the human spliceosome. Cell, 169, 918–929.e14.
Zhang,, X., Yan,, C., Zhan,, X., Li,, L., Lei,, J., & Shi,, Y. (2018). Structure of the human activated spliceosome in three conformational states. Cell Research, 28, 307–322.